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Abstract 

Object detection is becoming more and more important in daily life, especially in applications like advanced traffic 
analysis, intelligent driver assistance systems, and driverless cars. The accurate identification of objects from real-time 
video is crucial for effective traffic analysis. These systems play a vital role in providing drivers and authorities a 
comprehensive understanding of the road and surrounding environment. Modern algorithms and neural network-
based architecture with extremely high detection accuracy, like Faster R-CNN are crucial to achieving this. This study 
investigates an advanced object detection system designed for urban traffic applications using an interactive Gradio 
interface and Detectron2’s Faster R-CNN model. The research focuses on developing a model capable of identifying key 
traffic objects such as traffic lights, vehicles, buses, crossroads etc., with high accuracy and precision. A significant 
contribution of this study is the integration of Gradio-based interface that enables users to upload images or videos 
from their local storage or webcam and view the results in real time making the model both accessible and practical. 
Our findings demonstrate that the Detectron2 framework, paired with Gradio’s interactive interface offers a reliable 
and scalable solution for traffic monitoring and safety applications. 
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1. Introduction

The need for intelligent traffic management and real-time monitoring systems has increased due to the rapid growth of 
metropolitan areas. Many intelligent transportation systems (ITS), such as autonomous vehicles, advanced driver 
assistance systems (ADAS), and intelligent traffic management systems rely on vision-based traffic detection as a 
fundamental component. Conventional methods for direct picture identification frequently rely on motion analysis and 
manually created characteristics.  However, recent improvements in deep convolutional neural networks (DCNNs) has 
transformed object detection tasks, yielding amazing performance in vehicle detection as well [1]. 

Despite the success of CNNs in detection, achieving real-time performance in driving environments still poses significant 
challenges which arise from factors such as partially visible vehicles, fragmented views, and significant variations in 
vehicle size within traffic images. Faster R-CNN [2] and SSD [3], two popular object detection models based on CNN, 
have not shown the best performance for detection tasks in their normal configurations. 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2024.24.2.3559
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2024.24.2.3559&domain=pdf


World Journal of Advanced Research and Reviews, 2024, 24(02), 2173–2189 

2174 

These approaches often involve adapting the base network to handle varying scales using multiscale feature maps or 
leveraging input images with multiple resolutions [4]. Real time traffic detection is still a problem because these 
techniques still need a lot of processing power even if they have improved detection accuracy on numerous public test 
datasets when compared to conventional object detection models based on solely CNN [3]. 

This research presents an improved framework based on Faster R-CNN that is intended for real-time traffic object 
detection in order to address the aforementioned issues. It makes use of Detectron2’s Faster R-CNN model, which is 
trained on a unique traffic dataset and has a ResNet-101 backbone. It also incorporates Gradio, an open source tool for 
developing machine learning model user interfaces that provides a real-time interface that is easy to use for interaction 
with the model. Gradio bridges the gap between advanced machine learning models and useful real-world applications 
by enabling the uploading of visual data and the retrieval of annotated output (s) 

2. Literature Review 

2.1. Machine Learning 

It is a branch of artificial intelligence that allows computer systems to learn from their experiences and get better over 
time without the need for explicit programming. It makes use of algorithms that can identify patterns in data, frequently 
using input features to predict or categorize results. Computer vision has significantly advanced as a result of machine 
learning, particularly deep learning which allows systems to automatically learn intricate features from a variety of 
datasets. Because of its capacity to recognize spatial and hierarchical structures in images, Convolutional Neural 
Networks (CNNs), a branch of deep learning, has emerged as essential for image processing applications, such as object 
detection [5]. For object detection tasks, traditional methods used manually designed features like Scale Invariant 
Feature Transform (SIFT) and Histogram of Oriented Gradients (HOG). The intricacy of hand-crafted features, which 
frequently failed in dynamic situations particularly with fluctuating object scales and orientations typical of traffic 
scenes, was a limitation of these techniques [6, 7]. 

CNN architectural advancements like AlexNet [8], VDDNet [9], and ResNet [10] have greatly enhanced models’ capacity 
to extract detailed representations from data. In order to solve the problem of vanishing gradients in deep networks 
and enable deeper designs that capture complex properties, ResNet in particular incorporated residual connections. 
These developments have been vital in enabling sophisticated applications that require great accuracy and fine trained 
information, such as traffic detection. When labeled data is scarce, transfer learning – the process of fine-tuning pre-
trained models on huge datasets, such as Image Net, on task specific datasets further improves model performance [11]. 

