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Abstract 

Weather is an important determinant for human health. There is an apparent increase in outbreak of many infectious 
diseases which reflects the combined impacts of rapid demographic, environmental, social, technological and other 
changes in our way-of-living. This study aimed to analyze the effects of environmental factors on infectious disease 
occurrences in Bangladesh using time series data from 2013 to 2022. Environmental data (monthly average 
temperature, monthly average relative humidity and monthly average rainfall) were collected from the Bangladesh 
Agricultural Research Council (BARC) and disease data (Tetanus, HIV and Chickenpox counts) were obtained from the 
Infectious Disease Hospital in Dhaka. Utilizing Poisson and Negative Binomial (NB) Generalized Linear Models (GLMs), 
the impact of weather variability on disease transmission was examined. The best-fitted models yielded AIC values of 
682.7 for Tetanus, 605.96 for HIV and 608.01 for Chickenpox, with corresponding RMSE values of 3.33, 0.22 and 1.67. 
The study found that monthly average rainfall negatively affects Tetanus counts while temperature and humidity had 
significant positive and negative effects on Chickenpox counts respectively. No significant effect of environmental 
factors on HIV counts was observed. These findings can inform preventative measures and strategies to reduce disease 
impact.  
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1. Introduction

Global warming is an undeniable reality with climate change exerting multifaceted impacts on human health. Climate 
change is expected to displace millions of people over the coming century [1]. The World Health Organization (WHO) 
estimates that unhealthy environments, particularly pollution and climate change contribute to approximately 12.6 
million deaths annually. Diseases caused by microorganisms such as bacteria, viruses, fungi, and parasites are called 
infectious diseases, remain a significant global health challenge. In 2016 alone, infectious diseases accounted for roughly 
10 million deaths, representing one-fifth of all global fatalities [2]. Among these, lower respiratory tract infections have 
the highest mortality rate, followed by enteric infections causing diarrhea, tuberculosis, AIDS caused by HIV, and malaria 
[2]. 

Weather factors such as temperature, relative humidity and rainfall significantly influence the occurrence and spread 
of infectious diseases. Variations in these climatic conditions affect the survival, reproduction, and transmission of 
pathogens and their vectors. Higher temperatures can enhance viral replication rates and increase vector activity, while 
humidity impacts the viability of airborne pathogens [3]. Rainfall can create suitable breeding sites for vectors like 
mosquitoes, leading to higher incidences of diseases such as malaria and dengue [4]. Understanding these climatic 
influences is essential for predicting disease outbreaks and implementing effective public health measures. 
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Chickenpox, also known as Varicella, is a highly contagious disease caused by the varicella-zoster virus (VZV). Although 
it is usually mild, varicella can cause serious complications, especially in infants, adults and those with weakened 
immune systems. The World Health Organization (WHO) estimates that millions of cases occur annually worldwide, 
with significant morbidity and mortality in regions with low vaccination coverage [5]. In Bangladesh, UNICEF reportes 
a sharp rise in varicella cases in January 2019, with incidents nearly doubling from 2,710 to 5,376 within a single week 
[6]. Despite the availability of vaccines, outbreaks persist due to insufficient immunization effort [7]. Tetanus is a non-
communicable infectious disease caused by Clostridium tetani spores. Due to the ubiquity of this bacterium, eradication 
is not feasible. While all age groups are susceptible, tetanus is particularly severe in newborns. It causes over 200,000 
deaths annually, primarily affecting neonates and young children, with figures likely underestimated due to infrequent 
reporting [8]. Most cases are in middle-aged individuals, with 25.5% in the 30-45 age group and 23.5% in the 45-60 age 
group furthermore, 90.6% of patients are from rural areas [8]. In developing countries, tetanus is more common among 
the young due to inadequate immunization programs and improper injury treatment. Despite being life-threatening, 
tetanus is preventable through vaccination. Human immunodeficiency virus (HIV) targets and weakens the immune 
system, leading to the most advanced stage of the disease, acquired immunodeficiency syndrome (AIDS). The World 
Health Organization (WHO) reports that HIV has resulted in approximately 40.4 million deaths globally, with ongoing 
transmission in all countries. As of the end of 2022, an estimated 39.0 million people were living with HIV, and 630,000 
had died from HIV-related causes that year. In Bangladesh, there were 947 new HIV cases and 232 deaths reported in 
2022, bringing the total to 10,984 diagnosed cases and 2,086 deaths since 1989 [9]. WHO, along with the Global Fund 
and UNAIDS, has strategies in place aligned with the Sustainable Development Goal (SDG) target 3.3 to end the HIV 
epidemic by 2030 [10]. 

