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Abstract 

Mixture distributions are widely used to model data with distinct groups, providing a flexible approach to estimating 
density. However, Bayesian approaches for mixture models pose challenges, such as label switching in the Gibbs 
sampler output due to the non-identifiability of component parameters. We review advanced methods for Bayesian 
analysis, including the Markov chain Monte Carlo (MCMC) reversible jump algorithm and model comparison based on 
joint measures of fit and complexity. We also present a Bayesian regression model based on a two-component mixture 
model, implemented using the Gibbs sampler algorithm and applied to a dataset of time measurement differences 
between two clocks. Our theoretical investigation highlights the importance of latent variables in implementing the 
Bayesian normal mixture model with two components. When applied to the dataset, our model effectively assigned 
probabilities to the two states of the phenomenon under study and identified two processes with identical slopes, 
intercepts, and variances. Our findings demonstrate the power of Bayesian mixture models in uncovering hidden 
structures within complex datasets. In general, our review and application provide insight into the challenges and 
potential solutions for Bayesian mixture modeling and highlight the usefulness of these methods in various fields. 
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1. Introduction

Mixture models provide a flexible framework for capturing heterogeneity in data by assuming distinct sub-populations 
each following their regression relationships. Bayesian methods offer a powerful approach for parameter estimation 
and inference in mixture regression models. This paper presents a Bayesian inference approach for a mixture of normal 
regression models. Mixture models have gained widespread use in modeling heterogeneous data in various fields. Each 
mixture component can represent a distinct subgroup in the population. The most commonly used type of mixture 
model consists of Gaussian components as noted by early researchers [1] and [2]. Overviews of mixture models and 
their applications are provided in seminal texts [3]. Recent works have discussed advances and challenges in this area 
[4]; [5]; [6]. Typically, maximum likelihood via EM algorithm has been employed for parameter estimation in mixture 
models [7]. Mixture regression models extend simple mixture models to allow for regression-type relationships within 
components. This flexibility enables the modeling of heterogeneous regression behaviors between subpopulations. 
Bayesian methods provide an effective framework for inference in such complex models. The work [8] introduced Gibbs 
sampling for normal mixture regression estimation. Since then, Bayesian analysis of increasingly sophisticated mixtures 
has been enabled via MCMC techniques. This paper presents a Bayesian approach for a novel mixture of normal 
regression models that incorporate latent variables. Latent variables are important for class identification, probability 
estimation, and individual classification [9]. A Gibbs sampler algorithm is implemented for parameter estimation, 
drawing inspiration from previous research [10]. The proposed model is applied to a real dataset. Latent variables are 
shown to play a key role in constructing meaningful components. The remainder of the paper is organized as follows. 
Section 2 introduces the proposed mixture regression model and priors. Section 3 outlines the Gibbs sampling steps. 
Section 4 applies the model and discusses the findings. Section 5 concludes and suggests future work. 
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2. The Statistical Model 

This section provides an overview of the essential concepts related to finite mixture models, including parameter 
estimation methods such as the Expectation-Maximization (EM) algorithm. It also delves into the Bayesian estimation 
approach for finite mixture regression models. 

2.1. Finite Mixture of Gaussian Regression Models 

Suppose a random sample {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, … , 𝑛}  of independent identically distributed (𝑖𝑖𝑑)  observations are drawn 
from a finite mixture of normal regression models. Then the probability distribution function is given by 

𝑔(𝑦𝑖|𝑥𝑖 : Ψ) = ∑ 𝛼𝑘𝜙(𝑦𝑖|𝑥𝑖𝛽𝑘; 𝜎𝑘
2𝐾

𝑘=1 ) ………………..(1) 

where K is the total number of mixture regression components, 𝜙(𝑦𝑖|𝑥𝑖𝛽𝑘; 𝜎𝑘
2) is a Gaussian density function of the Kth 

component with mean 𝑥𝑖𝛽𝑘  and variance 𝜎𝑘
2 . The mixing proportions 𝛼𝑘 , 𝑘 = 1, … , 𝐾 have the following restrictions: 

0 < 𝛼𝑘 ≤ 1  and ∑ 𝛼𝑘 = 1𝐾
𝑘=1 . Therefore, the parameter vector Ψ  contains {𝛼1, … , 𝛼𝑘, 𝛽1, … , 𝛽𝑘 , 𝜎1

2, … , 𝜎𝑘
2 } , where 

𝛽1, … , 𝛽𝑘 , 𝜎1
2, … , 𝜎𝑘

2 are the component-specific regressions coefficients and variances, respectively . 

