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Abstract 

The paper compares coefficient parameter estimation efficiency using penalized regression approaches. Five estimators 
are employed: Ridge Regression, LASSO regression, Elastic Net (ENET) Regression, Adaptive Lasso (ALASSO) 
regression, and Adaptive Elastic Net (AENET) regression methods. The study uses a multiple linear regression model to 
address multicollinearity issues. The comparison is based on average mean square errors (MSE) using simulated data 
with varying sizes, numbers of independent variables, and correlation coefficients. The results are expected to be useful 
and will be applied to real data to determine the best-performing estimator. 

Keywords: Ridge Regression; LASSO Regression; Elastic Net Regression; Adaptive Lasso Regression; Adaptive Elastic 
Net Regression methods 

1. Introduction

The X matrix, which contains the independent variables, causes singularity when some linear combinations of the 
columns of X are exactly equal to zero. This becomes more evident when the least squares analysis is computed because 
the unique solution does not exist. The issues that arise from X being nearly singular are known as the multicollinearity 
problem. 

Multicollinearity can lead to inaccurate regression coefficients and difficulty in identifying important variables. 
Addressing this issue depends on the analysis goals. For prediction, multicollinearity is usually not a significant issue, 
but when estimating regression coefficients, biased regression methods may be appropriate. Severe multicollinearity 
can lead to misleading results in identifying important variables. This paper focuses on managing multicollinearity while 
estimating linear regression model parameters. 

2. Multicollinearity in Linear Regression Models

Recall that Multicollinearity in linear regression occurs when independent variables have close to zero linear 
combinations. This can happen due to near-linear dependencies in the data, poorly constructed models, or insufficient 
sample sizes. Biased Regression is a classic method for addressing multicollinearity. 

2.1. The Biased Regression Methods 

The regression coefficients obtained using the Ordinary Least Squares (OLS) method are known as the Best Linear 
Unbiased Estimators (BLUE). However, if the multicollinearity problem exists, the minimum variance may be 
unsatisfactorily large. In the presence of multicollinearity, biased regression methods have been suggested as a potential 
solution. The best local measure of averaging an estimator to the parameter being estimated is the Mean Squared Error 
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(MSE).Let �̃� be a biased estimator having a smaller Mean Squared Error (MSE) than an unbiased estimator 𝜃, the Mean 
Squared Error of �̃� can be defined as 

MSE(�̃�) = 𝐸(�̃� − θ)2 ……………. (1) 

Remember that the variance of an estimator �̃� can also be defined as 

Var(�̃�) =𝐸[�̃� −  𝐸(�̃�) ]
2

 …………….. (2) 

In expression (1), the MSE of �̃� is calculating the average squared deviation of the estimator from the parameter being 

estimated, whereas in expression (2), the variance of �̃� is calculating the average squared deviation of the estimator 
from its expectation.  

If the estimator is unbiased, then 𝐸(�̃�) = θ and MSE(�̃�) =𝜎2(�̃�). If the estimator is biased, then the MSE is equal to the 

variance of the estimator plus the square of its bias, where the Bias (�̃�) = 𝐸(�̃�) − θ. It is very possible for the biased 

estimator to obtain a variance that is sufficiently smaller than the variance of an unbiased estimator in order to 
compensate for the bias introduced. 

The biased regression technique is based on the idea that, on average, the biased estimator will be closer to the true 
parameter, even though its mean will not be equal to the true parameter. This trade-off between bias and variance is 
illustrated in Figure 1. 

 

Figure 1 Illustration of the process of Estimation in Biased Regression 

The possible advantage of biased estimators is shown in Figure 1. Therefore, it may be possible to find an estimator for 
which the sum of its squared bias and its variance (i.e. the MSE) is smaller than the variance of the unbiased estimator 
[7]. 