2.2. Object Detection 

As a key element of computer vision, object detection is a deep learning technique that includes identifying and locating 
items in an image. Sliding windows, which were computationally costly and prone to high false-positive rates, were used 
by traditional object detection algorithms like the Viola-Jones detector, to detect objects [12]. By employing CNNs to 
produce high quality region proposals, contemporary object detection frameworks like Region based Convolutional 
Neural Networks (R-CNN), Fast R-CNN, and Faster R-CNN have completely transformed the area. While Fast R-CNN 
increased efficiency by sharing computations across the full image, Faster R-CNNS introduced the idea of isolating 
region proposals and using CNNs to classify each region [13, 14]. 

By integrating a Region Proposal Network (RPN) that predicts object bounding boxes directly, Faster R-CNN improved 
speed and accuracy by doing away with the need for external region proposal algorithms [15]. Other real-time 
frameworks that do single pass detections, like Single Shot Multibox Detector (SSD) and You Only Look Once (YOLO), 
have been created to increase processing performance. YOLO, for example, processes the entire image in a single neural 
network pass, achieving real-time performance, albeit with some trade-offs in localization accuracy, particularly for 
small objects and crowded scenes [16, 17]. Faster R-CNN’s balance between precision and processing speed makes it an 
ideal choice for high stake applications, such as traffic monitoring, where accuracy is prioritized over real-time 
performance. 

2.3. Faster R-CNN 

One popular two-stage detector that is well known for its excellent performance on a variety of datasets is Faster R-
CNN, as shown in Figure 1. Regression branch classification, bounding box, Region Proposal Network (RPN) [18], and a 
backbone are its main constituents. Features are extracted from input images by the backbone network and sent to the 
RPN, which is made up of two subsets: one for object regression and the other for object classification. Classification 
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probabilities are predicted by the classification subset, and object locations are estimated by the regression subset 
utilizing anchor boxes as reference points. 

Non-maximum suppression is used to eliminate proposals with large overlap and to choose the best proposals with the 
highest probabilities based on the classification. Then thresholds are established to ascertain whether or not an object 
is included in a proposal. Region of Interest (ROI) pooling or ROI aligning is used to standardize the form of these chosen 
proposals in conjunction with the backbone network’s retrieved data [19]. The suggestions are then sent to two subsets: 
the regression subset, which estimates the proposals’ locations, and the classification subset, which forecasts the 
proposals’ categories.  

The total loss is computed as shown in Equation 1. 

                                                            Ltotal = Lrpn + Lrcnn                                                                                   (1) 

Where:  

Lrpn and Lrcnn represent the class loss and the regression loss respectively.  

 

Figure 1 The Structure of a Faster R-CNN  

2.4. ResNet-101 Backbone 

Faster R-CNN is one of the most popular object detection frameworks because it strikes a balance between processing 
efficiency and accuracy, which makes it perfect for applications that need accurate object localization. In order to 
propose and categorize regions inside an image simultaneously, the design combines a Region Proposal Network (RPN) 
with a Fast R-CNN detection network [15]. Even in complicated images, the model can capture tiny features because of 
the ResNet-101 backbone, a deep convolution network with 101 layers. 

Compared to conventional CNNs, ResNet-101 is more effective for deep architectures because it uses residual 
connections to alleviate the vanishing gradient issue. Research indicates that ResNet-101 and Faster R-CNN together 
offer better identification accuracy, particularly for jobs with many classes and different object scales [19]. Numerous 
applications of this combination have been made in domains such as autonomous driving and video surveillance, where 
accurate, multi-class detection is essential. By using this backbone, the current study benefits from enhanced detection 
precision, which is critical for identifying and localizing multiple objects in urban traffic scenes. 

2.5. Detectron2 Framework 

Detectron2 as depicted in Figure 2 developed by Facebook AI Research (FAIR) group, is a state of art, modular 
framework designed to support diverse object detection and segmentation tasks. Developed using Pytorch, Detectron2 
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is highly flexible, enabling easy adaptation to custom datasets and support for advanced architectures, including Faster 
R-CNN, Mask R-CNN, and Retina Net [20]. Detctron2’s effectiveness and strong model training capabilities have led to 
its widespread use, making it a popular choice for academic research and industrial applications. The framework 
includes built in utilities for dataset handling, evaluation metrics, and visualization, streamlining the training pipeline. 
In addition to Faster R-CNN, Detectron2 supports feature pyramid networks (FPN) and high capacity backbones like 
ResNet, enabling it to handle multi scale detection challenges effectively. Its application extends across domains, 
including medical imaging, autonomous driving and surveillance, demonstrating its adaptability in complex detection 
tasks. 

