
 Corresponding author: Ramasankar Molleti

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Container runtime security detection and prevention techniques

Ramasankar Molleti *

Computer Science and Engineering, Jawaharlal Nehru Technological University, Hyderabad, India.

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

Publication history: Received on 17 November 2024; revised on 26 December 2024; accepted on 28 December 2024

Article DOI: https://doi.org/10.30574/wjarr.2024.24.3.4003

Abstract

Application control is a particular layer of cloud-native security that is aimed at protection during the application’s work
in the container. This article provides a comprehension of container runtime security measures, including detection and
prevention measures. It goes deeper into the importance of protecting container environments, mainly pointing out the
outlook for dangers and risks that may occur at runtime. It also provides an overview of commodity detection
techniques, such as container image analysis, runtime behavioral analysis, traffic analysis, Host and file integrity.
Further, it dwells on the prevention measures involving image hardening, runtime security policies, the principle of
least privilege, secure configurations and updates, patching, workload isolation and segmentation, secrets management,
and using the immutable infrastructure. Also, this paper briefly discusses recent solutions such as kernel-level security
features, runtime application self-protection (RASP), Sandboxing and unikernel solutions. It also goes further in
explaining how automated security tools and platforms, especially open source and commercial tool platforms, can be
used to improve the security of containers during runtime. In concluding the study, incident response and forensics
need to be implemented across container objects, as it stipulates the need to take preventative measures for security
threat detection and response.

Keywords: Container Runtime Security; Behavioral Analysis; Vulnerability Detection; Multi-layered Defense;
DevSecOps; Orchestration Platforms; Kubernetes

1. Introduction

Containers are small, completely moveable, and highly autonomous executable software modules that contain the
application itself, including the code, interpreter, maintenance programs, references, and configuration information [1].
Containers do not possess their own OS kernel as much as virtual machines do, though they take less resources and time
to launch and operate as compared to them [2]. This efficiency results from the kind of container that utilizes the existing
operating system, which leads to a reduction in overhead.

Container politicians are the lower-level programs that deal with the container life cycle. It deals with container
management, including the creation, destruction and reboot of containers and the allocation and management of their
resources. Some of the most used container runtimes are Docker, which has gotten attached to the word container now;
contained; and CRI-O, which are most preferred in organizations as they are stable and compatible with container
scheduling applications such as Kubernetes [3]. In current cloud-native architectures, containers have emerged as the
new methodology for developing, deploying and managing applications. They are well suited for microservice
architecture, which is a style of designing applications based on smaller, loosely coupled services that can be developed,
tested and scaled independently [4, 5]. This has the benefit of providing modularity, which provides better flexibility
when making changes and makes for robust applications.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2024.24.3.4003
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2024.24.3.4003&domain=pdf

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2627

Containers also help the DevOps processes by creating pipelines for continuous integration and continuous deployment,
known as CI/CD [6]. Containers eliminate the “it works on my machine” problem because they deploy the applications
and all the necessary components, and entails the same environment in development, test, and production [7]. When
working in dynamic but scalable environment, the task to keep solutions and services highly available and reliable is a
crucial one, and that is where the concept of consistency starts to come into the foreground. Container technology has
developed to the next level and some of the runtimes have gained popularity based on their special features and
compatibility with the environment. Among these, Docker which has become one of the most famous containers run
time, comes with admirable application tool sets covering both construction and packing and running of containers [3].
Such characteristics make it preferred by developers and businesses in that they do not need robust support to operate
efficiently. Containerd which started as a fork of Docker has developed to be a runtime for many large container systems
[8]. It is famous for its basic design, speed, and compliance with the Open Container Initiative (OCI) regulations, which
is why it can be recommended for use in production [9]. There is another OCI-conformant runtime called CRI-O, which
is also part of the Kubernetes project, allowing for seamless integration of the runtime with Kubernetes and offering a
weightless and safe means for working with containers in the orchestration platforms [10]. Since containers are part of
modern cloud-native environments, shipping their security to the forefront is a must. This article describes the trend as
well as the methods necessary for implementing the means of identification and protection against vulnerabilities in
the specifics of container runtimes. Thus, by having a deeper understanding of what container runtimes are and what
their most significant weaknesses are, one can develop robust security concepts and countermeasures to be taken in
order to protect containerized applications.

2. Literature review

Figure 1 A General Presentation of Container Security [19]. From the Figure above, when it comes to deployment,
policy-based deployment control makes sure that container images are only launched when they satisfy the security

standards that the group has established. Following deployment, the team is able to periodically inspect its containers
thanks to continuous compliance. At runtime, any container activity that deviates from a configurable set of rules can

be seen by Runtime Security [19]

2.1. Container Security Environment

Infrastructural innovation spurred by container architecture brings a proportional security complexity that requires
detailed handling to guard against vulnerabilities in the applications and data. The isolation problem is one of the main
issues. Containers do not have their own operating systems, like other types of virtual machines or the full-fledged
operating systems that normal virtual machines do [2]. This feature of sharing OS layer implies that if a container is
used for hosting a malicious application, it could result in getting hold of the host system and other containers. These
kinds of isolation issues are very essential, especially in multi-tenant environments where different containers may be
owned by different users or institutions. Another kind of danger in the area of container security is image vulnerability
[11]. The containers could be said to be based on images that consist of the application and all necessary dependencies.
When not well handled, these images can contain weaknesses. Hence, using an outdated or configuring a base image
with loopholes is likely to result in creating numerous base images loaded with security vulnerabilities that affect all
the developed containers [12]. Image vulnerabilities can also derive from the use of untrusted or malicious images, thus

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2628

the need to source images from reputable image registries and scan them for known vulnerabilities (see Figure 1
descriptions).

