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Abstract 

Objective: Airways obstructive diseases (asthma, COPD, asthma-COPD overlap (ACO) and severe asthma) are different 
entities characterized by airflow obstruction. They may share common pathogenetic mechanisms allowing new 
therapeutic options for patients. 

Methods: A review of the current literature is performed to investigate the common pathogenetic mechanisms among 
these medical conditions. 

Results: Different specific cytokones are involved in both asthma and COPD pathogenesis, while ACO shares some of 
these cytokines placing the condition between the two entities. The cytokines regulate accumulations and contraction 
of airways smooth muscle cells which leads to different expression of airflow obstruction. A special cytokine, TSLP, is 
highlighted as playing a key role in the pathogenesis of asthma, COPD, ACO, and severe asthma which opens the 
opportunity for new treatment options for patients suffering from these conditions. 

Conclusion: COPD, asthma, ACO and severe asthma share some common elements in their pathogenesis which opens 
the gate for new therapeutic options for the patients 
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1. Introduction

Obstructive pulmonary diseases affect a significant number of people worldwide. The hypothesis of a single obstructive 
airway disease with varying pathogenic mechanisms is still a point of debate within the pulmonary community. Some 
patients exhibit hallmarks typical of both asthma and COPD, as seen in conditions like asthma-COPD overlap (ACO) 
syndrome and severe asthma. The article emphasizes the similarities in the pathogenesis of these conditions. The 
presence of common elements in the development of asthma, ACO, COPD, and severe asthma provides a foundation for 
implementing new therapeutic options, such as biologics, which are also discussed in the article. 

2. COPD and asthma – pulmonary Janus?

Since the 1960s, two hypotheses regarding asthma and chronic obstructive pulmonary disease (COPD) exist in 
pulmonary medicine. According to the first one, the so-called Dutch hypothesis put forward by Prof. Dick Ory and 
colleagues, both asthma and COPD (then called bronchitis) share the same causes but are essentially different 
manifestations of a single disease, which they call "chronic non-specific lung disease" [1[. According to the so-called 
British hypothesis both asthma and COPD represent two different nosological entities with different aetiologies and 
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different therapeutic approaches [2]. For instance, both asthma and COPD are small airways diseases characterized by 
airflow limitation [3]. In COPD this limitation is constant and progresses over time, so patients have constant symptoms, 
while in asthma it is variable as patients can often be in a long period of remission characterized by absence of symptoms 
and normal lung function. Furthermore, they may not even need inhalation therapy [4,5]. Advances in science have shed 
additional light on the intimate processes underlying the two socially significant small airways diseases. The 
mechanisms leading to the development of specific for both diseases types of inflammation - predominantly 
neutrophilic in COPD and predominantly eosinophilic in asthma, have become clear. In addition, the diseases themselves 
have been found not to be homogeneous, but heterogeneous entities, consisting of multiple pathogenetically and 
clinically defined phenotypes [6-8]. 

3. ACO 

In 2014 one new term is added to the picture - the syndrome of co-occurrence of asthma and COPD in one organism, 
the so-called Asthma-COPD Overlap Syndrome (ACOS), currently called ACO [9,10]. According to the original definition, 
ACO is characterized by a persistent airflow limitation accompanied by a number of features associated with both 
asthma and COPD [9]. It is known that untreated and/or uncontrolled bronchial asthma, as well as that in active smoking 
patients, leads to airways remodelling resulting in fixed bronchial obstruction. Thus, a patient with asthma can acquire 
clinical, biochemical and functional characteristics of COPD [8,11]. Hence, in 2014 ACO is considered as the asthma-
COPD transition, i.e. as the connecting unit between the two nosological entities. A question arises - which hypothesis 
is the correct one - the Dutch or the British one? The therapeutic approach for ACOS is a combination of asthma and 
COPD therapies. It is interesting that after 2015 the ACO concept has somehow disappeared from GOLD. The diagnosis 
of ACO gave each pulmonologist the right to choose whatever therapeutic combination of inhaled bronchodilators and 
inhaled corticosteroids (ICS) he/she preferred, but apart from this fact ACOS presented nothing new to the pulmonology 
community. 