While there have been significant strides in understanding the epidemiology of infectious diseases, a comprehensive 
analysis of the interaction between environmental factors and the temporal dynamics of disease occurrences in 
Bangladesh remains insufficiently explored. Existing studies typically focus on individual diseases or specific 
environmental variables, often neglecting the combined impact of multiple environmental determinants on various 
infectious diseases. Furthermore, the application of time series models has generally been limited to assessing disease 
trends without integrating both lagged disease counts and environmental factors within a unified analytical framework. 

This study aimed to fill this gap by investigating how monthly average temperature, relative humidity and rainfall 
influence the counts of tetanus, HIV and chickenpox. Utilizing Poisson and Negative Binomial (NB) Generalized Linear 
Models (GLMs), this study would incorporate lagged values of disease counts and environmental factors to provide a 
detailed understanding of the temporal and environmental drivers of these diseases.  

2. Material and methods 

2.1. The Study Area 

Bangladesh, a northeastern part of South Asia, is bordered by the majestic Himalayas to the north and the Bay of Bengal 
to the south. To the west, it shares a border with West Bengal, India, and to the east, it is bordered by the hilly and 
forested regions of Tripura, Mizoram (India) and Myanmar. It is the eighth-most populous country in the world and 
among the most densely populated with a population of 170 million in an area of 148,460 square kilometers 
(57,320 sq mi) based on the most recent published census (2022). In this study, Bangladesh was chosen as the main 
research site because of its high population density with a poor quality of life as well as poor educational status. 
Therefore, it is of significant public health implication in the control and prevention of Infectious diseases in Bangladesh. 

2.2. Data Collection 

Data for this study, including hospital records and climate data, had been extracted from secondary sources. Weather 
data comprised monthly records of temperature, total precipitation and relative humidity from 2013 to 2022 across 35 
stations in Bangladesh was obtained from the Bangladesh Agricultural Research Council (BARC). Data were averaged 
across the 35 stations to derive the monthly average temperature (in degrees centigrade), monthly average relative 
humidity and monthly average rainfall (in millimeters). Medical records of cases of Tetanus, Chickenpox and HIV were 
obtained from the Infectious Disease Hospital, Mohakhali, Dhaka, Bangladesh, where patients came to receive health 
care from all over the country. All the cases for Tetanus and HIV in the medicine ward from 2013 to 2022 was enrolled 
from the hospital archive. But cases for Chickenpox were obtained for the year 2015–2022. Checklist data collection 
procedure was adapted in this study. In the hospital, Tetanus and Chickenpox were diagnosed in men, women and 
children. Whereas males, females and transgender were all diagnosed with HIV. The reason for using monthly 
parameters was that the diseases incidences being too low at the weekly or daily scale coefficient. 

https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population
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2.3. Statistical Analysis 

Consider Yt, t=1, 2, ..., N to be a time series of counts taking non negative integer values, Yt is the response process. Under 
the GLM framework, the probability density function of Yt, given the past, is expressed as [11]: 

…….. (2.3.1) 

where, Ft−1denotes the information available to the observer up to time t. In this model, the conditional expectation of 
the response is equal to its conditional variance. 

E(Yt | Ft−1) = Var(Yt | Ft−1) = µt,t = 1,2,...,N …………..  (2.3.2) 

While the Poisson distribution is commonly used for modeling count data, it assumes that the mean and variance are 
equal. This assumption often does not hold when there is over-dispersion, where the variance exceeds the mean. To 
address this, we used the Negative Binomial (NB) regression model, which introduces an additional dispersion 
parameter to accommodate the extra variability. 

Consider Yt, t = 1, 2, ..., N, representing a time series of count data, where Yt is the response variable. In the NB model, 
the conditional distribution of Yt, given past information Ft−1, follows a Negative Binomial distribution with a mean µt 

and a variance of 𝜇𝑡 + 
𝜇𝑡

2

𝜙
 , where ϕ is the dispersion parameter. 