Configuration adds another layer of risk to the process of making containers secure. One can encounter
misconfigurations at the time of building the container image and even when the container is already deployed and
running [13]. The most frequent mistakes apparent in assessments are misconfigurations such as network, privilege,
and resource settings. To illustrate, it is critical not to run containers with root privileges because if an attacker gets
control over the container, it may severely impact the system [14]. Secure configuration best practices are implemented
strictly at all phases of the container’s life cycle.

External threats occur at runtime and are quite diverse, containing privilege escalation, lateral movements, and denial-
of-service attacks. Privilege escalation arises when the attacker achieves more privilege than he should, which at times
leads to the attacker controlling the entire host system [15]. Lateral movement implies the attacker’s ability to move
through the network to other containers or services, as there is basically poorly constructed network segmentation and
bad access controls. DoS attacks aim to interrupt and cause service outages by overloading resources and compromising
service availability. To protect containerized environments against these runtime hazards, strong detection and
preventive techniques are required.

Coming to the next factors, it is imperative to mention that regulatory and compliance issues also form vital components
of container security. There are rules and statutes that must be followed, including GDPR, HIPAA, and PCI DSS, which
prescribe certain security measures and procedures that have to be put in place [16]. This has to do with the ability to
adequately embrace the right access controls, encryption, auditing and monitoring to correspond to the regulations that
are set. Noncompliance may lead to legal consequences, fines, and other consequences that harm the organisation’s
image.

2.2. Container Runtime Architecture

It is necessary to start the security analysis of container runtimes with understanding of the architecture of such
systems. Container runtimes are made up of a number of subroutines that are concatenated in order to execute the
container management lifecycle. They are made up of the container engine, the image manager, the executors, and the
networks [17]. The container engine is analogous to the processes involved in the creation and running of containers,
while the image manager is involved in the storage and retrieval of the containers. The process manager is responsible
for the running of containers, and the network manager is responsible for setting and managing the network of the
containers [18].

Different container engines, like Docker, Containerd, and CRI-O, have different security features. The most commonly
used container engine is Docker; Docker Swam, which has a rich set of surrounding environments but is more exposed
to attacks because it provides a wide range of functionalities [23]. The Demonbotnet works under the root user, which
may become an attractive target for attackers [21]. Containerd is somewhat simpler and lighter than Dockers; it has
weaker adm appeals, but on the other hand, it eliminates most of the possible attack vectors with the help of extremely
accurate privilege and access control (refer to Figure 2). CRI-O, developed for Kubernetes, focuses on security and
conformance to the OCI specifications, which are perfect for a secured, orchestrated environment.

Container orchestration platforms such as Kubernetes add an extra layer of complexity and security features to the
deployment, scaling, and management of containerized applications; however, it is an extensive piece of software with
a lot of functions, and its main configuration is open to security issues [22]. Hence, misconfigured Kubernetes clusters
may put crucial services on the internet where just about anyone may be able to access the services and even breach
the cluster. Network segmentation, role-based access control (RBAC), and pod security policies are a few examples of
the robust security measures that may need to be enforced in addition to the default Kubernetes settings [24]. In a YAML
file, a Role object must be defined in order to create a role in Kubernetes. The resources, the permitted verbs (actions),
and the API group are all included in the Role object. For instance, only the "get" and "list" operations on pods in the
core API group are permitted by the following role [25].

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2629

namespace: default

name: pod-reader

rules:

- apiGroups: [""]

resources: ["pods"]

 verbs: ["get", "list"]

After defining the Role object, you can use the following command to create the role in your Kubernetes cluster
(assuming the YAML file was saved as role.yaml):

kubectl apply -f role.yaml

It also warrants discussing the links to security from a view of runtime architecture as regards the interaction of
containers with the host system or with other containers. The kernel structure model is efficient, but extremely careful
measures to contain it must be implemented, coupled with strict measures to enable it to run in a separate space. As for
runtime security, mechanisms like namespaces, cgroups, and seccomp profiles let us maintain the level of security.
Namespaces create isolation by sharing process IDs, network interfaces and file systems, and cgroups reduce the
utilization possibilities of the systems in a certain container [25, 26]. Using seccomp profiles, system calls that a
container may perform are limited to the ones not commonly used in attacks [26]. Just to reiterate, gaining a strong
understanding of the design of container run time and its constituent elements is important if one is to be able to secure
this component of the cloud infrastructure. Thus, by understanding the weaknesses and threats, organizations can
implement sustainable measures for shielding container environments for integrity, confidentially and availability of
applications and data.