The model presented here is a two-component normal mixture model. The density function for a random variable 𝑦 is 
believed to come from one of two simple linear regression equations are  

𝑔(𝑦|𝑥) = ∝ 𝜙(𝑦|𝛽01 + 𝛽11𝑥, 𝜎1
2) + (1−∝)𝜙(𝑦|𝛽02 + 𝛽12𝑥, 𝜎2

2) ………………(2) 

Where ∝ ∈ [0,1]. Equation 2 suggests that a situation with two possible outcomes can be explained by two distinct linear 
processes that do not overlap in terms of their starting point, rate of change, or variability [11]. One of these processes 
occurs with a certain probability ∝, while the other occurs with the remaining probability (1−∝).  

The complete-data setup is given 𝑖𝑖𝑑 samples from 𝑓(𝑦|𝑥); we define the latent variable 𝑧𝑖  such that 

𝑧𝑖 = {1 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ∈ 𝑘𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

  

The joint distribution of the dependent variables 𝑦1, … , 𝑦𝑛 given the parameter Ψ is represented as:  

𝑝(𝑦|Ψ) = ∏ [∝ 𝜙(𝑦|𝜇1, 𝜎1
2)]1−𝑧𝑖 × [(1−∝)𝜙(𝑦|𝜇2, 𝜎2

2)]𝑧𝑖𝑛
𝑖=1  …….. (3) 

Where Ψ = {𝑧, 𝛼, 𝛽01, 𝛽11, 𝜎1
2, 𝛽02, 𝛽12, 𝜎2

2 }  and 𝜙(𝑦|𝛽0𝑘 + 𝛽1𝑘𝑥, 𝜎𝑘
2), 𝑘 = 1,2  is a normal probability density functions 

with mean 𝜇1 = 𝛽01 + 𝛽11𝑥 and 𝜇2 = 𝛽02 + 𝛽12𝑥 respectively, and variances 𝜎1
2 and 𝜎2

2. The parameter ∝ represents the 
probability of belonging to the first group, and 𝑧𝑖  is the binary indicator variable for the ith observation. The common 
goal of statistical inference in this setting is to estimate the parameters of the model. The traditional maximum 
likelihood approach using the EM algorithm [7]. A Bayesian approach is used to estimate the parameters of the model. 
This method entails evaluating the probability distribution for the parameters, which is determined by the likelihood of 
the data and the prior probability for those parameters. In particular, Jeffreys priors, developed by [12], are specified 
for this paper. 

2.2. Estimation in Mixture Models 

Several methods have been developed for estimating the parameters in finite-mixture models. We highlight four widely 
used methods: the method of moments, the minimum distance method, the maximum likelihood method, and the 
Bayesian method. Dating back to the work of Pearson (1984), the method of moments is one of the earliest techniques 
for estimating parameters in finite mixture models [13]. It was commonly used in applications where computing power 
was insufficient to maximize the log-likelihood function. Further advancements in moment estimators can be found in 
[14] and [15]. 

Even today, they remain valuable as initial values for iterative numerical methods to calculate maximum likelihood 
estimates [16]. The minimum distance estimation, first introduced by [17], presents another general approach to 
estimating Ψ in a finite mixture. This method aims to minimize the disparity between the empirical distribution and the 
mixture distribution or between the kernel density and the mixture density. It is worth noting that the maximum 
likelihood estimator (MLE) can be seen as a special case of minimum distance estimators, as it works to minimize the 
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distance between the empirical distribution and the mixture distribution [18]. With the feasibility of finding numerical 
solutions to likelihood equations, likelihood-based inference has experienced rapid development and played a crucial 
role in finite mixture models. Consider a data set in the form of a random sample of observations 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 
where each 𝑋 ,𝑠 distribution is defined by a finite parametric mixture density of the form 1. The log-likelihood function 
of Ψ is provided, then, we can write the complete-data log-likelihood function as 

ℓ𝑐(Ψ) = ∑ ∑ 𝐼(𝑍𝑖𝑘 = 1){𝑙𝑜𝑔 𝛼𝑘 + log 𝜙(𝑦𝑖|𝑥𝑖𝛽𝑘; 𝜎𝑘
2)}𝐾

𝑘=1
𝑛
𝑖=1  …………(4) 