Unlike GOLD, in GINA the interest in ACOS does not disappear. In GINA 2017 report, the concept is renamed as asthma-
COPD overlap (ACO), but applying the 2014 definition [9,10]. According to GINA, ACO does not represent a uniform 
nosological entity, but rather a heterogeneous group. As a main argument for the presence of ACO in GINA, the difference 
in the therapeutic approach is highlighted – in COPD the initial single or combined treatment with inhaled β-agonists 
and/or anticholinergics is fundamental, but not recommended, as it could be harmful for patients with asthma, in whom 
ICS plays the main role in the therapy and who are not recommended for initial treatment of COPD [10]. 

4. Severe asthma 

Bronchial asthma is not a uniform nosological entity, but represents a collection of different phenotypes [8]. In the 
recent years, one of them – known as severe asthma, has gained particular popularity because of the widespread 
introduction of biological therapy in pulmonology practice [12,13]. By definition, severe asthma may group patients 
with different phenotypes that require treatment defined in steps 4 and 5 of the GINA guidelines, i.e. with a high-dose 
ICS/long-acting β2-agonist (LABA) to prevent it from becoming uncontrolled, or asthma that remains uncontrolled 
despite this treatment [12]. As severe asthma is practically unresponsive or responds hardly to ICS treatment, and is 
characterized by frequent episodes of exacerbations and progressive loss of lung function, it closely resembles COPD, 
but differs from it in pathogenesis. 

The presented brief literature review shows that there are many similarities, but also differences, between asthma, 
severe asthma, ACO and COPD. This reasonably raises the question if there are any similar or common pathogenetic 
mechanisms underlying these conditions. 

5. Pathogenesis – similarities and differences 

5.1. Biomarkers 

Both diseases, asthma and COPD, are characterized by airflow obstruction and systemic inflammation underlying 
airways remodelling and patient symptoms. In asthma, the obstruction and patients' symptoms are variable over time, 
whereas in COPD, the obstruction is constant and progressive, the severity of symptoms is increasing along with the 
increasing loss of lung function [14]. In asthma, the systemic inflammation is mainly due to the T-helper (Th) type 2 
cells. In addition, a major role is played by the eosinophils (Eo) and type 2 innate lymphoid cells producing interleukins 
IL-4, IL-5, IL-6, IL-9, IL-13 and IL-17E. This results in significant production of immunoglobulin E (IgE), accumulation of 
Eo and suppression of phagocyte-dependent inflammation [15-17]. In COPD, the systemic inflammation is 
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predominantly neutrophilic with a main involvement of CD4/CD8 lymphocytes and macrophages. The immune 
response in COPD is a Th1 cell-mediated type and phagocyte-dependent inflammation involves the interleukins IL-2, 
IL6, IL-8, IL-9 and IL-17A, interferon-γ and tumour necrosis factor-α (TNF-α) [15,18]. 

According to the 2014 definition ACO is characterized by persistent airflow limitation and features common to both 
asthma and COPD [9]. Thus, the two different inflammatory mechanisms in asthma and COPD may overlap in ACO [14]. 
Studies with patients diagnosed with ACO show high levels of markers typical for asthma such as nitric oxide fraction 
in exhaled air (FeNO), peripheral blood Eo (absolute count and percentage) and markers of Th2 inflammation compared 
to patients with COPD [19-22]. Another study comparing patients with COPD, asthma and ACO found low, high and 
medium levels of IL-13 and IL-5 respectively [23]. The main risk factor for the development of COPD is smoking, and for 
the development of asthma – exposure to allergens [4,5]. It can be easily assumed that in asthmatics who smoke or are 
exposed to other COPD risk factors (e.g. air pollution) the airflow obstruction may become fixed and they may develop 
COPD as a consequence of the increased oxidative stress, the release of cytokines and chemokines, the altered activity 
of innate immune cells, dysfunction of regulatory T cells, changes in DNA methylation [2,3]. This is supported by studies 
with asthmatic patients who smoke, showing high levels of neutrophils in sputum and the airways, which is mediated 
by the secretion of interleukins IL-6, IL-8 and IL-17A [24-26]. Of particular importance is IL-17, which regulates 
neutrophilic inflammation in asthma, while in COPD it stimulates the secretion of matrix metallopeptidase-9 (MMP-9) 
by the macrophages [26,27]. In another study conducted among 2 groups of asthmatic patients - smokers and 
nonsmokers, bronchial infiltration with CD8+ T cells, macrophages and epithelial remodelling was found in the first 
group, similar to that in COPD in contrast to the second group, and therefore CD8+ T cells and macrophages can be 
considered the dominant inflammatory cells in smokers with asthma [28]. 