The probability density function of Yt, given the past, is expressed as [12]: 

………            (2.3.3) 

In this model, the expected value of Yt, given past information, is µt, and the variance is: 

𝐸(𝑌𝑡|𝐹𝑡−1) =  𝜇𝑡 ,   𝑉𝑎𝑟(𝑌𝑡|𝐹𝑡−1) =  𝜇𝑡 + 
𝜇𝑡

2

𝜙
, t= 1, 2, …, N…………..(2.3.4) 

Decomposition of Tetanus, HIV and Chickenpox data from 2013 to 2022 (2015-2022, for Chickenpox) and analyzation 
of the four components (observed, trend, seasonal and random error) were conducted in order to identify the presence 
of trend and seasonal components in data. From the Augmented Dickey Fuller (ADF) test, Tetanus, HIV and Chickenpox 
were found to be stationary at 10% level of significance with p-values 0.07, 0.08 and 0.01 respectively. To determine 
the potential lag time of serial correlation of the series through data analysis, tools such as the Autocorrelation Function 
(ACF) and Partial Autocorrelation Function (PACF) were utilized.  

Several discrete time series regression models were constructed based on ACF and PACF plots of diseases where the 
first six models were with the short range serial dependence by first and second order autoregressive term (Yt−1 and 
Yt−2) and seasonality captured by regressing the moving average components (λt−11, λt−12 and λt−13) for different models.  
Harmonic regression is a type of linear regression model where the predictor variables are trigonometric functions of 
a time-related variable. Harmonic seasonal factors, such as sinusoidal terms (sin (2 * month/12) and cos (2 * 
month/12)), were utilized to account for seasonality in comparisons. General form of the formulated model is as follows: 

𝑌𝑡 =  𝛽0 + ∑ 𝛽𝑖 𝑌𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛽𝑗  𝜆𝑡−𝑗

𝑞

𝑗=11

+ ∑ (𝛼𝑘 cos
2𝜋�́�

𝑆𝑘
+ 𝛾𝑘 sin

2𝜋�́�

𝑆𝑘
)

𝑟

𝑘=1

+ 𝜖𝑡  

Where, 𝑌𝑡  denotes disease occurrences at time t, 𝑌𝑡−𝑖  disease occurrences at lag i, i= 1, 2, 3, …, λt−j=moving average 

components at lag j, j= 11, 12, 13, …, cos
2𝜋�́�

𝑆𝑘
 and sin

2𝜋�́�

𝑆𝑘
 are the fourier terms (k=6 (Semi-annual period), 12(Annual 

period)). 𝛽’s, 𝛼𝑘 and 𝛾𝑘 are the coefficients to be estimated. A number of models were constructed incorporating the 
weather factors (monthly average temperature (Tt), monthly average relative humidity (Ht) and monthly average rain 
fall (Rt)) as covariates. Here, t= 1, 2, ..., 120.  
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From the fitted models, the best models were selected based on Akaike Information Criterion (AIC) and diagnostic 
checks. For each of the three diseases, two models with the lowest AIC values were chosen—one that excluded weather 
factors and one that included them. The goodness- of- fit of the models was assessed by using time series tools (to check 
autocorrelation functions of residuals). Estimates of the regression coefficients for the optimal model would be used to 
make conclusion on the weather effects on Tetanus, HIV and Chickenpox occurrences. Variant statistical techniques and 
statistical packages like R language version 4.1.2 and Microsoft Excel were applied to obtain the relative results of this 
study. For discrete time series analysis, “tscount” package (function “tsglm”) was used with other packages in RStudio. 

Finally, the models developed were verified by dividing the data file into two data sets. For Tetanus and HIV, the data 
spans from January 2013 to June 2021, serving as our training dataset. For Chickenpox, the training dataset covers the 
period from January 2015 to June 2021. To assess the impact of environmental factors on disease occurrences, the 
models’ performance was compared using a testing dataset from July 2021 to December 2022. Additional validation 
methods, such as using 2- or 3-year subsets of data to test the model, were applied and produced similar outcomes.  

The predictive accuracy of the models was also evaluated using the AIC, which assesses how well the model fits the data. 
AIC is calculated as AIC=n* ln (residual sum of squares/ n) + 2k), where “n” is the number of observations and k is the 
number of estimated parameters. Additionally, the root mean square error (RMSE) was used to assess model 
performance, with smaller RMSE values indicating better forecasting ability. The RMSE, which is the square root of the 
mean squared differences between actual and predicted values, serves as a reliable measure of model quality, including 
for generalized linear models (GLMs). These findings were further validated by plotting ’Observed vs Forecasted’ values 
for both models.  