3. Review the Development of Bias Regression Methods 

It's important to use biased regression methods cautiously to address multicollinearity. Ridge regression and principal 
component regression are commonly used for this purpose. Penalized regression approaches, such as Ridge regression, 
LASSO regression, Elastic Net (ENET) Regression, Adaptive Lasso (ALASSO) regression, and Adaptive Elastic Net 
(AENET) regression methods, are employed to compare coefficient parameter estimation efficiency using simulated 
research data with small sample sizes and varying numbers of independent variables. 

3.1. The Ridge Regression 

Ridge Regression is commonly used to address multicollinearity in Least Squares estimation. The Ridge Regression 
estimator is developed by examining the Mean Squared Error (MSE) of the least squares estimator of 𝛽 

MSE(�̂�) =E||�̂�  −  𝜷|| 2 ……………….. (3) 
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and it can be rewritten in the following form:  

𝐸‖�̂�  −  𝜷‖
2

= ∑ 𝐸(𝑏𝑗 − 𝛽𝑗)2 =𝑗 ∑ {𝐸(𝑏𝑗) − 𝛽𝑗}
2

+ ∑ 𝑉𝑎𝑟(𝑏𝑗)𝑗𝑗  ………………… (4) 

It is widely recognized that the least squares method achieves the smallest variance among all unbiased linear estimates, 
as stated by the Gauss-Markov theorem. However, it's important to note that the minimum mean squared error (MSE) 
is not always guaranteed. To gain a better understanding of this concept, it's helpful to explore the various types of 

penalized estimation methods. Regression estimators, let �̂�𝐿𝑆 denote the ordinary least squares estimator of 𝛃. 

The multiple linear regression model can be seen as,  

)1()1)1(())1(()1(   NPPNN XY   

the estimator �̂�𝐿𝑆 = (X𝑡X)−1X𝑡𝑦 is unbiased estimator of 𝛽, also  

E(�̂�𝐿𝑆) = 𝛽 and 𝐶𝑜𝑣(�̂�𝐿𝑆) =  𝜎2. (XtX)−1 

Hence, MSE(�̂�𝐿𝑆) = E‖�̂�𝐿𝑆‖
2

−  ‖𝛽‖2. 

= tr{𝜎2(XtX)−1} =  𝜎2. 𝑡𝑟 {(XtX)−1} ……………….. (5) 

Therefore, by rearrange (5), we obtain  

𝐸 (‖�̂�𝐿𝑆‖
2

) =  ‖𝛽‖2 + 𝜎2. 𝑡𝑟 {(XtX)−1} …………………. (6) 

Because the unique solution of X𝑡X does not exist, the resultant least square estimate of �̂�𝐿𝑆 would be large in length 

‖�̂�𝐿𝑆‖ and it is related to large standard errors. This large variation would also lead to poor model prediction. 

The Ridge Regression is a constrained type of least squares. It solves the estimation problem by producing a biased 
estimator, however, with small variances [10]. 

 

Figure 2 Contours of the Sum of Squares of the Residual and the 𝑳𝟐- Constraint Functions in Ridge Regression 

From a Lagrangian problem point of view, it is equivalent to minimizing 

𝑄∗(𝛽) =  ‖𝛽‖2 + (1
𝑘⁄ ){(𝛽 −  �̂�𝐿𝑆)𝑡𝑋𝑡𝑋 (𝛽 −  �̂�𝐿𝑆)− 𝜙0} ………….(7) 

where k is considered to be a deflection factor selected to satisfy the constraint. 

 Therefore, using the differentiation of 𝑄∗(𝛽)with respect to 𝛽 
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𝜕𝑄∗(𝛽)

𝜕𝛽
= 2𝛽 +(1

𝑘⁄ ){2(𝑋𝑡𝑋)𝛽 − 2(𝑋𝑡𝑋)�̂�𝐿𝑆} = 0 ……………..(8) 

that derives the Ridge estimator as follows: 

�̂�𝑅  = {𝑋𝑡𝑋 + 𝑘I}−1𝑋𝑡𝑦 ………………..(9) 

When using Ridge Regression, selecting the best value for k is crucial. The practical option is cross-validation, which 
finds the optimal value for maximum prediction accuracy [5]. The cross-validation approach for choosing k is as follows: 

- On the training set: estimate several different Ridge Regression models with different values of k. 