Figure 2 A flowchart elucidating the relationship between container orchestration and runtimes [20]

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2630

Figure 3 Some of the available tools for container orchestration available in the market [23]. For instance, as
presented in the article, Docker Swarm transforms a collection of Docker engines into a single, virtual Docker engine

by offering native clustering capabilities for Docker containers [23]

3. Methodology: container runtime security detection and prevention techniques

3.1. Detection Techniques

To employ effective container runtime security, it is crucial to begin with suitable detection tools, which help in
preventing container breaches by identifying vulnerabilities, suspicious events, and possible threats before they lead to
potentially severe consequences [27]. There are two main techniques of detection: analysis based on the identification
of vulnerabilities and misconfiguration of the container image without running the code. Clair, Trivy and Anchore are
the instruments that work based on the analysis of the databases for the previously identified vulnerabilities to search
the images for shortcomings [27]. These tools inspect the software components within the container to determine if
there are any old packages, misconfigured system or any other threats. With that, it is easy to detect evils at the image
level in a way that eliminates their chance to fester in production assets. The second detection technique is called
runtime behavioral analysis, which is concerned with the examination of dynamics in containers. Falco and Sysdig are
such tools that monitor system calls, files’ access, and network connections for suspicious behaviors, which may imply
an intrusion [28]. For instance, if a container begins to read files, it should not access or establish calls to the network.
Such tools will let the administrators know that the container is a security threat. Of all the program analysis methods,
runtime behavioral analysis is again more effective for identifying zero-day attacks and other complex attacks that
cannot be revealed by static analysis.

Besides, monitoring and analysing the traffic are critical for identifying malicious activities on the network and possible
attacks. Cilium (check Figure 4) and Calico are available as solutions to monitor the networking within the context of
containerization and observe abnormal activities, including suspicious traffic flows, illegitimate access, and data leakage
[29]. It also pointed out that such tools assist in the detection of threats such as lateral movement, in which attackers
attempt to extend the infection to other containers in the network.

From Figure 4, the Extended Berkeley Packet Filter (eBPF) permits safe, fast and programmable modification of the
network packets, to which the developers can attach micro-programs that are linked with low-level Linux kernel
triggers for different networking objectives. Cilium uses eBPF to build a high-speed and adaptable construct of network
and application policies for security on the Linux operating system. It makes the application have its own security
protocol executions near its edges, diminishing the avenues of attack and strengthening network traffic observation
[30]. This comprises an agent that is located on every cluster node, a central command platform, and the distribution of
an information plane. eBPF programs are administered by the agent, whereas the command platform and information
plane are used for management and security considerations.

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2631

Figure 4 Cillium for Network Security [30]

Host monitoring is another kind of detection that is done at the host level and concentrates on the host system. Third,
AuditD and Osquery are the tools that allow for observing what is happening on the host and whether there are signs of
a security threat [31]. While Osquery offers an interface akin to SQL for accessing system state data, AuditD keeps
detailed logs of system events. Organizations that employ host monitoring can identify attempts to take advantage of
host-level vulnerabilities, such as unauthorized modifications to important system files or suspicious process activity.
Another security control that is important is the monitoring of changes to files in a container and the host OS. For
example, Tripwire and Advanced Intrusion Detection Environment (AIDE) are programs that scan file systems for
changes, and if a program tries to write into any unauthorized section, this is easily detected [32]. Through setting and
overseeing a mean file state, as well as notifying the administrators when the state is different, these tools are
considered to support maintaining the integrity and, therefore, protection of the containerized environment. It is also
worth mentioning that logs and anomalies play an important role in the transition to security events. Therefore, there
is a possibility of collecting logs from the hosts, containers and network devices to understand the potential threats.
Some of the tools used in log analysis can help in drawing out patterns as well as novelties, which, when referred to as
risks, can be highly useful in the timely detection and prevention of incidents.

3.2. Prevention Techniques

Prevention strategies are oriented toward minimizing threats and opportunities for attacks before they occur. It is one
of the primordial layers of prevention, which means shielding the container images via measures that include frequent
updates, working with a limited number of base images, and practicing pre-deployment checks. System Images: Relative
updates guarantee that the images have the newest security patches, and creating minimal base images cuts down on
the attack surface by only installing the most necessary addenda [33]. Scanning, which can be done prior to the image’s
deployment in the organization with the help of programs such as Trivy, Clair, and Anchore, is another protective
measure.

Another important preventive measure that must be taken is the enforcement of runtime security policies. A network
policy in Kubernetes and procedures such as AppArmor and SELinux regulate the manner in which containers behave
and the number of risks they pose [34]. Pod networks in Kubernetes allow the organization of traffic between pods, and
network policies built on the pod networks reduce the possibility of horizontal movement. Containers and virtualization
use AppArmour and SELinux, where the latter is a form of MAC, because it enforces policies on what the container is
allowed to do or not do [35]. The principle of least privilege is a security best practice in the use of containers that means
that containers should be run with the minimal amount of privileges. Organizations may drastically lessen the effect of
a potential security breach by limiting access to only essential resources and employing non-root users inside
containers. For the lowest potential risk, it is crucial to note that permissions on containers should be strictly regulated,
and they should always be executed as unprivileged users. Security is another significant factor that needs to be given
much consideration when it comes to dealing with the containers, as viewed from the following revelations: This
includes making a list of reloads for the options the system didn’t use, setting a cap on the amount of computer resources

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2632

a container can use, and making sure that containers begin with safe parameters. To prevent adverse events, it is
essential for organizations to eliminate all the services and features that are not crucial for their functioning. Resource
control ensures that containers do not use too many resources from the host system in a way that will harm the host
system, such as in a denial-of-service attack. Security in containerized environments requires frequent updating and
patching of the environments. Such important processes include updating not only the container images but also the
host OS and the container orchestration platform with the latest security patches [36]. It is also important to apply
patches on a regular basis, as this helps prevent a system from being vulnerable to already identified flaws.