The maximum likelihood estimator of Psi is defined to be 

�̂� = argmax
𝜓𝜖Ω

ℓ𝑐(Ψ) 

When such situations arise, explicit expressions for the MLEs are often unavailable. Various numerical algorithms have 
been developed to maximize the log-likelihood function. Among these, the expectation-maximization (EM) algorithm is 
a popular choice. For further insights, refer to [19]. Ordinary MLEs in mixture models can be inconsistent or undefined 
due to factors such as unidentifiable parameters or non-regular likelihood functions. These issues can be addressed 
using alternative estimation methods. One solution is a Bayesian approach that incorporates prior knowledge or 
regularization terms to provide a more robust framework for estimating model parameters. Empirical Bayes methods 
can also be used to inform prior distributions and address MLE inconsistencies. Regularization techniques like 
penalized likelihood or constrained optimization can restrict the parameter space and improve the estimate stability. 
The choice of estimation method depends on the problem’s characteristics and available data, and it is essential to 
evaluate the performance of each method and consider their assumptions and limitations. For example, in the case of 
the two-component Normal mixture 2, the MLE encounters challenges as ℓ𝑐(Ψ)  approaches ∞  when 𝜇1 = 𝑥1, 𝜎1

2 
approaches 0, and the other parameters are held fixed. To address this issue, two studies [20] and [21] proposed the 
use of constrained MLE, while another study [22] studied the properties of penalized MLE [23]. The fourth method for 
estimating Ψ  is the Bayesian approach. Let ℓ𝑐(𝑋1, … , 𝑋𝑛|Ψ)  be the likelihood function of Ψ . Assuming a prior 
distribution 𝑝(Ψ) on Ψ is available, the posterior density 𝑃(Ψ|𝑋1, … , 𝑋𝑛) can be obtained. The Bayesian approach can 
provide a coherent way of estimating Ψ  by incorporating prior knowledge and uncertainty through the prior 
distribution. By Bayes’ theorem, the posterior density can be expressed as 

𝑃(Ψ|𝑋1, … , 𝑋𝑛) ∝  ℓ𝑐(𝑋1, … , 𝑋𝑛|Ψ)𝑝(Ψ) 

which combines the likelihood of observing the data given Ψ  and the prior distribution of Ψ . The proportionality 
constant can be determined by normalizing the product of the likelihood and prior, such that the posterior density 
integrates to one. In practice, Markov chain Monte Carlo (MCMC) algorithms, such as Gibbs sampling or Metropolis-
Hastings, are often employed to sample from the posterior distribution and approximate the posterior density. 

2.3. Parameter priors 

The prior distributions of the parameters play a crucial role in Bayesian statistics. These priors capture the uncertainty 
regarding the true values of the parameters before observing the data. They are essential for making probabilistic 
inferences about the parameters and predictions about future observations. The choice of prior distributions reflects 
the available information about the parameters and can significantly impact the resulting posterior inferences. This 
section will introduce the prior distribution for each parameter. 

𝑝(Ψ) ∝
1

√2𝜋𝜏0
exp {

−1

2𝜏0
 (𝛽01 − 𝜇0)2} .×

1

√2𝜋𝜏1
exp {

−1

21
 (𝛽02 − 𝜇1)2} …………(5) 

Combining Equation 3 and 5 via multiplication gives the posterior distribution for Ψ  

𝜋(Ψ) ∝ 𝜋(𝑦|Ψ) × 𝑝(Ψ) ……………….. (6) 

Which can be written as follows: 

𝑝(Ψ|. ) ∝  
1

√2𝜋𝜏0

exp {
−1

2𝜏0

 (𝛽01 − 𝜇0)2} .

×
1

√2𝜋𝜏1

exp {
−1

21
 (𝛽02 − 𝜇1)2} × ∏[𝛼 𝜙(𝑦|𝜇1, 𝜎1

2)]1−𝑧𝑖  ×  [(1 − 𝛼)𝜙(𝑦|𝜇2, 𝜎2
2)]𝑧𝑖

𝑛

𝑖=1
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After performing some algebra, it is possible to determine the conditional distributions of the parameters. In this 
instance, all the full conditionals have closed forms, allowing for the use of a Gibbs sampler to obtain draws from the 
joint posterior. 

2.4. The Full Conditional Distributions for the Parameters 

Given a multivariate posterior distribution for Ψ , it is easier to sample from a conditional distribution than to 
marginalize by integrating over a joint distribution. 