3. Results  

3.1. Description and Univariate Analysis 

The mean of monthly Chicken-pox disease counts was the highest 15.688 with a standard deviation (SD) of 18.185 
among other diseases. For Chicken-pox, the maximum and minimum illness counts were 91 and 0 respectively. On the 
other hand, HIV had the lowest mean monthly disease counts 5.558 with a maximum of 23 and a minimum of 0. The 
Tetanus counts varied between 3 to 33 with mean and SD of 12.442 and 5.135 respectively. In the first graph (Fig 1), 
the Tetanus counts primarily displayed cyclic behavior with significant fluctuations around 2016 but lacked a clear 
seasonal pattern and long term trend. The HIV counts in the second graph behaved similarly to the Tetanus counts. In 
the last one, there appeared a peak in Chicken pox cases around 2019 and a notable decrease in cases was observed 
around 2020. Another increase followed post-2020, with a peak nearing 2022. In each year, seasonal variation was quite 
noticeable. At the beginning of the year (February to May), the chicken pox counts remained really high. The graph 
reflected the cyclical nature of chicken pox incidence, which might be influenced by various factors such as vaccination 
rates, public health measures and natural disease cycles. 

3.2. Development of Time Series Poisson and NB Regression Models 

3.2.1. Analysis of ACF and PACF Plots 

Decomposition of disease counts revealed that the observed data of Tetanus, HIV and Chicken Pox cases were affected 
by a mix of long-term trends, pronounced seasonal patterns and random variations. An important characteristic of 
infectious diseases is their tendency for past cases to influence current case numbers [13]. If a serial relationship exists 
between past and current cases, autoregression is included in the model. To determine the potential lag time of this 
serial correlation, autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of monthly disease 
counts were constructed. 

The ACF plots (Fig 2) for Tetanus, HIV and Chicken Pox revealed significant autocorrelations at the initial lags, indicating 
a strong immediate correlation with previous values. The ACF plot for HIV suggested underlying patterns that might be 
captured by AR or MA components. For Chicken Pox, the presence of higher autocorrelations at seasonal lags (multiples 
of the seasonal frequency) compared to other lags suggested potential periodic patterns in the data. To deal with these 
patterns, a dynamic regression with fourier terms was often preferable to the models. The autocorrelations at small lags 
were typically large and positive for each of the series indicating presence of trend in the dataset. The PACF plot for 
Tetanus suggested that an AR (1) model was appropriate, as only the first lag was significant. For HIV, the PACF plot 
showed significant autocorrelations at the first lag and smaller spikes at higher lags, indicating that an AR (1) model 
might be a good starting point, but additional terms may need to be considered. The PACF plot for Chicken Pox implied 
that an AR (2) model is suitable, with the first two lags being significant and capturing the autocorrelation structure 
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effectively. To aid the longer-term trends and patterns by averaging past observations and smooths the noise yielding 
a more stable and reliable predictor, MA (3) would be considered for each of the series. 

3.2.2. Selection of Optimal Models 

Thirteen discrete time series regression models were formulated based on ACF and PACF plots of diseases where the 
first six models have been constructed taking into consideration the short range serial dependence by first and second 
order autoregressive term (Yt−1 and Yt−2) and seasonality captured by regressing the moving average components (λt−11, 
λt−12 & λt−13) for different models. Then seven additional regression models were constructed incorporating 
environmental factors (monthly average temperature. 

 

Figure 1 Time series plots of monthly disease counts for Chicken Pox, Tetanus, and HIV 

Monthly average relative humidity and monthly average rain fall) as covariates based on the ACF and PACF plots for 
diseases. 

All models were applied to each disease time series. The ten models with the lowest AIC values for each series were 
enlisted in the table. 
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The AIC values serve as a criterion for model selection, with lower values indicating a better balance between model 
complexity and goodness of fit. For Tetanus, the models with the lowest AIC values are M5 (697.64), M7 (697.93), and 
M13 (682.70), suggesting that M13 provided the best fit. For HIV, models M4 (609.61), M6 (609.01), M9 (605.96), M11 
(603.57), and M13 (597.17) showed lower AIC values, with M13. 