The relative aspect of network segmentation and the definite aspect of micro-segmentation are the key measures to
contain the effects of a breach [37]. Implicitly dividing the network into segments also makes it difficult for an attacker
to advance to the next segment; they are kept different by access controls to minimize the effect of a possible attack.
Network policies that are employed by tools such as Calico and Cilium are tools that are used to enforce a very detailed
degree of control within containers. Besides, secrets management entails having a way of storing and controlling secret
data that includes identification numbers, passwords, and certificates used by containers. Solutions such as HashiCorp
Vault and Kubernetes Secrets allow for methods of storing and pulling tokens and other sensitive information in order
to only allow the containers that need to access them to do so [38]. Information security hence requires that secrets are
properly managed to avoid incidences such as these and to protect such vital information. Immutable infrastructure is
one of the best practices where containers are deployed and cannot be altered after provision [39]. All changes,
including those in the application or its settings, mean the creation of a new container image. This helps to avoid
configuration drift and maintain security, as well as being much easier in terms of having repeatable processes.

3.3. Advanced Security Mechanisms

An extra layer of security measures serves to enhance the security of a containerized environment. Kernel-level security
features, including seccomp, AppArmor, and SELinux, are very important security modules that are responsible for the
enforcement of security policies at the kernel level [35]. Seccomp lowers the cards that containers may make to the
system, therefore limiting the possibilities of executing certain unwanted operations [26]. AppArmor and SELinux use
the MAC that grants the security policies and enforces them on the computers.

Runtime application self-protection (RASP) is a relatively new security solution that enables the real-time protection of
applications through program code monitoring and the possibility of preventing suspicious actions [40]. RASP operates
at the application level and deploys in the application runtime environment; hence, it can detect and take action on
threats at its level. It is useful when employed as an additional layer of security to counter sophisticated methods that
other methods fail to notice. The other form of isolation that is offered by sandboxing technologies is where the
containers are run in other isolated environments [41]. This minimizes the chance of having another container or the
host system contaminated with a malware attack. Because the concept of containerization involves layering isolation,
sandboxing augments and strengthens the security of containerized platforms from possible attacks. Also, unikernel
solutions entail the use of applications that are scaled down to bare-bone operating systems [42]. This, in turn, reduces
the attack surface and boosts security by removing components and services that are not necessary. Porno represents
a logical evolution of traditional virtual machines, and it is a handy security tool in the containerization context as it is
very isolated.

3.4. Automated Security Tools and Platforms

The application of automated security solutions and platforms is imperative for dealing with the security of many
containers. Other tools that are open-sourced include securing and monitoring, which are offered by Falco Sysdig and
Cilium [28]. These tools are currently being used in the community and possess features such as high customization and
integration. There are various other commercial container security solutions, which include Aqua Security, Twistlock,
which is now a part of Palo Alto Networks, and StackRox, which is now a part of Red Hat [43]. These platforms have
additional features such as vulnerability scanning, runtime protection and compliance, which qualify them for
enterprise deployment. Security should be incorporated right from the development process up to the deployment, and
therefore, it is essential to integrate security with CI/CD pipelines. Thus, security tools can be integrated into CI/CD
processes, which allow for discovering vulnerabilities, maintaining security policies, and allowing the application of
security to only approved code in production. This helps to achieve the objective of shifting security to the left so that
most of the problems can be discovered and fixed in the development phase.

3.5. Incident Response and Forensics in Container Environments

Security incidents must be dealt with and analyzed, which is why response and forensic functions are part of container
security. Some peculiarities of containerization are the rolling nature of containers, the nature of containerization

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2633

engines, and the fact that they require separate tools and approaches. Forensics of containers is basically about
acquiring a dump or a copy of the part of the container as well as the host system. This comprises the gathering of logs,
memory dumps, and filesystem images to analyze possible security risks. Tools like Sysdig Inspect and Falco can help
in the forensic investigation process as they give a live view of what is happening at the container level and at the system
level, respectively [28]. Automated incident response tactics are therefore pre-planned measures of using other tools
and processes to identify, act on, and neutralise security breaches. This can entail the isolation of contaminated
containers, notification to security staff, and the execution of other related actions. Truly, when an organization has put
in measures for automating the response to incidents, they are assured of better protection of their networks.

Table 1 Detection and Prevention Techniques for Container Runtime Security

Technique Tools Technique

Detection

Static Analysis Clair, Trivy, Anchore Scans container images for known vulnerabilities and
misconfigurations

Runtime Behavioral
Analysis

Falco, Sysdig Monitors container behavior for anomalies

Network Traffic
Analysis

Cilium, Calico Analyzes network traffic to detect suspicious activities

Host Monitoring AuditD, osquery Monitors the host system for suspicious activities

File Integrity
Monitoring

Tripwire, AIDE Tracks changes to critical files

Log Analysis and
Anomaly Detection

Various logging tools Analyzes logs to identify patterns and anomalies

Prevention

Image Hardening Best practices Secures images through regular updates, minimal base
images, and scanning

Runtime Security
Policies

Kubernetes Network Policies,
AppArmor, SELinux

Enforces security policies to restrict container behavior

Least Privilege
Principle

Best practices Runs containers with minimum necessary privileges

Secure
Configurations

Best practices Configures containers with secure settings and resource
limits

Regular Updates and
Patching

Best practices Keeps images, host systems, and orchestration platforms
up to date

Network
Segmentation

Calico, Cilium Divides the network into smaller segments with strict
access controls

Secrets Management HashiCorp Vault, Kubernetes
Secrets

Securely stores and manages sensitive information

Immutable
Infrastructure

Best practices Deploys containers in an immutable manner to ensure
consistency

Advanced Security Mechanisms

Kernel-level Security
Features

seccomp, AppArmor, SELinux Enforces security policies at the kernel level

RASP Various RASP tools (Dynatrace
Application Security, Imperva
RASP, Datadog Application
Security Management, e.t.c.)