 

Figure 2 Detectron2’s Architecture 

2.6. Gradio  

Gradio is an open source python library that makes it easier to build web-based interfaces for machine learning models 
and at the same time enables real-time user interaction [21]. By providing a web-based platform for uploading images 
or videos and viewing model outputs, Gradio enhances model accessibility making it useful for both demonstrations 
and practical applications. Non-technical users can explore model functions thanks to Gradio’s interactive nature, which 
is especially useful for domains like ITS that gain from public involvement. 

Gradio has proved to be useful in fields where real-time feedback is essential, such as medical diagnosis, language 
processing, and image categorization. Gradio’s integration in this work improves model usability for traffic monitoring 
and safety applications by enabling users to upload custom data of traffic scenes and observe the annotated detections 
in real-time. The use of Gradio in this study is an attempt to bridge the gap between accessible real-world applications 
and technical model implementations. 

2.7. Related Works 

Numerous techniques have been developed to handle the peculiar difficulties posed by complicated traffic scenes and 
urban traffic monitoring. Object detection has been the subject of much of this research. In Intelligent Transportation 
Systems (ITS), where real-time monitoring of cars, pedestrians, traffic lights, and other road elements is crucial for 
applications like autonomous driving, urban safety, and traffic management, traffic object detection is crucial. A number 
of models have been created to detect objects in urban environments. 

[22] explored a 3D multi-view object detection network designed specifically for self-driving cars, achieving excellent 
detection accuracy for both cars and pedestrians. This method utilized a combination of LiDAR sensor and visual camera 
data, enabling effective object detection in 3D space. While this study successfully demonstrated the potential of multi-
modal object detection, it relied on specialized hardware limiting its applicability to systems with LiDAR. 
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[23] applied faster R-CNN in an urban traffic context, emphasizing high accuracy in detecting vehicles and pedestrians. 
The study used a feature extraction approach through a ResNet backbone, enabling precise detection across different 
object types. However, the focus was not optimizing accuracy and couldn’t address model accessibility or real-time user 
interaction, which are essential for practical implementation in public facing applications. The model’s dependence on 
high performance hardware also limited its scalability to real world resource constrained environments. 

In a related study, [16] introduced YOLO, a real time detection framework capable of high-speed object detection. While 
YOLO achieved significant speed improvements by processing entire images in a single pass, it faced challenges with 
localization accuracy, particularly for smaller objects in dense scenes. Given the limitations in detecting objects at 
varying scales and with high precision, YOLO is often less suited for scenarios requiring fine-grained accuracy such as 
urban traffic monitoring, where distinguishing small or distant objects (e.g. traffic lights) is critical. 

Detecting small and distant objects, such as traffic lights or pedestrians far from the camera remains a challenging task 
in object detection. To address this, [24] investigated a multi-scale feature fusion technique that used multiple CNN 
layers to record varying levels of information, hence increasing the detection of small objects in urban environments. 
Multi-scale methods, however frequently resulted in higher computing complexity, which could be detrimental for real-
time applications that demand minimal latency. 

In addition to challenges with small objects, variance in environmental conditions (e.g. low-light scenarios, fogs or rain) 
poses challenges for object detection models. [18] also put forward an enhancement to this by training models with 
augmented data, simulating diverse weather conditions to improve robustness. Although data augmentation has 
showed effectiveness in making models more adaptable to environmental changes, it did not fully address the 
performance trade-offs, particularly in real-time systems where resource constraints limit extensive data augmentation. 

While there have been significant advancements in model accuracy and speed, few studies integrate components that 
make models accessible to non-technical users. Traditional object detection systems are often designed for deployment 
on high-performance servers or within tightly controlled autonomous vehicle systems, where only technical personnel 
can test or evaluate the model’s performance. This limited accessibility restricts the model’s utility for public 
demonstrations, educational purposes, or direct testing by stakeholders in ITS planning. 

In traffic object detection research, interactive machine learning interfaces like those made possible by Gradio are still 
relatively new and unexplored. By providing a platform that allows users to upload images or videos and retrieve 
annotated outputs, Gradio enables a more user-friendly experience that can facilitate testing, feedback and adoption. 
Studies such as [21] highlight Gradio’s effectiveness in making complex models interpretable and usable, but its 
application in real-time object detection, particularly for ITS has been limited. 

