

eISSN: 2581-9615 CODEN (USA): WJARAI Cross Ref DOI: 10.30574/wjarr Journal homepage: https://wjarr.com/

(REVIEW ARTICLE)

Check for updates

Characterization of a wiener process taking values in a Hilbert space

M. GEETHA *

Department Of Mathematics, Saradha Gangadharan College, Puducherry – 605010, India.

World Journal of Advanced Research and Reviews, 2024, 24(01), 2379–2385

Publication history: Received on 08 September 2024; revised on 15 October 2024; accepted on 18 October 2024

Article DOI[: https://doi.org/10.30574/wjarr.2024.24.1.3164](https://doi.org/10.30574/wjarr.2024.24.1.3164)

Abstract

This paper characterize wiener process by taking values in a Hilbert space.

A standard wiener process is stochastic process $\{W_t\}_{t\geq0+}$ indesed by nonnegative real numbers t with the following properties:

 $W_0=0$

With probability 1, the function $t \rightarrow W_t$ is continuous in t.

The process $\{W_t\}_{t\geq0}$ has stationary, independent increments.

The increments W_{t+s} - W_s has the NORMAL (0,t) distribution

Keywords: Wiener process; Hilbert space; Characteristic function; Orthonormal system.

1 Introduction

Characterization theorems for wieners process by taking values in a Hilbert space have been discussed.

Renyi [1] discussed the characterization of a Wiener process taking values in a Hilbert space a follows:

Let Δ be the interval [0,1] and *B* denote the σ - algebra of Borel subsets of [0,1].

For each $\Delta \in B$, let $\Phi(\Delta)$ be a random element taking values in a real separable Hilbert space H. Suppose (Δ) satisfies the following properties.

(i) If (Φ) and (Δ') are disjoint Borel subsets of [0,1], then Φ (Δ) and Φ (Δ') are independent.

$$
\Phi(\Delta \cup \Delta') = \Phi(\Delta) + \Phi(\Delta')
$$

(ii) $\Phi(\Delta)$ has stationary increments (ie) $\Phi(\Delta)$ and $\Phi(\Delta')$ are identically distributed if Φ and Δ' have the same Lebsegue measure.

Corresponding author: M. GEETHA

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of th[e Creative Commons Attribution Liscense 4.0.](http://creativecommons.org/licenses/by/4.0/deed.en_US)

(iii) If μ_1 denotes the probability measure of Φ [0,t] then μ_1 converges weakly to the distribution degenerate at the origin as $t \to 0$.

For any two \bar{x} , yin R^k

$$
k
$$

$$
(\overline{x, y}) = \sum x_j y_j
$$

$$
j = 1
$$

$$
\mu(\overline{t}) = \int e^{i(\overline{t}, \overline{x})} \cdot d\mu(\overline{x}), \quad \overline{t} \in R^k
$$

The complex valued function μ^{\wedge} on R^k is called the Fourier transform or characteristic function of the probability measure. If \bar{f} is an R^k valued random variable on a probability space (Ω, s, p) and μ = $p\bar{f}^{-1}$ is the distribution of \bar{f} , its characteristic function μ ^x is given by

$$
\mu(\bar{t}) = \int e^{i(\bar{t},\bar{x})} \cdot d\mu(\bar{x})
$$

$$
= \int e^{i(\bar{t},\bar{f})} \cdot dp
$$

$$
= E[e^{i(\bar{t},\bar{f})}]
$$

 μ ^is the characteristics function of the random variable \bar{f}

2 Proposition 1

The multivariate normal distribution in R^k with mean vector *m* and co – variance matrix Σ has characteristic function $e^{i(t,\bar{t})} - 1/2 t^{-1} \sum \bar{J}$.

2.1 Definition 1

2.1.1 Orthonormal System

A sequence ξ_n $(n = 1, 2, ..., ...,)$ of random variable on a probability space

 $S = (\Omega, A, P)$ is called on orthonormal system, if ξ_n belongs to the Hilbert space

 $L_2(S)$.

(ie).,

 \boldsymbol{n} $(\xi^2) = 1, n = 1, 2, \dots \dots$ (ξ^2) exists and has $\left[\xi_n \xi_m \right] = 0, n \neq m$

2.2 Definition2

2.2.1 Hilbert Space

A Banach space is called a Hilbert space, if the function (x, y) inner product of x and y has the following properties.

- 1. $(x, y) = (y, x)$
- 2. $(x, x) = ||x||^2$
- 3. For fixed $y(x) = (x, y)$ is a linear functional. (i.e) $[A(ax + by)] =$

 $aA(x) + b(A(y))$

2.3 Definition 3

Complete Orthonormal System

The orthonormal system { } is complete if $\eta \in L_2(s)$, $E(\eta \xi_n) = 0$,

 $n = 1,2,...$ it follows that $\eta = 0$ almost surely.