- On the validation set: choose the best model (best k which gives the lowest MSE on the validation set). 

3.2. The Least Absolute Shrinkage and Selection Operator (LASSO) 

The LASSO is a type of Panelized Regression method, similar to Ridge Regression but with the important feature of 
variable selection. While Ridge Regression makes the selection process continuous by adjusting the reduction 
parameter, the LASSO sets some coefficients to zero, aiming to combine the advantages of both subset selection and 
Ridge regression. The LASSO estimator of 𝛽 is obtained by 

minimizing ‖𝑦 − Xβ‖2, subject to ∑ |𝛽𝑗|
𝑝
𝑗=1 ≤ 𝑠. 

 

More explicitly, the 𝐿2  penalty ∑ 𝛽𝑗
2 

𝐽  in Ridge Regression is substituted by the 𝐿1  penalty ∑ |𝛽𝑗|𝑗  in LASSO. If one 

chooses s ≥ ∑ |𝛽𝑗
𝐿𝑆|𝑗 , then the LASSO estimates are the same as the Least Squares estimation. If one chooses s ≤ ∑ |𝛽𝑗

𝐿𝑆|𝑗 , 

then it will cause reduce of the solutions towards zero. 

Figure 2.2 exemplifies the contours of the residual sum of squares together with the 𝐿1 LASSO constraint in the two-
dimensional case [2]. 

 

Figure 3 Contours of the Sum of Squares of the Residual and the 𝑳𝟏-Constraint Functions in LASSO Regression 

In Figure 2, the constraint region in Ridge Regression is disk-shaped, while in Figure 3, the constraint region in LASSO 
is diamond-shaped. Both methods start by finding the first point where the elliptical contours hit the constraint region. 
If the solution occurs at a corner in LASSO, then one coefficient is equal to zero. Moreover, the LASSO solution is quite 
similar to the Ridge Regression solution but with many zero coefficient estimates. In the case of orthonormal designs 
where XtX = I, the LASSO estimator can be written as 

�̂�𝑗
𝑙𝑎𝑠𝑠𝑜  = sign (�̂�𝑗

𝐿𝑆){|�̂�𝑗
𝐿𝑆|  −  𝛾}+ …………….. (10) 

Where 𝛾 is constrained by the condition ∑ |�̂�𝑗
𝑙𝑎𝑠𝑠𝑜| = 𝑠𝑗  
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In summary, the coefficients whose values are greater than the threshold 𝛾 would be contracted by a unit of 𝛾, whereas 
the coefficients whose values are smaller than 𝛾  would be automatically forced to go to 0. Therefore, the LASSO 
procedure performs as a variable selection operator [1]. 

[9] in his first work on LASSO used quadratic programming to solve the optimization problem, because of the non-
smooth performance of the LASSO constraint. It is based on the fact that the condition ∑ |𝛽𝑗| ≤ 𝑠 𝑗 is equivalent to 𝛿𝑖

𝑡 for 

all i= 1, 2, . . . , 2𝑝, where 𝛿𝑖is the p-tuples of form (±1,±1, . . . ,±1). 

While [6] developed a compact descent method to solve the constrained LASSO problem for any fixed s.  

The paper explores how coefficients change as the parameter λ varies. Ridge Regression reduces coefficients together 
as λ increases, while LASSO reduces some coefficients to zero before others as λ increases. Ridge Regression tends to 
reduce coefficients uniformly as λ increases, while LASSO reduces coefficients unevenly, allowing some to reach zero 
before others as λ increases. 

