AI in healthcare: Predictive modeling, explainability and clinical impact

Sylvester Tafirenyika *

University of Zimbabwe.
 
Research Article
World Journal of Advanced Research and Reviews, 2023, 19(03), 1700-1718
Article DOI: 10.30574/wjarr.2023.19.3.1986
 
Publication history: 
Received on 18 August 2023; revised on 27 September 2023; accepted on 29 September 2023
 
Abstract: 
Artificial Intelligence (AI) is revolutionizing our generation's health care model in the context of enhancing precision, effectiveness, and speed of clinical decision-making. This essay presents an overview of how AI technology has been used in the health care industry with specific reference to three most important pillars: predictive modeling, explainable AI (XAI), and their ultimate clinical impact. Predictive modeling methods, driven by machine learning algorithms and big health data, enable disease diagnosis at an earlier stage, risk stratification, and individualized treatment protocols. In the absence of transparency in the majority of AI models, transparency, trust, and accountability problems emerged, particularly in clinical high-risk applications. To counter these issues, the paper delineates the growing role of explainable AI (XAI) as a means for establishing confidence among clinicians, facilitating regulatory compliance, and maintaining ethical standards. The research integrates the latest breakthroughs, challenges, and real-world applications and explains how XAI frameworks can fill the algorithmic prediction-to-human interpretability gap. Other than this, the article also explains the clinical role of AI solutions in maximizing diagnostic accuracy, reducing healthcare disparities, and maximizing resource utilization in various healthcare facilities. As great as boundless potential exists in AI, according to the report, there is a cluster of issues associated with data quality, bias mitigation, model explainability, and clinical validation that need to be solved to support solid and credible implementation. Ethically based AI over the long term based on clinical transparency, fairness, and effectiveness within the clinical environment will be the foundation of transformative patient outcomes.
 
Keywords: 
Artificial Intelligence; Predictive Modeling; Explainable AI; Clinical Decision Support; Healthcare Analytics; Machine Learning; Trust In AI; Healthcare Outcomes; Deep Learning; Ethical AI
 
Full text article in PDF: 
Share this