2.4 Definition 4

2.4.1 Fourier Co – efficient

If { } is an orthonormal system on S and η is an arbitrary random variable

 $\eta \in L_2(s)$, the sequence $C_n = E[\eta \xi_n]$ is called the sequence of fourier co efficient of $\,\eta\,$ and the series $\sum C_n \, \xi_n\,$ is fourier series of $\,\eta\,$ with respect to $\{\xi_n\,\}$.

$$
\sum_{n=1} C_n^2 = E(\eta^2)
$$

is Parseval's relation.

2.5 Definition 5

2.5.1 RademacherFunction

Let S be Lebesgue probability space and consider the Rademacher function.

() = (2) (0 ≤ ≤ 1, = 1,2,...)

2.6 Definition 6

2.6.1 Walsh Functions

Let us now define the functions (),0 ≤ ≤ 1, = 0,1,2, ...as follows.

Let $W_0(x)$, $0 \le x \le 1$.

Further if the representation of $n \ge 1$ in the binary system is $n = 2^{k} + 2^{k^2} + \dots + 2^{k^r}$ are integer

Put () ⁼ 1+1() 2+1().. +1() .

The function $W_n(x)$, $[n = 0, 1, 2, \dots, \dots]$ are called Walsh functions.

To prove that $\{w_n(x)\}$ form an orthonormal system on the Lebesgue probability space. If ξ_1 , ξ_2 , , ξ_n are independent random variables with finite expectation then $\xi_1, \xi_2, ..., ..., \xi_n$ also has finite expectation and

> \boldsymbol{n} $(\xi_1, \xi_2, , \xi_n) = GE(\xi_k).$

> > $k=1$

bability space.

3 Theorem1

If the random variables ξn are independent ($n = 1, 2,$), $E(\xi_n^2) = 1$ and $E(\xi_n) = 0$ for $n = 1, 2,$ then all the products ξk_1 , ξk_2 , , , ξk_r (1 ≤ k 1 < k 2 <........< k_r , r = 1,2,) belong to $L_2(s)$ and they form together with the constant 1 and orthonormal system.

Proof

We have ξ_{k1} , ξ_{k2} ,... $\xi_{kr} = \prod_{j=1}^{r} E(\xi_{k^2}) = 1$

If we take any two non identical product $\xi_{k_1}, \xi_{k_2},...,\xi_{k_r}.$

 $(k_1 < k_2 < \dots < k_r)$ and $\xi l_1, \xi l_2, \dots < \xi l_s$ $(l_1 < l_2 < \dots < \dots < l_s)$.

 (ξ_n) = 0, $n \ge 1$ and their product has expectation zero.

Then we have $(l^2) = 1$.

 $(1 \cdot \xi_{k_1}, \xi_{k_2}, \dots \dots \dots \dots \dots \dots \dots \xi_{k_r}) = 0$

Next to prove that this system is complete.

Let x be a real number $0 \le x < 1$ which is not a binary rational number.

Let the binary expansion of x be $x = \sum_{k=1}^{\infty} \frac{\xi_k(x)}{2k}$ $\int_{k=1}^{\infty} \frac{\zeta_k(x)}{2^k}$ ($\zeta_k(x) = 0$ or 1)

Then
$$
\xi_k(x) = \frac{1 - R_k(x)}{2}
$$

 $(x) = 1$ or -1 when $\xi(x) = 0$ or 1.

Let i(x) denotes the indicator function of the interval $\left(\frac{m}{2n}, \frac{m+1}{2n}\right)$ $\frac{n+1}{2n}$) where m and n are non negative integers and $0 \le m < 2^n$. Let the binary expantion of $m / 2ⁿ$ be

$$
\frac{m}{2n} = \sum_{k=1}^{n} \frac{\delta}{2k}
$$
 ($\delta k = 0 \text{ or } 1, k = 1, 2, \lambda$

Then i_{n} (x) can be written in the form

$$
i_{n,m}(x)=\sum_{l=0}^{2^n-1}a_{n,m,l}W_l(x)
$$

It follows that if $f = (x) \in L_2(s)$ is such a function that

 $(fw_n)=0, n=0,1,\ldots\ldots$

Then we have

 $m+1/2n$

 $\int f(x) dx = 0, 0 \le m < 2^n, n = 1, 2, \dots$ $m/2n$ $m+1/2n$ $\int f(x) dx = 0, 0 \le m < 2^n, n = 1, 2, \dots$ 0 \boldsymbol{t}

Thus putting $(x) =$ $\int (t) = 0$. 0

We get $(r) = 0$ for every binary rational number r in (0,1). The function (x) being the indefinite integral of an integrable function is continuous thus $(x) = 0$ for all X in [0,1].

Therefore $(x) = 0$ for almost all x.