This study focuses on implementation of a high-accuracy object detection model that can monitor traffic in real-time. 
The system utilizes a computer vision model to accurately identify and localize multiple objects like vehicles, traffic 
lights, fire hydrants, pedestrians, and crossroads in complex dynamic environments. It goes further to incorporate an 
intuitive user interface so as to improve accessibility and user interaction. 

3. Material and methods  

The system as shown in Figure 3 starts by capturing visual information of the environment using specialized image 
sensor cameras which would be mounted at specific areas of the traffic scene. A thorough grasp of the surroundings is 
then produced by combining the data collected by various cameras. The data is then sent to the trained Faster R-CNN 
model where it is processed. If the system correctly identifies and localizes the objects detected, it proceeds to send this 
data to the control centre. However, the model reprocesses the data for better outcomes if it is unable to accurately 
recognize and localize objects. 

The components of the system are divided in to hardware and software components. The hardware components 
include; image sensor cameras mounted at specific areas of the traffic scene and the processor device (GPU), while the 
software components include; the trained Faster R-CNN model and the control interface (Gradio). 
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Figure 3 The Flowchart of the System 

3.1. Model Overview 

The most important part of the system is the trained model, which is responsible for accurately recognizing and 
localizing objects in real-time. Using mounted cameras to capture traffic scene data at specific vehicle locations is the 
first stage in real-time object detection and localization. This input data is then pre-processed to ensure the right format 
of the data is provided into the model.  

After the pre-processing stage, the model receives the data input ad uses it to extract high-level properties including 
object shapes, edges, textures and spatial connections. After analysing the feature map, the Convolutional Neural 
Network (CNN) model looks for potential regions of interest (ROI) that could hold the desired objects. 

After that, the Region Proposal Network (RPN) surrounds those regions with bounding boxes, giving preference to those 
that are most likely to include the objects of interest. This output is then provided as an input to the area which uses the 
Convolutional Neural Network (CNN) to produce fixed size feature maps that correspond to each area proposal. For 
bounding box regression and classification, the fully connected layers process the derived fixed size feature maps. 

The model’s classification determines the object class, such as car, traffic signals, crossroads, fire hydrant, and 
motorcycle, while the bounding box regression layers refine the coordinates of the proposed bounding boxes to more 
nearly coincide with the ground truth box placements. After identifying the objects, the system relays the data to the 
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control centre to plan safe routes, avoid collisions, adapt to traffic circumstances etc. Figure 4 is a detailed 
representation of the model’s object detection process. 

 

Figure 4 The Model’s Object Detection Process 

3.2. Image Data Acquisition 

Roboflow, a computer vision online data source provided a total of 814 photos that included different classifications of 
traffic objects, including bicycles, cars, motorbikes, crossroads, fire hydrants, and traffic lights. Common Objects in 
Context (COCO) JSON format, which is fully compatible with the Detectron2 Faster R-CNN architecture, contained the 
entire dataset. A Sample image from the dataset is shown in Figure 5. 

 

Figure 5 Sample Images of the Dataset 
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3.3. Data Preparation and Annotation 

The dataset used was prepared according to the COCO format, a widely adopted standard in object detection. The 
process included annotation, registration in Detectron2 and data visualization. 

The COCO JSON format is a widely used approach for annotating object detection and localization datasets. Studies have 
demonstrated that COCO style of annotations improves model robustness by supporting multi-class detection and 
handling occlusions effectively, which are frequent challenges in traffic scenes [25]. This involved the process of adding 
pertinent information or metadata to raw data so that the machine learning algorithm could understand and use it.  
COCO style annotations involved bounding boxes and class labels for every object in an image. This dataset included 
classes relevant to traffic scenes such as vehicles, cross walks, buses, motorcycles, bicycles, fire hydrants and traffic 
lights. Each object instance was annotated with specific coordinates such as x, y, width and height and assigned a 
category facilitating supervised training on multi-class data. 

The annotations which included bounding boxes and class labels were essential for training the model to recognize and 
localize objects effectively. The COCO dataset served as a standard for the object detection task due to its rich 
annotations that encompassed a variety of object classes, complex scenes, and object overlap [18]. Annotation quality 
was critical for model accuracy, as poor-quality annotations could lead to inaccuracies in object localization and 
classification.  

3.4. Data Cleaning and Structuring 

For optimization, the data cleaning and structuring procedure was crucial. It established the groundwork for the 
machine learning task to be successful. Five object types were eliminated from the COCO JSON format dataset in order 
to mitigate the noise and irregularities. Due to the underrepresentation of these classes, they were eliminated, rendering 
them wholly unnecessary for the training procedure. Adopting this strategy will undoubtedly improve model 
performance and avoid potential problems during data processing. 