Provides real-time protection for applications

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2634

Sandboxing
Technologies

Various sandboxing tools (Falcon,
Cuckoo, e.t.c.)

Runs containers in isolated environments

Unikernel
Approaches

Various unikernel projects Runs applications on specialized, minimalistic operating
systems

Automated Security Tools

Open-source Security
Tools

Falco, Sysdig, Cilium Provides robust security capabilities for detecting and
preventing threats

Commercial Security
Platforms

Aqua Security, Twistlock, StackRox Offers comprehensive security solutions for container
environments

CI/CD Integration Various CI/CD tools Embeds security throughout the development and
deployment process

Incident Response and Forensics

Incident Response
Strategies

Various automation tools Automates detection, response, and mitigation of security
incidents

Forensic Analysis Sysdig Inspect, Falco Collects and analyzes evidence from containers and hosts

It is vital to note that applying all of the above mentioned detection (Table 1) and prevention measures can contribute
to the improvement of security in the context of containerization and the corresponding decrease of threats related to
container runtime security.

4. Results and Discussion

4.1. Container Runtime Security Detection and Prevention Significance and Advantages

That is why monitoring and protection against threats in the container’s runtime is considered one of the most essential
levels of cybersecurity. First of all, a stronger security stance is maintained through the ongoing examination and
shielding of applications that have been containerized. Such a preventive course minimizes the number of successful
cyber attacks so that one is able to safeguard the data as well as retain the system's sanctity. More surprising, as
containers add value to cloud-native environments, it is crucial to build up security solutions for them since their
application is crossing diverse industries. The fourth advantage is compliance with unequivocal sales. opaquen Privacy
is a must-have in today’s world and organizations have standard regulatory measures such as GDPR, HIPAA, and PCI-
DSS put in place to enhance the security of data. Measures of Container Runtime Security meet such compliance
requirements; hence, organizations avoid legal repercussions and customer trust loss. Thus, facilitated by these
measures, constant audits and security checks guarantee compliance with the emerging regulations. Container runtime
security, therefore, achieves a notable enhancement of operational efficiency [44]. It allows for efficient allocation of
resources because, through security processes such as vulnerability scanning, behavioral analysis, and network
monitoring, among others, the company can automate a number of processes. This automation frees up the number of
checks and balances that would need to be carried out by the security teams in real time, constantly resulting in security
teams being bogged down in redundant work. Furthermore, the early detection and prevention of security problems
reduces the time taken to resolve problems and improves the systems’ dependability. This is another advantage that
can be considered a direct outcome of the successful implementation of container runtime security. Security breaches
lower the probability of getting penalties, paying for the cost of detection of the break and the consequential damage of
consumers’ loss of confidence [45]. Further, most industrial processes that enhance automation and efficiency are likely
to reduce operation costs. It is far more cost-effective to incorporate security into the design of organizations from the
beginning than to later incur the ridiculous prices of security and breach solutions.

The elaboration and enhancement of the incident detection and prevention systems lead to better response times.
Through constant system checks and the use of notifications, the security department is able to combat threats more
efficiently. This swift action has a great impact on mitigating the effects of security incidents, thereby continuing
business and preserving the reputation of the organization. Robust security measures, in conjunction with efficient
incident response tactics, provide faster recovery and less operational disruption [46].

A specific example of this concept is container runtime security, which is particularly relevant to e-commerce platforms
such as Shopify. Shopify itself also continued to grow its user base, which produced an increasing need for easily scalable

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2635

and easily performant containerized applications. Though this transition had many advantages, it also created many
security problems. Opportunities and threats emerged due to the dynamic characteristics of containers and the
requirement of a fast and enormous deployment.

To this end, Shopify responded by devising a sound container runtime security framework in the face of these hurdles.
These measures comprise Container Image Vulnerability Scanning, which is used to search for vulnerable container
images before they are deployed; Behavioral Analysis of Containers, where containers are monitored for their activities;
and Network Traffic Analysis, where patterns of traffic by containers are observed for anything out of the normal [47].
Also, Shopify expanded security policies like the principle of least privilege, secure configurations, regular updates and
patching [48]. The consequences of these implementations were quite profound. Concerning this aspect, Shopify
experienced a direct enhancement of security profiles with the fewest vulnerabilities and related threats. The adherence
to the set regulations was effectively implemented, and this was an added advantage that increased customers’
confidence. Strategic efficiency was improved by automating security procedures, thus freeing up time for users such
as Shopify’s security team to work on other issues. Security management costs were reduced, while the reaction time
to security incidents was increased to prevent affecting the majority of services.

4.2. Analysis of the Effectiveness of Various Techniques

The general worth of container runtime protection strategies can be illustrated from the steps where they offer end-to-
end security within the layers of the container stack. By using tools such as Clair and Trivy and running a static analysis
on the images to confirm the level of vulnerability, only images without serious vulnerabilities will be launched [49].
Falco and Sysdig are examples of runtime behavioral analysis tools that can monitor and detect suspicious activities in
real time, which is very helpful to protect against runtime threats. Cilium and Calico are examples of netflow analysis
tools that provide insight into network behaviors, allowing for monitoring or blocking of suspicious movement. Specific
tools for host monitoring include AuditD and Osquery, which assist in checking the host system to look for signs of
breaches in the infrastructure. Other measures, such as file integrity monitoring and log analysis, also enhance security
as they check on the integrity of certain files and find out if there are irregularities in logs, respectively.