3.3. The Adaptive LASSO Estimator 

Let us consider the weighted LASSO Regression as 

……………. (11) 

where wj is a known weights vector. If the weights are data dependent and carefully selected, then the weighted LASSO 
can have the Oracle Properties.  

The new methodology is called the Adaptive LASSO (ALASSO) Regression.  

3.4. The Elastic Net (ENET) Regression  

combines LASSO and Ridge Regression to address multicollinearity and overfitting in high-dimensional datasets. It 
adds penalty terms to the least squares objective function and uses L1 and L2 norms for feature selection and reduction. 
Introduced by [12], this linear regression algorithm is a powerful tool in machine learning. The Elastic Net (ENET) 
Regression model can be represented as follows: 

y = b0 + b1 x1 + b2 x2+………. + bn xn + e 

where y is the dependent variable, b0 is the intercept, b1,….,bn are the regression coefficients, x1,….,xn are the independent 
variables, and e is the error term. The Elastic Net (ENET) Regression model tries to minimize the following objective 
function : 

[ RSS + 𝜆 ]( 1-∝) ∗∥ 𝛽 ∥2 + α ∥ 𝛽 ∥1[ 

where RSS is the residual sum of squares, the regularization parameter, 𝛽, is the coefficient vector, α is the mixing 
parameter between the L₁ and L₂, the norms, ∥ 𝛽 ∥2 is the L₂ norm of 𝛽 and ∥ 𝛽 ∥1 is the L₁ norm of 𝛽. 

Given dataset (𝑦 , 𝑥), and define an artificial data (y*, x*) by 

x* (n + p ) xp = 
𝟏

√𝟏+ 𝛌𝟐
 ( 

𝐱

√ 𝛌𝟐 𝐈
 ) , 𝐲*(n + p ) = ( 

𝒀
𝟎

 ). 

Both [12] and [8] have found that the Elastic Net (ENET) estimator performs very well when compared with the Ridge 
and LASSO regression. The Elastic Net (ENET) estimates βENET can be derived as follows.  

Using the definition of Ridge and LASSO regression, yields  

β ENET= arg 
𝑚𝑖𝑛

β E𝑅𝑃  ( ll y* - x* 
β

√1+ λ2
 ll +

λ1

√1+ λ2
 ll 

β

√1+ λ2
 ll1 ). 

˄ 2 

2 
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= arg 
𝑚𝑖𝑛

β ∈ 𝑅𝑃  βT (
𝑋∗𝑇𝑋∗

1+ λ2
 ) β-2 

𝑌∗𝑇𝑋∗

√1+ λ2
 β+𝑌∗𝑇𝑌∗ +

 λ1ll β ll1

1+ λ2
.  ………. (12) 

where 𝑋∗𝑇𝑋∗ = ( 
𝑋𝑇𝑋 +λ2 

1+ λ2
 ) , 𝑌∗𝑇𝑋∗ = 

𝑌𝑇𝑋

√1+ λ2
 , and 𝑌∗𝑇𝑌∗ =𝑌𝑇𝑌  

By substituting into equation (11) yields the following  

 

In this case, the minimizing the objective function Q of the Elastic Net (ENET) is given by  

QENET ( β , λ2 , λ1 ) = ( 1 + λ2) [𝑂𝐿𝑆(𝛽) + 𝜆2 𝑃2  (𝛽) + 𝜆1 𝑃1 (𝛽) ] 

=( 1 + λ2) ⦋ll y – x β ll2
2 +  λ2 llβll2

2 +  λ1 llβll1 ⦌ 

= βT (
XTX +λ2I

1+ λ2
 ) β-2 YT Xβ+ λ1ll β ll1    …………………. (13) 

=( 1 + λ2) [∑  (𝑦𝑖 − 𝛽𝑜 − ∑ 𝐵𝐽𝑋𝑖𝑗 )2 +  λ2 ∑ 𝐵𝑗 
2  +  λ1 ∑ l β l

𝑝
𝑗=1

𝑝
𝑗=1 𝐵𝐽  

𝑝
𝑗=1

𝑛
𝑖=1 ] 