 

Figure 2 ACF and PACF plots for Diseases (e.g. Tetanus, HIV and Chicken pox) 

Being the optimal model. For the analysis of Chicken pox counts, both Poisson and Negative Binomial (NB) regression 
models were fitted as overdispersion (mean and variance are not equal) was doubted to be there in the series from the 
descriptive part (mean= 15.688 and variance= 330.69). The results indicated that the AIC values for the NB models are 
smaller compared to those of the Poisson models. Additionally, the standard errors of the estimates in the NB models 
were lower than those in the Poisson models (Appendix). So, NB time series regression models were continued in which 
M6 (577.19), M9 (626.45), and M13 (608.01) models (for Poisson M13 model, AIC value=713.08) had the lowest AIC 
values, and M13 is the best fitting model. Overall, Model M13 consistently showed the lowest AIC values across all three 
diseases, indicating it was the most robust model among those evaluated. 
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Table 1 Comparison of the candidate models based on AIC values for three diseases 

Models Equation with Coefficients        AIC Values 

Tetanus HIV Chicken pox 

M1 𝛽0 + 𝛽1𝑌𝑡−1  707.12 612.96 639.88 

M2 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝜆𝑡−13  716.60 613.79 638.06 

M3 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝜆𝑡−12 + 𝛽3𝜆𝑡−13  718.49 612.31 634.98 

M4 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝜆𝑡−11 + 𝛽3𝜆𝑡−12 + 𝛽4𝜆𝑡−13  719.45 609.61 619.75 

M5 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2 cos
2𝜋�́�

12
+ 𝛽3 sin

2𝜋�́�

12
  697.64 - - 

M6 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + 𝛽3 cos
2𝜋�́�

12
+ 𝛽4 sin

2𝜋�́�

12
+ 𝛽5 cos

2𝜋�́�

6
+ 𝛽6 sin

2𝜋�́�

6
  - 609.01 577.19 

M7 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + 𝛽3𝑇𝑡 + 𝛽4𝐻𝑡 + 𝛽5𝑅𝑡 + 𝛽6 cos
2𝜋�́�

12
+ 𝛽7 sin

2𝜋�́�

12
+

𝛽8 cos
2𝜋�́�

6
+ 𝛽9 sin

2𝜋�́�

6
  

697.93 - - 

M8 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑇𝑡 + 𝛽3𝐻𝑡 + 𝛽4𝑅𝑡 + 𝛽5 cos
2𝜋�́�

12
+ 𝛽6 sin

2𝜋�́�

12
+ 𝛽7 cos

2𝜋�́�

6
+

𝛽8 sin
2𝜋�́�

6
  

- 614.73 610.61 

M9 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑇𝑡 + 𝛽3𝐻𝑡 + 𝛽4𝑅𝑡  704.63 605.96 626.45 

M10 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝜆𝑡−13 + 𝛽3𝑇𝑡 + 𝛽4𝐻𝑡 + 𝛽5𝑅𝑡  706.64 - - 

M11 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + 𝛽3𝑌𝑡−3 + 𝛽4𝜆𝑡−13 + 𝛽5𝑇𝑡 + 𝛽6𝐻𝑡 + 𝛽7𝑅𝑡  - 603.57 638.21 

M12 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝜆𝑡−12 + 𝛽3𝜆𝑡−13 + 𝛽4𝑇𝑡 + 𝛽5𝐻𝑡 + 𝛽6𝑅𝑡  708.25 613.76 639.13 

M13 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + 𝛽3𝜆𝑡−11 + 𝛽4𝜆𝑡−12 + 𝛽5𝜆𝑡−13 + 𝛽6𝑇𝑡 + 𝛽7𝐻𝑡 +
𝛽8𝑅𝑡  

682.70 597.17 608.01 

Tt: average monthly temperature, Ht: average monthly humidity, Rt: average monthly rainfall, t=1, 2, ..., 120, t′= time of January, 2015= 25 (For 
Tetanus and HIV) and 1 (For Chicken pox) 