4.3. Challenges and Limitations in Implementing Container Runtime Security

However, like any other security solutions, there are some limitations associated with container runtime security
solutions. One primary challenge is the fact that security is very dynamic and distributed environments of containers
are very dynamic. Containers themselves are lightweight in design and this makes it hard to have constant view and
control over them. Also, the incorporation of security tools and processes into already functional activities implies a
proper workflow in the organization. Another limitation is the influence on the performance of security measures. While
fundamental, some of the security tools and methods can cause additional delay and workload, which in turn can
undermine the application's efficiency [50]. Security should be implemented appropriately to avoid a negative impact
on the functionality of a website, since some measures that enhance security may be ineffective for a website. Moreover,
the threat environment is dynamic, and a security threat that may be relevant today may not be the same threat in two
years’ time. and as such, there is a constant need for updating and changing security postures, which entails constant
spending on security personnel and equipment.

4.4. Best Practices

Container runtime security is an important area of focus and the tips to follow are best practices for any organization.
This constant check is significant to identify the little security flaws that might have been noted in previous assessments
yet pose a threat, hence making sure that a business continues to protect itself as well as take advantage of the best laws
to use. CI/CD security involves ensuring that the security measure to be taken will be part of the development life cycle,
hence being taken care of right from the development stage [51]. This cuts down on the probability of deploying
contaminated containers by incorporating only credible images from reliable sources.

This includes processes like network segmentation as well as micro-segmentation, which locks down suspect areas and
stops the spread of the breach within the network. Logging and monitoring are done in a comprehensive manner to
allow monitoring of the containers at all times in order to detect forms of threat as they occur. Altogether, these best
practices contribute to the strengthening of the security of containerized environments through the comprehensive
protection of various threats.

4.5. Future Trends And Inventions

The following are the thrusts that advance container runtime security to a new level:. Machine learning and AI are used
to implement as well as improve threat identification and management. These technologies are capable of sorting out

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2636

data that can predict security patterns and future possible threats that can be combatted. It is observed that the
implementation of Zero Trust Architectures, which enforce continuous and strict access protection models, is gradually
finding its place in container security against advanced threats [52]. In addition to that, existing runtime protections are
set to be improved with more robust anti-exploit capabilities, such as fine-grained access controls and spike security
policies that will be in real-time. New types of containers that are coming to the market, including server-less and
unikernels, offer new, sometimes troubling, forms of security. First of all, it is simply essential to observe how innovative
such technologies are in their fields and, consequently, how dynamic the security concepts to safeguard them must also
be. This concept is achieved through DevSecOps practices, which help bring security from a secondary consideration to
the central point of the development life cycle, paving the way for a culture of security improvement

5. Conclusion

With container technologies becoming the order of application deployment and management, it is critical that there are
strong means of runtime security detection and averting tactics in place. Thus, this paper has addressed a rich spectrum
of protective measures, ranging from code analysis and behavior profiling to sophisticated protection layers and script-
driven response capabilities. Successful security of containers therefore must incorporate preventive measures as well
as a proactive and reactive system of detection.

The nature of container technologies is moving really fast, as is the threat that targets them; thus, there is always a need
to be on the lookout and to learn. To sustain a healthy security position, organizations need to acquaint themselves with
new threats and security solutions as they come into the market. So as years pass and larger percentages of companies
adopt containerization in their cloud systems, there must be a focus on security right from the start and development,
as well as deployment loops.

Thus, future work must concern the application of artificial intelligence and machine learning to improve threat
detection and counteraction in containers. Also, understanding how modern advances in containerization are posing
new security concerns and how zero-trust principles should be realigned for containerized operations would be
important. Thus, keeping with these advancements and remaining focused on security principles, organizations can
benefit effectively from container technologies while protecting their important resources and information

References

[1] IBM, “Containerization Explained | IBM,” www.ibm.com, 2023. https://www.ibm.com/topics/containerization

[2] GoogleCloud, “Containers vs. virtual machines (VMs),” Google Cloud.
https://cloud.google.com/discover/containers-vs-vms

[3] Docker, “The Industry-Leading Container Runtime | Docker,” www.docker.com, Sep. 28, 2021.
https://www.docker.com/products/container-
runtime/#:~:text=Docker%20Engine%20is%20the%20industry (accessed Jul. 18, 2024).

[4] D. K. Pandiya, “Performance Analysis of Microservices Architecture in Cloud Environments,” International Journal
on Recent and Innovation Trends in Computing and Communication, vol. 10, no. 12, pp. 264–274, Dec. 2022,
Accessed: Jul. 18, 2024. [Online]. Available: https://ijritcc.org/index.php/ijritcc/article/view/10745/8231

[5] D. Huang and H. Wu, “Mobile Cloud Service Models,” Mobile Cloud Computing, pp. 65–85, 2018, doi:
https://doi.org/10.1016/b978-0-12-809641-3.00004-1.

[6] Cloudkinetics, “CI/CD Pipeline For Container-Based Workloads | Cloud Kinetics,” Cloudkinetics, May 30, 2022.
https://www.cloud-kinetics.com/blog/enabling-ci-cd-pipeline-for-container-based-
workloads/#:~:text=A%20DevOps%20Strategy (accessed Jul. 18, 2024).

[7] C. Gaikwad, “What is Containerization? | Harness,” Harness.io, May 29, 2024. https://www.harness.io/harness-
devops-academy/what-is-
containerization#:~:text=With%20containers%2C%20developers%20can%20package (accessed Jul. 18,
2024).