 

Figure 4 Contour Plots for the Ridge, LASSO and Elastic Net Regression estimators 

Figure 4 illustrates the suitability of Ridge, LASSO, and Elastic Net (ENET) Regression in a two-dimensional setting. The 
Elastic Net estimate requires an iterative algorithm, and a popular algorithm for this is the Least Angle Regression 
(LARS). The Elastic Net Regression works by adding a penalty equivalent to the sum of the absolute values (L1-norm) 
of the coefficients and the squares (L2-norm) of the coefficients. 

3.5. The Adaptive Elastic Net Estimator  

Elastic Net Regression combines L1 and L2 penalties to reduce coefficients and set some to zero. The penalty amount 
can be adjusted using constants (λ2 and λ1). Adaptive Elastic Net (AENET) regression minimizes the Penalized Least 
Squares (PLS) objective function.PLSAENET (β, λ1, λ2 ) = OLS (β) + λ2 P2 (β) + λ1 P1(β) 

= || y – Xβ||2
2 + λ2|| β||2

2 +λ1 ||β||1 

or 

= ∑ (𝑦𝑖 − 𝛽𝑜 − ∑ 𝛽𝑖𝑥𝑖𝑗
𝑝
𝑗=1

𝑛
𝑖=1 )2+ λ2∑ 𝛽𝑗

2𝑝
𝑗=1 + λ ∑ ||β𝑗|| 

𝑝
𝑗=1  
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ΒAENET = arg𝐵∈𝑅𝑝
min

 [||𝑦 − 𝑋𝛽||2
2  + 𝜆2||𝛽||2

2  + 𝜆1||β||1] (14) 

[9] has observed that the empirical predictive performance of LASSO is dominated by Ridge regression (i.e., L2-norm 
regularized linear regression) when the independent variables are highly correlated, while the situation is reversed 
when there is a relatively small number of more independent variables. 

Therefore, combining both L1-norm and L2-norm may be necessary to achieve "the best of both the Ridge and LASSO 
Regression Features. 

Let     λ2 = 
1

2
 λ(1-α) and λ1 = λα , ………………… (15) 

the Penalized Least Squares (PLS) or the objective function of the Adaptive Elastic Net (AENET) using equation (15) 
becomes as follows: 

PLSAENET (β,λ,𝛼)= || Y – X β ||2
2 +λ(

1

2
 (1 − 𝛼)||𝛽||2

2 + 𝛼 ||β||1) 

= ∑ (𝑦𝑖 −  𝛽𝑜  ∑ 𝛽𝑗
𝑝
𝑗=1  𝑥𝑖𝑗)

2𝑛
𝑖=1  + λ (∑ [

1

2
(1 − 𝛼)𝛽𝑗

2 +  𝛼 |𝛽|]
𝑝
𝑗=1 ) …………..(16) 

where λ > 0 is the penalty (or the tuning) parameter of the Adaptive Elastic Net (AENET) regression and α is the mixing 
parameter and controls the influence of L1 and L2 penalizes [11].  

The glmnet library in R Package (version 4.1.0) handles Elastic Net (ENET) regression, providing a flexible framework 
through Ridge and LASSO regularized procedures. It includes the "aenet" function for Adaptive Elastic Net (AENET) 
regression, which enforces sparsity and a grouping effect and performs best when close to Ridge regression or LASSO 
Regression. The AENET estimator involves a two-stage reduction procedure for Ridge and LASSO regression 
coefficients. 

4. Simulation Study 

In this section, we compare the performance of five estimators: Ridge, Lasso, Elastic Net, Adaptive Lasso, and Adaptive 
Elastic Net, used to address multicollinearity issue through simulation.  