3.5. Data Pre-processing 

This involved resizing each image so that its shortest edge is 800 pixels, with a maximum dimension of 1333 pixels. This 
resizing step ensured uniform image dimensions, which is vital for maintaining model accuracy. Inconsistent image 
sizes could interfere with feature extraction and bounding box localization, so standardizing the size helped to optimize 
performance. 

3.6. Environmental Setup and Required Libraries 

The environmental setup was critical to ensure efficient processing, particularly with GPU support. As a foundational 
library for deep learning and neural networks, Pytorch provided tensor operations and GPU support. Pytorch version 
1.12.1 was utilized which was compatible with CUDA version 11.3 for GPU acceleration. Matplotlib was also used to 
create static, animated and interactive visualizations of the COCO dataset and monitor the training process while 
providing insights to the model’s performance.  

In addition, to handle image and video processing during object detection, Open Source Computer Vision Library 
(OpenCV), a comprehensive library for computer vision tasks was used to read images from the dataset registered on 
Detectron2 as it provided pre-trained model configurations and utilities, supporting the Faster R-CNN architecture with 
a ResNET-101 backbone.  

Lastly, Gradio was installed to enable a web-based user interface that would enable users to interact with the model in 
real time. Gradio makes machine learning deployment easier by offering input/output components that are simple to 
configure and essential for easily accessible model demos. 

3.7. Train Test Split 

The dataset was divided into train, test and validation sets in a ratio of 61:16:23 prior to training. This preserved the 
robustness of the model while ensuring sufficient data for the test and validation sets. 

3.8. Model Configuration and Training 

Using pre-trained weights from the COCO dataset, a faster R-CNN architecture with a ResNet-101 backbone was used 
to enhance generalization and speed up convergence. 
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To enhance data loading speed, the number of CPU threads for data loading was set to 4. By increasing the number of 
worker threads, the model could load data in parallel, thereby minimizing idle GPU time and optimizing the training 
process. This configuration was particularly beneficial when handling large datasets, as it reduced Input/output 
bottlenecks. 

ResNet, a deep Convolutional Neural Network (DCNN) renowned for its potent feature extraction capabilities served as 
the foundation for the Faster R-CNN model architecture. By utilizing transfer learning, weights that had previously been 
trained on the COCO detection dataset were loaded. As opposed to training from scratch, using the pre-trained weights 
accelerated the convergence of the model which significantly improved accuracy. 

The batch size (i.e. number of images processed per iteration) was set to 4. This choice balanced memory constraint 
with gradient estimation accuracy, providing stable training updates. 

In order to properly handle the trade-off between slow training and instability, the initial learning rate was set to 0.001. 
Also, in order to improve the model’s performance and reduce the possibility of over fitting, a warm up phase was also 
included to stabilize training during the early stages. During this phase, the learning rate progressively increased over 
the first 1000 iterations before gradually decreasing between 1000 and 1400 iterations. Also, the reduction factor γ = 
0.05 applied at each step further assisted in smoothing out training and achieving a better convergence.  

In addition, the number of proposal samples per image was set to 64 in order to improve the model’s object detection 
learning and to balance between the two classes while increasing object detection accuracy. This aided in regulating the 
quantity of positive and negative data collected during Region of Interest (ROI) pooling.  

Finally, periodic evaluation was also done at every 500 iterations which were essential for monitoring model 
performance and adjusting parameters as necessary. This helped track the loss curve and other performance metrics, 
making it possible to intervene if over fitting or under fitting was detected. The hyper parameters used during training 
can be seen in Table 1. 

Table 1 The Model’s Hyper parameters used for Training 

SN. Parameter Value 

1 Data Loader Workers 4 

2 Batch Size 4 

3 Initial Learning Rate 0.001 

4 Warm-up Iterations 1000 

5 Maximum Iterations 1500 

6 Learning Rate Step Schedule 1000, 1400 

7 Learning Rate Decay Factor 0.05 

8 ROI Batch Size per Image 64 

9 Evaluation Period 500 

 

4. Results and discussion 

4.1. Metrics for Model Evaluation 

The model’s performance on the test dataset was assessed following training.  By using COCO metrics for thorough 
performance insights, object detection accuracy was evaluated using Detectron2’s default trainer. As indicated in Table 
2, these metrics provided a thorough evaluation across various Intersection over Union (IoU) thresholds and object 
sizes. 
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4.2. Intersection over Union (IOU) 

This is the basic computation that determines whether detection is a true positive. It is the overlap between the ground 
truth box (Bgt) and the actual box measured. Its mathematical definition can be seen in Equation 2. 