[8] A. Andrei, “Docker vs. Containerd: A Quick Comparison (2023),” DevOps Blog, Jul. 26, 2022.
https://kodekloud.com/blog/docker-vs-containerd/ (accessed Jul. 18, 2024).

[9] Open Container Initiative, “Open Container Initiative - Open Container Initiative,” opencontainers.org.
https://opencontainers.org/

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2637

[10] CRI-O, “cri-o,” cri-o.io. https://cri-o.io/#:~:text=It%20allows%20Kubernetes%20to%20use (accessed Jul. 18,
2024).

[11] S. Zipkin, “4 Categories of Container Security Vulnerabilities (& Best Practices to Reduce Risk),” Veracode, Feb.
02, 2023. https://www.veracode.com/blog/secure-development/4-categories-container-security-
vulnerabilities-best-practices-reduce-risk

[12] A. Maqsud, “Docker Container : Born To Revolt, But Now It Needs More Security,” Medium, Jun. 29, 2023.
https://medium.com/@azizulmaqsud/docker-container-revolted-first-but-now-requires-more-security-
cab3eaf29091

[13] N. Ehrman, “8 Container Security Best Practices | Wiz,” wiz.io, Mar. 01, 2024.
https://www.wiz.io/academy/container-security-best-practices

[14] “What is Container Security | Tools, Solutions & Best Practices | Imperva,” Learning Center.
https://www.imperva.com/learn/application-security/container-
security/#:~:text=In%20addition%2C%20attackers%20with%20root (accessed Jul. 18, 2024).

[15] M. Haber, “Privilege Escalation Attack & Defense Explained | BeyondTrust,” www.beyondtrust.com, Mar. 02, 2021.
https://www.beyondtrust.com/blog/entry/privilege-escalation-attack-defense-explained

[16] Penta Security, “A Brief Look at 4 Major Data Compliance Standards: GDPR, HIPAA, PCI DSS, CCPA,” Penta Security
Systems Inc., Aug. 06, 2020. https://www.pentasecurity.com/blog/4-data-compliance-standards-gdpr-hipaa-
pci-dss-ccpa/

[17] Gitlab, “Docker executor | GitLab,” docs.gitlab.com. https://docs.gitlab.com/runner/executors/docker.html
(accessed Jul. 18, 2024).

[18] E. Mell, “What Is Container Management and Why Is It Important?,” SearchITOperations, 2023.
https://www.techtarget.com/searchitoperations/definition/container-management-software

[19] Trend, “Container Security | Trend Micro Service Central,” docs.trendmicro.com, 2024.
https://docs.trendmicro.com/en-us/documentation/article/trend-vision-one-container-security (accessed Jul.
18, 2024).

[20] S. J. Bigelow, “A breakdown of container runtimes for Kubernetes and Docker | TechTarget,” IT Operations, 2021.
https://www.techtarget.com/searchitoperations/tip/A-breakdown-of-container-runtimes-for-Kubernetes-
and-Docker (accessed Jul. 18, 2024).

[21] Kaspersky, “What is a Botnet?,” Kaspersky.com, 2019. https://www.kaspersky.com/resource-
center/threats/botnet-attacks

[22] H. Dhaduk, “Container Orchestration | Basics, Benefits, Tools, and Best Practices,” Simform - Product Engineering
Company, Jun. 01, 2022. https://www.simform.com/blog/container-orchestration/

[23] F. Bashir, A. Padmanabhan, T. Tin, and devbot5S, “Container Orchestration,” Devopedia, Mar. 17, 2017.
https://devopedia.org/container-orchestration

[24] “Securing Your Kubernetes Cluster: Kubernetes Best Practices and Strategies,” Palo Alto Networks.
https://www.paloaltonetworks.com/cyberpedia/kubernetes-cluster-security (accessed Jul. 18, 2024).

[25] Aqua, “Kubernetes RBAC: Why You Need It and 4 Tips for Success,” Aqua, Sep. 2023.
https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-
rbac/#:~:text=Kubernetes%20RBAC%20is%20a%20powerful (accessed Jul. 18, 2024).

[26] Kubernetes, “Restrict a Container’s Syscalls with seccomp,” Kubernetes.
https://kubernetes.io/docs/tutorials/security/seccomp/

[27] Palo Alto, “What Is Container Security?,” Palo Alto Networks.
https://www.paloaltonetworks.com/cyberpedia/what-is-container-
security#:~:text=Container%20scanning%20tools%20include%20Aqua (accessed Jul. 18, 2024).

[28] Sysdig, “What is Falco?,” Sysdig, 2024. https://sysdig.com/learn-cloud-native/container-security/what-is-
falco/#:~:text=Falco%20works%20by%20monitoring%20syscalls (accessed Jul. 18, 2024).

[29] K. Hoffman , “Cilium vs Calico vs Flannel,” Civo.com, 2023. https://www.civo.com/blog/calico-vs-flannel-vs-
cilium (accessed Jul. 18, 2024).

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2638

[30] Wallarm, “Cilium vs. Calico: A Roadmap to Advanced Network Security,” www.wallarm.com, 2024.
https://www.wallarm.com/cloud-native-products-101/cilium-vs-calico-network-security (accessed Jul. 18,
2024).

[31] IzyKnows, “Linux auditd for Threat Detection [Final] - IzyKnows - Medium,” Medium, Mar. 21, 2023.
https://izyknows.medium.com/linux-auditd-for-threat-detection-final-9d5173706b3f (accessed Jul. 18, 2024).