3.2.3. Diagnostic Checking and Selection of the Best-Fitting Model 

Two optimal models were selected for each disease series based on the AIC and ACF plot of the residuals: one model 
that excluded environmental factors and another that incorporated them. For Tetanus (Fig 2), while all models 
effectively captured the time-dependent structure of the data, the M5 and M13 models most significantly captured the 
autocorrelation structure. Graphical analysis of the residuals from these two models indicated that they fluctuated 
randomly around zero, showing no discernible trend in their variation. As M13 (AIC value= 682.70) had lower AIC value 
compared to M5 (AIC value= 697.64), it was the best fitting for Tetanus counts. It was an evidence (Table 2) that Model 
M13 included several significant Predictors as the confidence interval (95%) doesn’t include zero. Notably 
autoregressive terms (Yt−1 and Yt−2) and rainfall were the predictor variables (β1, β2 and β8) which show significant 
effects on Tetanus occurrences. Although average monthly temperature and average monthly relative humidity did not 

significantly affect the occurrences, rainfall exhibited a small but significant negative effect (𝛽8̂ = −0.001). Therefore, 
for an increase in rainfall there would be decrease in number of Tetanus occurrences. Standard errors and confidence 
intervals were (level = 95%) obtained by parametric bootstrapping with 500 replications. 
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Figure 3 ACF plots of residuals excluding environmental factors (M5, M4 and M6) and including environmental 
factors (M13, M9 and M13) for diseases (e.g. Tetanus, HIV and Chicken pox) 

For HIV, several models successfully captured the temporal dynamics of HIV disease data. Notably, models M4 and M9 
demonstrated robust performance in capturing the autocorrelation structure. Based on the AIC values and analysis of 
the ACF plot of residuals (Fig 3) depicted that the model incorporating weather variables demonstrated superior fit 
compared to the model without these variables, as indicated by smaller AIC value 605.96. The selected model, M9, was 
subsequently fitted to the data, and its parameter estimates and other relevant statistical outputs were detailed (Table 
3). Environment factors (e.g. average monthly temperature, average relative humidity, average monthly rainfall) had 
no significant effects on the occurrences of HIV disease at 5% level of significance. The first autoregressive term(Yt−1) 
and linear trend had very small but significant effect on HIV incidences as their confidence intervals (95%) didn’t 
include zero. Indeed, it’s crucial to acknowledge that there might be other significant variables influencing HIV. 

Table 2 Estimates of the Regression Coefficients for Model M13 for Tetanus 

Coefficient of Estimate Std. Error CI (Lower) CI (Upper) 

Intercept 1.412 0.752 0.823 3.73 

𝑌𝑡−1* 0.369 0.098 0.058 0.441 

𝑌𝑡−2* 0.219 0.099 0.010 0.373 
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𝜆𝑡−11 0.503 0.299 -0.422 0.694 

𝜆𝑡−12 -0.689 0.387 -0.814 0.520 

𝜆𝑡−13 0.029 0.259 -0.673 0.358 

T 0.004 0.013 -0.022 0.0273 

H 0.0002 0.006 -0.015 0.009 

R* -0.0012 0.001 -0.0011 -0.0001 

Linear Trend -0.011 0.015 -0.044 0.014 

*: significant, T: temperature, H: humidity, R: rainfall 

Table 3 Estimates of the Regression Coefficients for Model M9 for HIV 

Coefficient of Estimate Std. Error CI (Lower) CI (Upper) 

Intercept -0.278  1.124 -2.712 1.767 

𝑌𝑡−1* 0.346  0.107 0.091 0.497 

𝑌𝑡−2 0.244  0.099 -0.003 0.379 

T 0.027  0.016 -0.003 0.059 

H -0.002  0.013 -0.021 0.026 

R 0.001  0.000 -0.001 0.001 

Linear Trend 0.005  0.022 0.028 0.109 

Table 4 Estimates of the Regression Coefficients for Model M13 for Chicken pox 

Coefficient of Estimate Std. Error CI (Lower) CI (Upper) 