High serum IgE levels are characteristic of asthma, but they are also found in COPD patients with allergic sensitization 
[29]. The use of tobacco products also leads to an increase of total serum IgE levels. In patients with ACO high levels of 
IgE and signs of Th2-type inflammation with its characteristic tissue and peripheral eosinophilia, bronchial 
hyperreactivity and good response to ICS treatment are found [30-32]. Thus, ACO is characterized as a complex tangle 
of pathogenetic pathways characteristic of both asthma and COPD, rather than a mechanistic sum of the two diseases. 
(Fig. 1, table 1.) 

 

Figure 1 Comparison of the inflammatory mechanisms of asthma and COPD. 

Severe asthma represents a particular phenotypic manifestation of the disease that remains uncontrolled despite 
adherence to optimal high-dose ICS/LABA therapy and control of contributing factors, or that becomes uncontrolled 
when high-dose therapy is reduced [5]. This definition is more general than the one used since 2018 according to which 
severe asthma is a condition requiring treatment as defined in steps 4 and 5 of the GINA guidelines, i.e. with a high-dose 
ICS/LABA to prevent it from becoming uncontrolled, or asthma that remains uncontrolled despite this treatment [12]. 
Severe asthma closely resembles ACO in terms of clinical course and therapeutic approach – patients are symptomatic, 
with low lung function (fixed airflow obstruction), with frequent episodes of exacerbations, with partial response to ICS 
treatment, their treatment includes the main inhaler groups of medications used both for the treatment of asthma and 
COPD – ICS, LABA, anticholinergics [5].  In pathogenetic terms, similarities with ACO are also found. 
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Table 1. Pathogenetic comparison among COPD, asthma, ACO, and severe asthma. Legend: Il – inteleukin; IFN-γ – 
interferon gamma; TNF-α – tumour necrosis factor alpha; Th - T-helper cell; +  - present; ++ - moderate presence; +++ - 
pronounced presence 

 Asthma COPD ACO Severe 
asthma 

Inflammation Type 2 Type 1 Type 1 predominantly; Type 2 in 
eosinophilic patients 

Type 2 

Cells Eosinophils, 
Th2 

CD4/CD8, Th1, 
macrophages 

both Eosinophils, 
Th2 

IgE +++ + in exacerbators ++ +++ 

Cytokins Il-
4,5,6,9,13,17 

Il-1β,2,6,9,17a, IFN-
γ, TNF-α 

Il-5,6,8,13,17A Il-4,5,13,17 

TSLP +++ + ++ +++ 

Severe asthma is characterized by the development of Th2-type inflammation with the typical high levels of serum IgE, 
peripheral and tissue Eo, IL-4 IL-5 and IL-13 [33-36]. However, similar to ACO, Th1-type inflammation mediated by IL-
17 can be observed in severe asthma, especially in patients with late-onset asthma [37-40]. On its turn, IL-17 induces 
bronchial smooth muscle cells (SMCs) contraction, thereby inducing bronchial hyperresponsiveness in the absence of 
neutrophilic inflammation [41]. On the other hand, Th17 cytokine production is resistant to inhibition by steroids, which 
explains why neutrophilic inflammation driven by Th17 cells is the pathomorphological correlation to steroid-resistant 
asthma [37]. Some studies have found an association between Th17 cell-dominated asthma and tumour TNF-α - its 
pulmonary and systemic levels are increased in patients with steroid-resistant asthma [40,42]. 

The sharing of some pathogenetic mechanisms between asthma, COPD, ACO and severe asthma raises the question are 
there connecting or distinctive elements between these conditions? 

In 2018 Wang et al. published a study with 423 patients (147 with COPD, 124 with asthma, 102 with ACO, and 50 healthy 
nonsmokers) in which they investigated associations between plasma levels of biomarkers characteristic of asthma 
(periostin, thymic stromal lipoprotein (TSLP), and YKL- 40), COPD (neutrophil gelatinase-associated lipocalin (NGAL)), 
lung function, bronchodilator response and imaging changes. They have found that patients with ACO could be 
distinguished from patients with COPD by high levels of YKL-40 and from patients with asthma by high levels of NGAL. 
No statistically significant differences are found between the different groups regarding the levels of periostin and TSLP. 
A negative correlation between YKL-40 levels and lung function and a positive correlation between emphysema 
prevalence and NGAL levels are also noted. The level of peripheral Eo correlates positively with the level of TSLP, and 
that of peripheral neutrophils with NGAL. According to Wang et al. the results obtained in their study defined ACO as an 
intermediate condition between COPD and asthma [43]. 