[32] Anirudhadak, “AIDE (Advanced Intrusion Detection Environment) , Grub Secure,” Medium, May 27, 2024.
https://medium.com/@anirudhadak25/aide-advanced-intrusion-detection-environment-grub-secure-
0278c9e31811#:~:text=AIDE%2C%20or%20Advanced%20Intrusion%20Detection (accessed Jul. 18, 2024).

[33] F. Soulis, “Hardening Container Images: Best Practices and Examples for Docker,” Medium, Dec. 19, 2023.
https://medium.com/@SecurityArchitect/hardening-container-images-best-practices-and-examples-for-
docker-e941263cab13 (accessed Jul. 18, 2024).

[34] “Network Policies,” Kubernetes. https://kubernetes.io/docs/concepts/services-networking/network-policies/

[35] x]cube LABS, “Integrating Containers with Security Tools,” [x]cube LABS, Apr. 16, 2024.
https://www.xcubelabs.com/blog/integrating-containers-with-security-tools-like-selinux-and-
apparmor/#:~:text=SELinux%20and%20AppArmor%20are%20Linux (accessed Jul. 18, 2024).

[36] NetApp, “7 Container Security Best Practices You Must Know,” Spot.io. https://spot.io/resources/container-
security/7-container-security-best-practices-you-must-know/#:~:text=7.- (accessed Jul. 18, 2024).

[37] Checkpoint, “Network Segmentation vs Micro-Segmentation,” Check Point Software.
https://www.checkpoint.com/cyber-hub/network-security/network-segmentation-vs-micro-
segmentation/#:~:text=Instead%20of%20breaking%20a%20network (accessed Jul. 18, 2024).

[38] N. Purva, “Securing Kubernetes Secrets with HashiCorp Vault,” InfraCloud, Jun. 15, 2022.
https://www.infracloud.io/blogs/kubernetes-secrets-hashicorp-vault/ (accessed Jul. 18, 2024).

[39] H. Virdó, “What Is Immutable Infrastructure? | DigitalOcean,” www.digitalocean.com, Sep. 26, 2017.
https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure

[40] G. Alvarenga, “Runtime Application Self-Protection (RASP) – CrowdStrike,” crowdstrike.com, Jul. 07, 2023.
https://www.crowdstrike.com/cybersecurity-101/cloud-security/runtime-application-self-protection-rasp/

[41] L. Rosencrance, “What is a Sandbox? Definition from SearchSecurity,” SearchSecurity, Sep. 2021.
https://www.techtarget.com/searchsecurity/definition/sandbox

[42] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the Virtual Library Operating System - ACM Queue,”
queue.acm.org, 2014. https://queue.acm.org/detail.cfm?id=2566628

[43] RedHat, “Twistlock, now Prisma Cloud by Palo Alto Networks, on OpenShift,” Red Hat Customer Portal, Jun. 14,
2024. https://access.redhat.com/solutions/3335421 (accessed Jul. 18, 2024).

[44] K. Lee, J. Kim, I.-H. Kwon, H. Park, and C.-H. Hong, “Impact of Secure Container Runtimes on File I/O Performance
in Edge Computing,” Applied Sciences, vol. 13, no. 24, p. 13329, Jan. 2023, doi:
https://doi.org/10.3390/app132413329.

[45] P. Wang and D. Wood, “ECONOMIC COSTS AND IMPACTS OF BUSINESS DATA BREACHES,” Issues in Information
Systems, vol. 20, no. 2, pp. 162–171, 2019, Available: https://iacis.org/iis/2019/2_iis_2019_162-171.pdf

[46] A. Irei, “What is Incident Response? Definition from WhatIs.com,” SearchSecurity, Mar. 2023.
https://www.techtarget.com/searchsecurity/definition/incident-response

[47] “Monitoring and handling errors in production,” Shopify.
https://shopify.dev/docs/apps/build/functions/monitoring-and-errors (accessed Jul. 18, 2024).

[48] Shopify, “What Is Product Security? How to Improve Product Security (2024) - Shopify,” Shopify, Jun. 28, 2024.
https://www.shopify.com/blog/product-security (accessed Jul. 18, 2024).

[49] N. Kumar, “Vulnerability Scanning with Clair and Trivy: Ensuring Secure Containers,” Medium, Feb. 25, 2023.
https://medium.com/techbeatly/vulnerability-scanning-with-clair-and-trivy-ensuring-secure-containers-
db75c27524c2 (accessed Jul. 18, 2024).

[50] J. Burke, “8 challenges every security operations center faces,” SearchSecurity, 2020.
https://www.techtarget.com/searchsecurity/tip/8-challenges-every-security-operations-center-faces

World Journal of Advanced Research and Reviews, 2024, 24(03), 2626-2639

2639

[51] DevSecOps, “CI/CD and Build Security | TryHackMe THM | Write-Up | Walkthrough,” Medium, Feb. 27, 2024.
https://medium.com/@DevSec0ps/ci-cd-and-build-security-tryhackme-thm-write-up-walkthrough-
c672b7762cf9 (accessed Jul. 18, 2024).

[52] H. Kang, G. Liu, Q. Wang, L. Meng, and J. Liu, “Theory and Application of Zero Trust Security: A Brief Survey,”
Entropy, vol. 25, no. 12, p. 1595, Dec. 2023, doi: https://doi.org/10.3390/e25121595.