In this simulation study, we are comparing five penalized regression estimators by varying the correlation coefficients 
between predictors. The goal is to determine the most effective estimator for strong correlations. We are considering 
two scenarios: Pattern 1 with normal distribution error terms and Pattern 2 with non-normal distribution error terms. 
In each Pattern, we explore different numbers of independent variables (p = 2, 5, and 10) and sample sizes of n = 50, 
100, and 300. The model is represented as Y = f(X) + ε. 

Finally, we incorporate two distinct error distributions: the normal distribution and the heavy-tailed t distribution. 

˄  
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Figure 5 The Box plots demonstrate how various choices of correlation ρ affect the mean (standard deviation) of the 
MSE value for the five proposed estimators in Pattern 1 
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4.1. Pattern 1 results, where error terms follow a normal distribution 

Figure 1 shows how different correlation values (ρ) affect the mean and standard deviation of the Mean Squared Error 
(MSE) for the five proposed estimators in Pattern 1. Analysis based on the MSE criterion indicates that the Adaptive 
Elastic Net consistently outperforms the other estimators across various predictor configurations and sample sizes. For 
instance, when p=2 and n=50, the Adaptive Elastic Net ranks first, followed by Ridge, and at certain correlation values, 
Elastic Net takes second place. For n=100 and n=300, the Adaptive Elastic Net remains the top performer, with Lasso 
and Ridge alternating in second place depending on the correlation parameter ρ. Similarly, for p=5 and p=10, regardless 
of sample size, the Adaptive Elastic Net consistently leads, followed by Ridge and then Elastic Net. It's worth noting that 
all estimators show small standard deviations, but the Adaptive Elastic Net consistently maintains the smallest standard 
deviation across all scenarios, indicating its robustness in estimation accuracy and variable selection performance. 
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Figure 6 The Box plots demonstrate how various choices of correlation ρ affect the mean (standard deviation) of the 
MSE value for the five proposed estimators in Pattern 2 

4.2. Pattern 2 results, where error terms follow a non-normal distribution 

The analysis of Figure 6 reveals the performance of various estimators based on the Mean Squared Error (MSE) criterion 
across different configurations of predictors and sample sizes. In the case of p = 2 and n = 50, the Adaptive Elastic Net 
consistently outperforms all other estimators regardless of the correlation parameter ρ, with the OLS estimator 
performing poorly. The Elastic Net ranks second for certain values of ρ, while Ridge takes this position for others. For n 
= 100 and n = 300, the Adaptive Elastic Net remains the top performer, with Lasso and Ridge alternating in second and 
third places depending on ρ. In scenarios with p = 5 $ and p = 10, the Adaptive Elastic Net again excels, followed by Ridge 
in second and Elastic Net in third, regardless of sample size. Notably, throughout all configurations, the Adaptive Elastic 
Net exhibits the smallest standard deviations, highlighting its robustness in estimation accuracy and variable selection 
performance. 

5. Conclusion 

This section evaluates five penalized regression estimators for addressing multicollinearity, focusing on Ridge, LASSO, 
Elastic Net, Adaptive LASSO, and Adaptive Elastic Net. Ridge regression mitigates multicollinearity by introducing bias 
to reduce variance, while LASSO and Elastic Net aim to eliminate variables most affected by multicollinearity. In the first 
pattern with normally distributed error terms, OLS consistently yields high MSE values due to multicollinearity. The 
Adaptive Elastic Net emerges as the top performer across various sample sizes and correlation coefficients, followed by 
Ridge. In the second pattern with non-normally distributed errors, OLS again performs poorly, while the Adaptive 
Elastic Net remains superior, closely followed by Ridge and LASSO in certain cases. Notably, regardless of the error 
distribution, the Adaptive Elastic Net consistently ranks first, demonstrating robustness against non-normality. This 
estimator effectively reduces the number of selected variables while maintaining accuracy, making it preferable for real-
world variable selection challenges. Overall, it outperforms other penalized estimators by achieving the smallest MSE 
and standard deviation values, while Ridge and LASSO follow closely behind. 
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