In 2016 Korosec et al. publish a study involving 362 patients with asthma, 184 with COPD, 39 with ACO and 14 healthy 
controls. They have found that the level of TSLP in the peripheral blood of patients with asthma and ACO is significantly 
higher than that of patients with COPD, the results are marked with high specificity and sensitivity. According to Korosec 
et al. TSLP deficiency in COPD patients is a marker of epithelial dysfunction [44]. This result suggests a role for TSLP as 
a link between the pathogenesis of asthma and COPD in ACO. 

In another study published in 2022 examining the genetic associations and architecture of ACO, John et al. have 
highlighted a strong genetic correlation between ACO and COPD/pulmonary function and between ACO and asthma, 
particularly moderate-severe asthma. The genetic correlation between peripheral blood Eo level and ACO is similar in 
strength to that between Eo and asthma compared to that between Eo and FEV1/FVC and COPD [45]. As known from 
the literature, increased Eo counts in peripheral blood are associated with exacerbations of asthma and COPD as well 
as with a decline in lung function in non-asthmatic patients [46-49]. 

6. Role of airways smooth muscle cells 

A main feature of the airways obstructive chronic diseases like COPD, asthma, ACO and severe asthma is the differently 
expressed obstruction of the airflow due to spasm of the airways SMCs [4,5]. Thus, airways SMCs emerge as the main 
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participants in the regulation of airways tissue homeostasis and in their remodelling which in turn develops in chronic 
obstructive inflammatory diseases. Accumulation of SMCs as a result of hypertrophy and hyperplasia is an important 
hallmark of asthma and COPD [50]. Airways SMCs react directly to various inhaled factors from the environment 
(allergens, tobacco smoke, gases, dusts, pollutants) in an immune-dependent and immune-independent manner [51-
54]. Chronic immune inflammation underlying the pathogenesis of asthma and COPD triggers and maintains a vicious 
cycle of tissue damage and repair leading to tissue remodelling [50]. 

7. Role of TSLP 

Airways SMCs secrete, react with, and are regulated by various cytokines, especially TSLP [50]. It is an IL-7-like cytokine 
(alarmin) secreted by the epithelial cells of the lungs, intestines, skin, as well as by fibroblasts, airways SMCs, mast cells, 
macrophages, granulocytes, synovial fibroblasts, intervertebral disc cells and dendritic cells [55-62]. Its expression is 
regulated by a number of factors such as mechanical damage, trauma, microorganisms, infection, pro-inflammatory and 
Th2-type cytokines [63,64]. An interesting fact is that 1-2% cigarette smoke extract increased the basal expression of 
TSLP by the airways SMCs, which proves the pathogenetic role of cigarette smoke in the development of inflammation 
in the airways [65]. TSLP fulfils a number of functions – activates myeloid dendritic cells and triggers pro-allergic CD4+ 
and CD8+ immune responses, interacts synergistically with IL-1β and TNF-α to induce Th2-type cytokine and 
chemokine expression in mast cells [56,66,67]. TSLP is expressed by airways SMCs in COPD, and the pro-inflammatory 
cytokines IL-1β and TNF-α stimulate this expression [59,68]. In addition, IgE also induces TSLP expression by the 
airways SMCs [69]. Thus, TSLP appears as a link in the interaction between mast cells and the airways SMCs [50]. The 
TSLP produced by the airways SMCs is involved in the regulation of the local immune response through its interaction 
with mast cells, Eo and dendritic cells located near the airways SMCs [56,66,70,71]. This is possible because airways 
SMCs are a rich source of IL-8, express its receptors, produce eotaxin-1 and the proinflammatory IL-6. Furthermore, IL-
8 and eotaxin-1 are attractants for neutrophils and Eo respectively [72-75]. The activation of IL-8 receptors increases 
intracellular Ca++ concentration [76]. 