Then the full conditional distributions for the parameters of Ψ our model are 

𝐴 = 𝛼𝜙(𝑦|𝛽01 + 𝛽11𝑥, 𝜎1
2) 

𝐵 = (1−∝)𝜙(𝑦|𝛽02 + 𝛽12𝑥, 𝜎2
2) 

𝑧𝑖~𝐵𝑒𝑟(
𝐴

𝐴+𝐵
) ………….. (7) 

𝛼~𝐵𝑒𝑡𝑎(1 + 𝑛1, 1 + 𝑛0) ……………….(8) 

𝛽0𝑘~𝑁(�̅�𝑖 − 𝛽01�̅�𝑖 ,
𝜎𝑘

2

𝑛𝑖
) for i = 0,1, and k = 1,2 ……………….(9) 

Where �̅�𝑖 =
1

𝑛𝑖
∑ 𝑦𝑖𝑖|𝑧𝑖=𝑖  , �̅�𝑖 =

1

𝑛𝑖
∑ 𝑥𝑖𝑖|𝑧𝑖=𝑖  , 𝑖 = 0,1 

𝛽1𝑘~𝑁(
∑ 𝑦𝑖𝑖|𝑧𝑖=𝑖 𝑥𝑖

∑ 𝑥𝑖𝑖|𝑧𝑖=𝑖
𝑖

− 𝛽0𝑘 ,
𝜎𝑘

2

∑ 𝑥𝑖
2

𝑖|𝑧𝑖=𝑖
) for i = 0,1, and k = 1,2 ……….. (10) 

Where �̅�𝑖 =
1

𝑛𝑖
∑ 𝑦𝑖 �̅�𝑖𝑖|𝑧𝑖=𝑖 =

1

𝑛𝑖
∑ 𝑥𝑖𝑖|𝑧𝑖=𝑖  𝑖 = 0,1, 𝑖|𝑧𝑖 = 𝑖 is used to denote the set of 𝑖 such that 𝑧𝑖 = 0 and 𝑛0 is the count 

of the 𝑧𝑖  where 𝑧𝑖 = 0. The same type of notation is used for 𝑖|𝑧𝑖 = 0 and 𝑛0. And for 𝜎𝑘
2  

𝜎𝑘
2~𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎 (

𝑛𝑖

2
,

1

2
∑[𝑦𝑖 − (𝛽0𝑘 + 𝛽1𝑘𝑥𝑖)]) , 𝑓𝑜𝑟 𝑖 = 0,1, 𝑎𝑛𝑑 𝑘 = 1,2 ………… (11) 

2.5. The Gibbs Sampler 

In this section, we present the posterior distribution for a two-component normal regression mixture model under a 
conjugate prior and introduce the Gibbs sampler for both general case and normal mixture application. The Gibbs 
sampler is a valuable simulation method that produces a sample from the posterior distribution . 

The Gibbs sampler is an algorithm for generating samples from the joint probability distribution of multiple random 
variables. It was first described in a 1984 statistical paper by Stuart and Donald Geman, building on earlier work by 
[24], and [25] on Markov chain Monte Carlo methods. The paper by Stuart and Donald Geman had a big impact on 
Bayesian statistics, computational statistics, and stochastic processes. influenced it [26] that significantly boosted the 
use of Bayesian methods and Gibbs sampling in particular. Since then, the Gibbs sampler has become one of the most 
widely used techniques for approximating complex posterior distributions. While studies [27] and [28] proposed 
similar algorithms, their work did not receive as much attention from statisticians as Stuart and Donald Geman paper, 
which is largely credited with popularizing the Gibbs sampler and its applications in Bayesian analysis. 

We used the Gibbs sampler framework Geman and Geman (1984) developed to sample from the conditional 
distributions presented in Section 2. The idea of the Gibbs sampler algorithm in this case is that: Given a multivariate 
distribution, it is simpler to sample from a conditional distribution than to marginalize by integrating over a joint 
distribution. Suppose we want to obtain 𝑘  samples from 𝜃 = {𝑧, 𝑝, 𝛽01, 𝛽11, 𝜎1. 𝛽02, 𝛽12, 𝜎2}  form a joint distribution 
𝑝(𝑧, 𝑝, 𝛽01, 𝛽11, 𝜎1. 𝛽02, 𝛽12, 𝜎2) denote the 𝑖𝑡ℎ sample by:  

𝜃𝑖 = {𝑧𝑖 , 𝑝𝑖 , 𝛽01
(𝑖)