                                                                                        IOU =
∣Bp∩ Bgt∣ 

∣Bp∪ Bgt∣
                                                                                   (2)    

Where: 

∣Bp∩ Bgt∣ is region where the ground truth boxes and the actual boxes overlap. 

∣Bp∪ Bgt∣ is the combined area of the two boxes. 

Precision (P) 

The ratio of true positive detections to the total detections. It gauges how well the model recognizes the right objects. It 
is mathematically defined as seen in Equation 3. 

 

                                                                                                
True Positives (TP)

True Positives (TP)+False Positives (FP)
                                                          (3) 

Recall (R) 

The proportion of true positive detections to the total number of real objects. It shows that the model can locate all 
pertinent objects. It is mathematically defined as seen in Equation 4. 

                                                                                      
True Positives (TP)

True Positives (TP)+False Negative (FN)
                                                         (4) 

Average Precision (AP) 

The Average Precision (AP) is calculated as the mean of the highest precisions at various recall levels and represents 
the area under the precision-recall (PR) curve. AP is computed in COCO evaluation across a number of IOU thresholds, 
usually with a step size of 0.05 and a range of 0.5 to 0.95. The overall AP of 0.442 (44.2%) indicates a balanced degree 
of object detection accuracy. It is mathematically defined as seen in Equation 5: 

                                                                                       𝐴𝑃 = ∫ 𝑃(𝑟)𝑑𝑟                           
1

0
                                                          (5) 

 Where:  

P(r) represents the precision as a function of the recall. 

Mean Average Precision (mAP) 

The mAP is the average of the AP values calculated over multiple IoU thresholds and across all object classes.  

 It is mathematically defined as seen in Equation 6. 

                                                                                      𝑚𝐴𝑃 =  
1

𝑇
∑ APIoU=t         𝑇

𝑡=1                                                                                            

(6)             

Where: 

T is the number of IOU thresholds. 

Average Precision (AP) at 50% and 75% 
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The AP values at IOU thresholds of 0.5 and 0.75 (i.e. 50% and 75% respectively) highlights the model’s localization 
performance. The higher AP (@50) – 76.9% suggests good localization at relaxed thresholds but the lower AP (@75) – 
43.9% suggests stricter bounding box which indicates that higher thresholds will result in lower values hence posing a 
challenge. 

4.3. Average Precision by Object Size 

The AP for small objects (18.20%) is significantly lower than for medium (35.80%) and large objects (53.10%). This 
disparity is typical in object detection models, as small objects often pose greater challenges due to their limited pixel 
representation, making it harder for the model to accurately identify and localize them. In contrast, larger objects 
provide more visual information, which facilitates better detection performance. 

4.4. Average Recall (AR) 

It is the average of the recall calculated at various IOU criteria. AR provides an overall sensitivity assessment by taking 
into account all true positives across various thresholds. Like AP, AR in COCO is averaged over multiple IOU thresholds, 
yielding a final AR score. The Recall of 57.90% shows reasonable object coverage, but indicates that further 
improvements in recall could enhance detection completeness.  

Mathematically, it is expressed in Equation 7. 

                                                                          𝐴𝑅 =  
1

𝑇
∑ RIoU=t         

𝑇
𝑡=1                                                                         (7) 

Where: 

RIoU = t is the recall at each IOU threshold. 

Table 2 Model Evaluation Metrics 

SN. Metric Value (%) 

1 AP@50-95 44.2 

2 AP@50 76.9 

3 AP@75 43.9 

4 APs (Small Objects) 18.2 

5 APm (Medium Objects) 35.8 

6 APl (Large Objects) 53.1 

7 AR@50-95 57.9 

 

These metrics provided a multi-faceted evaluation of the model, capturing not only its accuracy in detecting objects but 
also its localization precision and scale sensitivity. This comprehensive approach provides a robust framework for 
assessing and comparing model performance across diverse detection challenges. 

4.5. Training Loss Analysis 

4.5.1. Total Loss 

This is the total loss across all tasks. Including losses from Region Proposal Networks (RPNs), box regression, and 
classification. As the model learns from the data, it becomes increasingly accurate at predicting object classes and 
bounding boxes as observed by a consistent drop in total loss. 