Intercept 0.233  1.92 -0.360 6.908 

𝑌𝑡−1* 0.998  0.139 0.532 1.000 

𝑌𝑡−2 -0.274  0.134 -0.501 0.025 

𝜆𝑡−11 0.315  0.175 -0.172 0.510 

𝜆𝑡−12 -0.195  0.186 -0.453 0.301 

𝜆𝑡−13 0.044  0.156 -0.316 0.295 

T* 0.054  0.003 0.017 0.142 

H* -0.018  0.002 -0.098 -0.002 

R -0.001  0.000 -0.002 0.001 

Linear Trend -0.017  0.006 -0.151 0.097 

Dispersion* 0.247  5.135 0.156 3.320 

Occurrences that were not included in this particular research. It was noticeable that the models with moving average 
terms and fourier terms (M6 and M13) captured the autocorrelation structure better than the other models considered 
without environmental factors. Models M6 and M13 were the two models based on AIC values (577.19 and 608.01 
respectively) and ACF plots of residual (Fig 3), those randomly fluctuate around zero with no discernible trend in the 
variation of residuals as incidence values increase. Based on the AIC values M6 was the best fitted model. To evaluate 
the effect of environmental factors, M13 was chosen and then applied to the data. From the resulting estimates for its 
parameters and other pertinent statistical findings (Table 4), the environment factors (e.g. average monthly 
temperature, average relative humidity) had significant effects on the occurrences of Chicken pox at 5% level of 

significance. The estimated value of regression coefficients for monthly average temperature was (𝛽6̂=0 .054); it had 
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positive effect with Chicken pox. Therefore, for a unit increase in temperature there would be increased number of 

Chicken pox occurrences. Besides there was a significant negative effect (𝛽7̂= -0.001) of relative humidity on the disease 
occurrences, that was for an unit increase in relative humidity there would be a decrease number of disease occurrences. 
The first autoregressive term(Yt−1) had significant large effect on Chicken pox incidences as its confidence intervals 
(95%) didn’t include zero. The estimated value of dispersion parameter of the Negative Binomial distribution was 0.247 
which was though greater than zero but a small value. A small value like it indicated that there was still some ignorable 
overdispersion which wasn’t captured in our model. 

3.2.4. Evaluation of Model Accuracy 

For Tetanus and HIV, the data spanned from January 2013 to June 2021, serving as training dataset. For Chicken Pox, 
the training dataset covered the period from January 2015 to June 2021. To assess the impact of environmental factors 
on disease occurrences, the models’ performance was compared using a test dataset from July 2021 to December 2022. 

Table 5 Forecasting Accuracy for all Three Diseases 

Diseases Models RMSE MAPE 

Tetanus M5 3.83  54.23% 

M13 3.33 47.16% 

HIV M4 0.5  6.94% 

M9 0.22  3.08% 

Chicken pox M6 0.67 17.59%  

M13 1.67 43.98% 

 

Incorporation of environmental factors as covariates improved forecast performance for Tetanus and HIV (Table 5). 
Models M13 and M9, RMSE of 3.33 and 0.22, exhibited lower RMSE and MAPE values compared to models M5 (for 
Tetanus) and M4 (for HIV) respectively. A lower RMSE signified a more accurate model in terms of forecasting ability. 
Therefore, models M13 and M9 were deemed effective for predicting future time points, given their inclusion of 
environmental factors. In contrast, for Chicken Pox, model M6 outperformed model M13 in forecast performance with 
RMSE values of 0.67 and 1.67 respectively, as evidenced by a lower RMSE for M6. However, average monthly 
temperature and average relative humidity significantly influenced Chicken pox occurrences. According to model M6, 
the autoregressive term (Yt−1) and seasonality (represented by Fourier terms) had a significant impact on Chicken Pox 
occurrences. 

Now the selected models were fitted to the training dataset and forecasted occurrences for the next eighteen months 
(July 2021-December 2022). To evaluate forecast accuracy, these forecasts with the test dataset were compared. To 
visualize the models’ adequacy, ’Observed vs Forecasted’ values were plotted. The following (Fig 3) was the plots of 
observed vs fitted values for July 2021-December 2022. 

4. Discussion 

The results of this study suggested that the weather variability might have played a significant role in the transmission 
of infectious diseases (particularly Tetanus and Chicken pox) in Bangladesh either directly or through other 
unmeasured variables. The key determinants of the Tetanus transmission observed in this analysis included monthly 
average rainfall whereas Chicken pox was significantly influenced by both monthly average temperature and monthly 
average relative humidity. In contrast, environmental factors did not significantly affect HIV occurrences. A study in 
Chongquing reported that environmental factors had significant effects on contagious diseases [14]. To the best of our 
knowledge, this study is the first to conduct a comprehensive analysis of the long-term effects of monthly weather 
variations on the incidence of Tetanus and HIV utilizing the data from 2013 to 2022 in Bangladesh. A study in Jinan 
reported that environmental factors had significant effects on chickenpox and it was found that temperature had 
negative effect on chickenpox incidence [15]. Another study in West Indies showed that a chickenpox infections occur 
in tropical regions than in temperate regions [16]. Temperature was found to have significant positive effect on 
chickenpox incidence in our study. A study in Japan showed that chickenpox incidence increased at 5–20 °C which is the 
activation range of it and decreased at temperatures lower than 5 °C and higher than 20 °C [17]. Additionally, according 
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to a study in Wuhan and Hong Kong of China with data from 2008 to 2015, it was found that mean annual temperature 
had positive correlation with chickenpox  