, 𝛽11
(𝑖)

, 𝜎1
(𝑖)

. 𝛽02
(𝑖)

, 𝛽12
(𝑖)

, 𝜎2
(𝑖)

} 

implementing Gibbs sampling steps can be shown below: 

We begin with some initial value 𝜃(0) for each variable parameter. 
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For each sample 𝑖 = {1, … , 𝑘}, sample each variable parameter 𝜃𝑗
(𝑖)

 from the conditional distribution 𝑝 (𝜃𝑗|𝜃−𝜃𝑗
). Sample 

each variable parameter from the distribution conditioned on all other parameters, using the latest values and updating 

the variable with its new value once sampled. To illustrate 𝑝(𝛽01
(𝑖)

|𝑧(𝑖), 𝑝𝑖 , 𝛽11
(𝑖)

, 𝜎1
(𝑖)

. 𝛽02
(𝑖−1)

, 𝛽12
(𝑖−1)

, 𝜎2
(𝑖−1)

). The samples 

collected provide an estimation of the joint distribution of every model parameter. Furthermore, the samples can be 
used to estimate the distribution of any specific subset of parameters by focusing only on those samples, disregarding 
the irrelevant parameters. Additionally, the average of all samples can be utilized to estimate the expected value of any 
parameter in the posterior distribution. 

3. Simulation Study 

The computational aspect of the modeling was done in R, this section presents the ones from the joint posterior 
distribution for the parameters. 

We aim to develop an algorithm using a simplified two-component normal mixture regression model. To estimate the 
model parameters, we employ a Bayesian method. This method views the parameters’ posterior distribution as directly 
proportional to the likelihood multiplied by the combined prior for said parameters. In this paper, we define Jeffrey’s 
priors.  

We tend to focus on estimating the unknown parameters 𝛽01, 𝛽11. 𝛽02, 𝛽12 with variances 𝜎1
2, 𝜎2

2 and mixture proportion 
π via MCMC algorithm for various sample sizes 𝑛 = {50, 100, 1000, 2000} observations. Section 2.5 covered the usual 
approach of setting initial guesses for unknown parameters [29]. Various initial guesses lead to different iterative 
estimation results, with those achieving the highest maximized likelihood deemed the best. The vector of parameters 
(𝜏, 𝛽, 𝜎2) used to generate the mixture are reported in Table 1. 

Table 1 True parameter values for simulation study 

𝜳  𝜶𝟏  𝜶𝟐 𝜷𝟎𝟏  𝜷𝟎𝟐  𝜷𝟏𝟏  𝜷𝟐𝟏  𝝈𝟏
𝟐  𝝈𝟐

𝟐 

True Parameter 0.3 0.7 2 -3 1.5 -2 0.5 1 

 

Table 2 Estimated parameters and standard errors for the two mixture regression 

n=50 

Component 1 

𝜳 

Estimation Lower Tail Upper Tail 

𝛽01 1.99 1.90 2.07 

𝛽02 1.51 1.36 1.67 

Component 2 

𝛽02 

-3.01 -3.08 -2.95 

𝛽12 -3.005 3.08 -2.93 

n=100 

Component 1 

𝛽02 

1.52 1.37 1.68 

𝛽12 -3.005 3.08 -2.93 

Component 2 

𝛽02 

-3.007 -3.08 -2.93 

𝛽12 -3.005 3.08 -2.93 
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n=1000 

Component 1 

𝛽02 

1.51 1.36 1.69 

𝛽12 -3.005 3.08 -2.93 

Component 2 

𝛽02 

-3.005 -3.07 -2.94 

𝛽12 -3.005 3.08 -2.93 

n=2000 

Component 1 

𝛽02 

1.99 1.90 2.09 

𝛽12 -3.005 3.08 -2.93 

Component 2 

𝛽02 

-3.005 -3.08 -2.93 

𝛽12 -3.005 3.08 -2.93 

We employed the Gibbs sampler, as described in Section 2.5, and stored 2000 MCMC draws after a burn-in period of 
3000 draws. Table 2 provided table contains estimated parameters and standard errors for two mixture regression 
models based on different sample sizes n. Here are the key components: Considering Component 1; For each sample 
size, we have estimates for 𝛽01(intercept) and 𝛽11 (slope). The estimates are accompanied by their corresponding lower 
and upper tail values. For example, when (n = 50), the estimated values are: 𝛽01: 1.99 (Estimation), 1.90 (Lower Tail), 
2.07 (Upper Tail) 𝛽11: 1.51 (Estimation), 1.36 (Lower Tail), 1.67 (Upper Tail). Conversely, for Component 2: Similar to 
Component 1, we have estimates for 𝛽02 and 𝛽12. For example, when (n=1000), the estimates are: 𝛽02: 1.51 (Estimation), 
1.36 (Lower Tail), 1.69 (Upper Tail) 𝛽12: -3.005 (Estimation), 3.08 (Lower Tail), -2.93 (Upper Tail) The sample sizes 
considered are n = {50,100,1000, and 2000}. 