4.5.2. Classification Loss 

This is the difference between the actual and anticipated class labels. As the classification loss trend decreases, it 
indicates that the model is improving its capacity to distinguish between different kinds of objects in the traffic 
environment by learning to identify classes accurately over time. 
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4.5.3. Box Regression Loss 

This loss which measures the difference between the ground truth and anticipated bounding boxes is essential for 
accurate item localization and detection. The stability of this loss indicates the model is successfully enhancing its 
capacity to precisely place bounding boxes around identified objects. 

4.5.4. Region Proposal Network (RPN) Classification Loss 

The RPN suggests potential object regions within an image. A low and stable RPN classification loss indicates that the 
model efficiently identifies potential object locations, which aids in reducing false positives and helps focus on relevant 
regions. 

4.5.5. Region Proposal Network (RPN) Localization Loss 

This is the degree to which the suggested regions resemble the locations of the ground truth objects. In this case, for the 
model to be considered stable, the regions that are recommended must be in good alignment with the actual locations 
of the objects to improve the accuracy of the object detection. 

In summary, a consistent decline in losses suggests that the model is effectively learning from the training set. Low RPN 
localization and classification implies that the model has stabilized successfully; hence reducing mistakes and 
identifying patterns for object detection. A graphical breakdown of all losses is shown in Figure 6. 

 

Figure 6 Graphical Representations of the Losses 

4.6. Data Analysis 

Table 3 is a distribution of the test dataset across eight (8) distinct categories in COCO format was which featured a 
variety of object classes pertinent to road and traffic environments. The distribution reveals that some classes, such a 
Vehicles and Traffic lights were mostly represented, with 209 and 129 instances respectively, while others, like Road-
Traffic, had no instances at all. The absence of Road-Traffic instances indicated that no images were available for this 
class in the dataset. Furthermore, underrepresented classes like Buses and Bicycles might have experienced lower 
detection accuracy because of the limited number of training examples. This class imbalance suggests that expanding 
the dataset could enhance the model performance and robustness across all categories. 
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Table 3 Distribution of Dataset across Different Categories 

SN. Category Instances Percentage (%) 

1 Road-Traffic 0 0.00 

2 Cross Walks 81 16.01 

3 Traffic Lights 129 25.49 

4 Bicycles 22 04.35 

5 Fire Hydrants 23 04.55 

6 Vehicles 209 41.30 

7 Buses 12 02.37 

8 Motorcycles 30 05.93 

TOTAL 506 100 

4.6.1. Inference Process 

The model’s inference process involved evaluating 133 batches with each batch corresponding to a single test image.  

4.6.2. Data Loading Time 

The time it took to load the data was 0.0016 seconds which indicated efficient dataset loading, allowing for smooth data 
throughput. 

4.6.3. Inference Time 

An inference time of 0.189 seconds per iteration represented the model’s computation time for each image. This was 
critical as it reflected the model’s efficiency in real-time settings. 

4.6.4. Evaluation Time 

The evaluation time of 0.0003 seconds per iteration reflected the time taken to evaluate predictions after inference. 

4.6.5. Per-Class Category Precision Analysis 

Figure 7 provides the per-class category Average Precision (AP) values, allowing for deeper performance across 
different object categories. 

The model showed strong performance on high performing classes like Fire Hydrants (59.30%), Buses (54.80%), and 
Vehicles (49.90%). These high scores indicate that the model effectively learned to identify these objects, likely because 
they contained more distinct and easily recognizable features. In addition, these classes might have been better 
represented in the train set, providing the model a larger variety of examples to learn from, which also contributed to 
their high detection accuracy. 

Alternatively, low performing classes like crossroads showed a much lower AP of 12.90% reflecting the challenges the 
model faced in accurately identifying these objects. Crossroads often present complex and highly variable visual patters, 
which can vary greatly based on the environment. The lack of sufficient examples and clear visual cues in the dataset 
might have likely contributed to the model’s difficulty in detecting them with high precision. 

Meanwhile, medium performing classes like Traffic Lights, Motorcycles, and Bicycles achieved moderate AP values, 
suggesting that while the model performed reasonably well in detecting these objects, there was still room for 
improvement. These objects present a wider range of visual appearances or environmental context, and the model could 
have benefited from additional training data or more refined detection techniques to improve performance across these 
categories. 

The variation in per-class AP values indicated that some object categories were easier to detect due to higher 
representation or distinctive visual features while other might have required additional data for better performance. 