 

Figure 4 Plots of Observed Vs Forecasted values for July (2021) - December (2022) 

Incidence [18]. Relative humidity was found to have negative effect on chickenpox incidence in our study and similar 
findings have been observed in Hong Kong [19] and the West Indies [16]. The precise mechanism underlying the 
potential link between relative humidity and the incidence and transmission of chickenpox remains unclear. It could be 
hypothesized that lower relative humidity might result in smaller air particles, allowing the varicella-zoster virus (VZV) 
to remain airborne for extended periods. 

The time series models those allowed for autoregressive and moving average structure along with weather factors in 
the series, appeared to be more suitable in the assessment of the relationship between the weather variables and 
transmission of diseases with respect to goodness of fit, conformance with assumptions and predictive accuracy. The 
time series Poisson generalized linear model showed that temperature, relative humidity and rainfall could improve 
goodness of fit for Tetanus and HIV.  The model with autoregressive term (at lags of 1 to 2 months) and moving average 
terms (at lags 11 to 13 months) for Tetanus and only with autoregressive terms (at a lag 1 month) for HIV had the lowest 
AIC values. To improve the goodness of fit a time series Poisson regression model with autoregressive term at lag 1, 
maximum temperature at lags of 1 to 3 months and relative humidity at a lag of 1 month were included for the 
determination of the cryptosporidiosis transmission Brisbane, the capital of Queensland State [20]. Given that data were 
over-dispersed, a negative binomial model rather than a Poisson model was selected to estimate the association 
between environmental factors and chickenpox incidence in our study where the environmental factors with 
autoregressive terms (at lags of 1 to 2 months) and moving average terms (at lags 11 to 13 months) had been included. 
Similar selection was made for the study on Jinan and Chongqing, China, to observe the meteorological effects on 
chickenpox incidence where different meteorological variables (temperature, relative humidity, rainfall, sunshine, 
atmospheric pressure and wind velocity) with autoregressive terms at lags of 1 to 3 months were included [14-15].  

The long-term effect of environmental factors on infectious disease incidences indicated by this study also deserves 
attention. This study demonstrated the obvious presence of impact of temperature and humidity on Chickenpox and 
rainfall on Tetanus. There was no significant effect of environmental factors on HIV. The predictive accuracy for different 
models was evaluated by RMSE and MAPE values. Models with environmental factors for Tetanus and HIV were seemed 
to be well fitted. For Chickenpox, though model with environmental factors had lowest AIC values and better ACF for 
residuals compare to model without the factors, predictive accuracy showed the different pictures. This could be 
because of not considering other important covariates in this study. 
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This study relied on secondary data spanning from 2013 to 2022, covering a relatively short timeframe of 10 years. 
Disease counts were only available from 2013 (from 2015 for Chicken Pox) and were recorded in a handwritten 
notebook, not yet digitalized. Consequently, only monthly counts, sex and district variables could be accessed, which 
was a significant limitation. Although the selected predictors included various climate factors, other variables such as 
solar sunshine, wind velocity, air pressure etc. might significantly impact disease occurrences. The exclusion of these 
factors might lead to incomplete or slightly biased estimations.  

5. Conclusion 

Despite the limitations, this study demonstrated that environmental factors had significant effects on infectious disease 
incidences. It was clear, though rainfall had significant effect on Tetanus, Chickenpox occurrences affected by 
temperature and relative humidity. No significant effect of any of these three variables was found on HIV. The models 
were well fitted and it was evident from the goodness of fit and good predictive accuracy. In this sense, the findings of 
this study can be instrumental in developing precautionary measures and strategic interventions to reduce the 
incidence of these three diseases. Various stakeholders, including non-governmental organizations, international 
bodies and the government of Bangladesh can utilize the results to inform public health planning and disease prevention 
strategies. However, their awareness, prevention and treatment activities for these three infectious diseases should be 
scaled up to minimize their occurrences in Bangladesh.  
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