3.1. Statistical Analysis 

 

Figure 1 Density plots for data set for different sample size 50, 100, 1000 and 2000 

Figure 1 shows that the predictive density based on the 2-component Normal mixture density function of the response 
using the same Gibbs sampler, revealing distinct behaviors of the two mixture response densities depending on the 
considered sample sizes, namely n = {50,100,1000, and 2000}. 



World Journal of Advanced Research and Reviews, 2024, 24(03), 214–227 

220 

 

Figure 2 Convergence of the β01 for different sample sizes n = 50,100,1000, and 2000 

Figure 2 shows the convergence of posterior distributions of the model parameters, resulting from 1000 steps of MCMC 
simulations. The estimated posterior parameters converge to true parameters which are displayed in (Table 1) as the 
sample size increases. However, for most of these distributions, in particular, Convergence is effective in increasing the 
sample size and becomes more stable as the sample size increases. For instance, when the sample size reaches 1000 (or 
2000), the parameter distribution exhibits greater convergence. 

 

Figure 2 Convergence of the B02 for different sample size n=50, 100, 1000 and 2000 
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Figure 4 Convergence of the B11 for different sample size n=50, 100, 1000 and 2000 

 

 

Figure 5 Convergence of the B02 for different sample size n=50, 100, 1000 and 2000 
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Figure 6 Convergence of the 𝝈𝟏
𝟐 for different sample size n=50, 100, 1000 and 2000 

 

 

Figure 7 Convergence of the 𝝈𝟐
𝟐 for different sample size n=50, 100, 1000 and 2000 
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Figure 8 Posterior probability density of 𝜷𝟎𝟏 for different sample size n=50, 100, 1000 and 2000 

 

 

Figure 9 Posterior probability density of 𝜷𝟎𝟐 for different sample size n=50, 100, 1000 and 2000 
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Figure 10 Posterior probability density of 𝜷𝟏𝟏 for different sample size n=50, 100, 1000 and 2000 

 

 

Figure 11 Posterior probability density of 𝜷𝟏𝟐 for different sample size n=50, 100, 1000 and 2000 
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Figure 12 Density of 𝝈𝟏
𝟐 for different sample size n=50, 100, 1000 and 20000 

 

 

Figure 13 Density of 𝝈𝟐
𝟐 for different sample size n=50, 100, 1000 and 20000 
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4. Discussion 

This article introduces Bayesian inference for finite mixtures of regression models, focusing on mixtures with a 
predetermined number of components. Demonstrates the implementation of the Gibbs sampler, specifically applied to 
normal mixture models. Within the Bayesian framework, it explores several challenges, including trapping states, 
selection of priors, label switching, and convergence diagnostics. 

Adopting a Bayesian approach for a finite mixture of regression models offers several advantages. First, incorporating 
proper priors introduces a smoothing effect on the mixture likelihood function, reducing the risk of spurious modes, 
especially in normal distributions. Second, unlike methods relying on asymptotic normality, Bayesian inference remains 
valid even when regularity conditions are violated, making it valuable for small sample sizes and low component 
weights. Third, the rapid development and straightforward implementation of Markov Chain Monte Carlo (MCMC) 
methods have made Bayesian estimation feasible. However, the Gibbs sampler, although natural, can suffer from label 
switching, posing challenges in parameter estimation. Empirical convergence diagnostics are essential, but assessing 
convergence behavior with limited realizations remains difficult.  

5. Conclusion 

Our findings highlight the effectiveness of Bayesian mixture models in revealing hidden structures within complex 
datasets. A key factor in the success of these models is initializing Markov Chain Monte Carlo (MCMC) algorithms with 
appropriate starting values [30]. Moving forward, future research should aim to extend the Gibbs sampling method to 
incorporate other widely used mixture distributions, including Poisson, Gamma, Weibull, and Lognormal distributions. 
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