World Journal of Advanced Research and Reviews, 2024, 24(02), 2173–2189 

2186 

 

Figure 7 Average Precision by Class Category 

4.7.  Gradio Interface Implementation 

Gradio enables the implementation of a user-friendly interface for real-time object detection. It enables deploying the 
trained model to a web interface, allowing users to interact with the model either via an image or video input. To set up 
the model for inference, the configuration is initialized and the model weights are loaded. The model’s number of classes 
is set to 12, and a list of class names relevant to the dataset is defined for easy identification. The default predictor 
instance then processes images and video frames through the trained model. Using the following functions, individual 
images and video frames are handled for real-time object detection. 

4.8. Predict and Display Frame Function 

This function processes each frame by converting it to Red-Green-Blue (RGB) format, runs inference with the predictor 
and draws instance predictions (i.e. bounding boxes, labels) on the frame using Detectron2’s visualize. The processed 
frame is then returned in RGB format and to the Gradio interface for display. 

4.8.1. Live Tracking Function 

Here each frame from a video source is processed iteratively. By utilizing OpenCV, the function captures frames from a 
specified video input.  

4.8.2. Detect Objects inn Image Function 

This converts an input image to the required format and processes it, returning an annotated image with detected 
objects. 

4.8.3. Gradio Interface Design 

Real-time object detection is made easier by the Gradio interface’s distinct options for video and image data inputs. The 
application is made available through a browser after the local Gradio server has been launched. Users can submit an 
image or video input for object detection, or record video from their camera. By triggering the live tracking function, 
the start and detect buttons begin object detection on the video input. Similarly, they trigger the detect object in an 
image function to begin object detection on the image. The processed outputs show either the annotated images 
detected or the processed video with detected objects, depending on the scenario. 

4.8.4. Visualization of Detected Outputs 

Detection of output visualizations provided qualitative insights into the model’s performance. Presented below are 
samples of output images processes through the trained model using the Gradio interface, which showcased its 
detection accuracy across a variety of traffic scenarios. 
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The model demonstrated its ability to accurately detect vehicles at varying distances, effectively distinguishing them 
even in the presence of occlusions and overlapping instances. It also successfully identified traffic lights with high 
confidence scores. 

 

Figure 8 Visualization from Highly Dense Scenes 

The bounding boxes were precisely aligned with vehicle contours, and confidence scores consistently exceeded 80%, 
reflecting the model’s reliability and robustness in complex scenarios. 

Furthermore, the model effectively detected the majority of vehicles and traffic lights across various pose and sizes in 
previously unseen images. The higher confidence scores for vehicle detection likely stemmed from their extensive 
representation in the training dataset, depicting the model’s adaptability and strong generalization capabilities.  

In addition, the model correctly identified the presence of vehicles in the uploaded data, such as the one shown in Figure 
9 although the detection accuracy varied depending on factors like distance and illumination.  

 

Figure 9 Model’s Performance on Uploaded Data 
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4.9. Gradio Interface Interaction and Insights 

The Gradio interface provided seamless experience for users to upload traffic scene images or videos, either from their 
local storage or via a webcam, with annotated results displayed almost instantly. Its straightforward design featuring 
an upload option and an output display made it highly accessible, even for users without programming experience. The 
interface enabled efficient and prompt inference, underscoring its practicality for real-world traffic monitoring. 

This user-friendly design, combined with the model’s impressive efficiency, highlights its potential for diverse 
applications in traffic management. Suggestions for enhancements, such as batch processing capabilities and improved 
integration for video streams, could further elevate its functionality and broaden its real-world application. The Gradio 
interface not only facilitates real-time testing but also serves as a clear demonstration of the model’s utility. 

5. Conclusion 

This study successfully illustrated how to recognize traffic objects in real time using Dtectron2’s Faster R-CNN model 
with a ReNet-101 backbone, improved by an intuitive Gradio interface. In various traffic situations, the model correctly 
identified several object types, such as cars, buses, bicycles, crossroads, motorcycles, fire hydrants and traffic signals. 
The strong performance in handling dynamic, multi object urban traffic environments was demonstrated by its excellent 
performance. 

With the aid of the web based Gradio platform for real-time detection, the Gradio interface enabled users to examine 
annotated outputs or even provide visual data from webcams or local storage, increasing its usefulness for intelligent 
transportation systems (ITS) and urban planning stake holders. 

The study also identified areas for improvement while highlighting the synergy between Gradio and Detectron2 for 
traffic monitoring. Improving inference speed for real-time edge deployment and optimizing identification for tiny 
objects such as far-off traffic lights were among the difficulties. 

In order to increase adaptability, future research should concentrate on improving continuous video stream processing, 
use more data for training to improve generalization and accuracy, and add more traffic classes. 
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