 

Figure 2 Asthma pathogenesis overview 

As it has already been mentioned, the key inflammatory mediators in COPD are the cytokines IL-1β, TNF-α and 
chemokine IL-8, whereas airways SMCs express TSLP significantly [59,77]. Although Th1-type cytokines predominate 
in COPD, there is also a Th2-type immune response in the airways, especially in patients with chronic bronchitis [78]. 
This Th2 immune response is modulated by CD8+ T cells. TSLP stimulates dendritic cells to initiate activation of naïve 
CD8+ T cells by differentiating them into IL-5 producing cells [67]. In COPD, frequent bacterial/viral infections and 
oxidative stress contribute to the enhanced expression of TSLP by the airways SMCs [58]. 
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In asthma, TSLP is a necessary and sufficient factor for the development of Th2-type inflammation in the airways, its 
prolonged expression triggers allergic inflammation characterized by massive infiltration of inflammatory cells, goblet 
cell hyperplasia, subepithelial fibrosis and elevated serum IgE levels [79]. 

The role of TSLP in the pathogenesis of severe asthma is best studied. Exogenous and endogenous irritants (allergens, 
bacteria, viruses, fungi, cigarette smoke and other environmental pollutants, other cytokines) stimulate bronchial 
epithelial cells to secrete TSLP, IL-33 and IL-25, which in turn triggers Th2-type inflammation [80]. TSLP activates naïve 
T-cells through dendritic cells as they differentiate into Th2 cells, which in turn begin to produce IL-4, IL-5, IL-13. Both 
Eo and basophils are activated while production of specific antibodies and Th2-type inflammatory molecules begins. 
Allergic Eo inflammation is triggered in the airways. TSLP interacts directly with innate type 2 lymphoid cells, causing 
them to produce and secrete IL-13, thus allergic non-Eo inflammation develops in the airways. Direct interaction of 
TSLP with mast cells underlies Th2-independent inflammation in the airways of patients with severe asthma [37,81-
84]. (Fig. 2) 

8. Therapeutic options 

The presence of common elements in the pathogenesis of asthma, COPD, ACO and severe asthma raises the question 
about common or similar therapeutic approach. The therapies for asthma, severe asthma and COPD are well specified 
in the relevant guidelines [4,5]. Although presented as a mechanical sum of asthma and COPD therapies, the therapeutic 
management in ACO is also clarified [9,10]. The detection of TSLP in the sera of patients with asthma, COPD, severe 
asthma and ACO points it out as a significant therapeutic target. The monoclonal antibody tezepelumab directed against 
TSLP, tested in several phase II and phase III clinical trials, has shown its effectiveness in patients with severe asthma - 
achieving clinically significant, rapid and stable relief of patients from asthma exacerbations, regardless of its 
phenotype. This includes patients with a low Eo level for whom there is no specific treatment [81]. Although about 40% 
of patients with COPD have peripheral eosinophilia as well as other hallmarks of Th2-inflammation, the studies 
conducted so far involving other biological drugs - mepolizumab, benrazlizumab, dupilomumab have not shown 
promising results in patients with COPD. A phase II study for the action of tezepelumab is still ongoing, the results of 
which are expected given the key role of the alarmin in the pathogenesis of obstructive pulmonary disease [85,86]. The 
presence of signs of Th2- and Th1-type inflammation in ACO is a reason to expect a positive effect from the application 
of biological medications used in severe asthma [14]. In 2024 new results from trials with biologics in COPD patients 
with eosinophilic inflammation were presented at the European Respiratory Society Annual Congress in Vienna, Austria 
[87]. According to the obtained data, the application of dupilomab, mepolizumab, tezepelumab and itipecimab leads to 
a reduction of exacerbations rate, and to an improvement of the quality of life and the pulmonary function of patients, 
which is dependent on the Eo level in the peripheral blood, especially at levels above 300 cells/μL blood. Officially, 
dupilomab is the first biologic medication approved for the treatment of COPD [88-91].  

9. Conclusion 

Asthma, COPD, severe asthma and ACO share common risk factors for impaired lung function like tobacco smoking and 
there are similar elements in their pathogenesis. Signes of both Th type 1 and 2 inflammation can be noticed in these 
entities together with interaction of proinflammatory molecules and interleukins like TSLP, Il-17, Il-6, Il-8. The role of 
SMCs for the bronchobstruction is emphasized. The similarity in the pathogenesis and the clinical course of these 
medical conditions is a basis for developing of new common treatments  
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