Therefore the system of Walsh functions is complete.

The series defining (t) is almost surely convergent, because denoting by $e_t(x) = \begin{cases} 0 < x < 1 \\ 0 < t < 1 \end{cases}$ $\binom{0 < x < 1}{0 < t < 1}$ the indicator of the interval $(0,t)$ and taking into account that

> t l $\int W_n(x)dx = \int e t(x) w_n(x)dx$ 0 0

and Fourier Walsh co – efficient of function $e_t(x)$. Since $\{(x)\}$ is a complete orthonormal system. We get from Parseval's relation,

$$
\sum_{n=0}^{\infty} \left(\int W_n(x) dx\right)^2 = t
$$

Therefore $(n2(t)) = E\Sigma \xi^2(w)(\int W(x)dx) = t \sin Pe E(\xi^2) = 1$

The Parseval's relation
$$
\Rightarrow 0 < s < t < 1
$$

\n
$$
n \qquad n \qquad n
$$
\nThe Parseval's relation $\Rightarrow 0 < s < t < 1$
\n
$$
t \qquad s
$$
\n
$$
[\eta(s)\eta(t)] = E\Sigma\xi^2 \qquad (\int W(x))(\int W(x)dx)
$$
\n
$$
n \qquad n \qquad n
$$
\n
$$
0 \qquad 0
$$
\n
$$
t \qquad s \qquad t
$$
\n
$$
= \sum (\int W_n(x)dx)(\int W_n(x)dx) = \sum (\int W_n(x)dx)
$$
\n
$$
0 \qquad 0
$$
\n
$$
t \qquad 0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
[t] - [s_1)][(t_2) - [s_2]] = t_1 - s_1 - t_1 + s_1
$$
\n
$$
= 0
$$

$$
[((t)-(s))^2] = t + s - 2s = t - s \text{ if } s < t
$$

Similarly we get that the joint distribution of ((tW) – η (sW)) 1 ≤ W ≤ k is a k dimensional normal distribution. As the components of a *k* dimensional normally distributed vector are independent if and only if they are uncorrelated.

It follows that (tW) – $\eta(sW)$ (W = 1,2,... ..., k) are independent. The almost sure continuity of (t) as a function of t can be proved as follows:-

If
$$
2^s \le n < 2^{s+1}
$$
.
\n $W_n(x) = R_{s+1}(x) - 2^s(x)$ where $W_{n-2}(x) = 2^s(x)$ is a product of the

Rademacher functions $R_k(x)$, $k \leq s$ and thus is constant on every interval of the form $(\frac{r}{2^s}, \frac{r+1}{2^s})$ $\frac{1}{2^{s}}$ On the other hand the indefinite integral of $R_{S+1}(x)$ over $(\frac{r}{2^s}, \frac{r+1}{2^s})$ $\frac{+1}{2^{s}}$) increase linearly from increases linearly from zero to $\frac{1}{2^{s+1}}$ and the decrease linearly to zero.

If follows that

$$
\sum_{n=2s}^{2s+1-1} \xi \int_0^t W_n(x) dx
$$

is for fixed $\omega \in \Omega$ a continuous function of t such that on every interval $(\frac{r}{\gamma})$ $\frac{r}{2^s}, \frac{r+1}{2^s}$ $\frac{+1}{2^s}$) varies between

$$
\pm\sum_{n=2^s}^{2^{s+1}-1}\xi_n\epsilon_{nr}
$$

Now the sum $\sum_{n=2^{S}}^{2^{S+1}-1} \xi_{n}\epsilon_{nr}$ is normally distributed with variance 2^{S}

Thus put $\delta_{st} = \sum_{n=2^s}^{2^{s+1}-1} \xi_n \epsilon_{nr}$

$$
P[\delta_{st} > s2^{s/2}] < e^{-s^2/2}
$$

Borel cantelli lemma $\sum_{s=1}^2 e^{-s^2/2}$ is convergebt for almost all $ωεΩ$

 $\max_{1 \le r < 2^s} |\delta_{st}| < s2^{s/2}$ for all but a finite number of values of s.

This implies that for almost all values of ω , one has uniformly for $0 \le t < 1$

$$
\sum_{s=1}^{\infty}|\sum_{n=2^s}\xi_n(\omega)|\int w_n(x)dx| < \sum_{s=1}^{\infty}\frac{s}{\frac{s}{s+1}} \sim \infty
$$

Therefore $\eta(t)$ is for almost all ω the sum of a uniformly convergent series

of continuous function. (i.e.,) it is almost surely a continuous function of t .

Compliance with ethical standards

Disclosure of conflict of interest

I have no conflict of interest to be disclosed.

References

- [1] Alfred Renyi, Foundations of probability, Hoden, INC Cambridge, London, 1970.
- [2] Mckean H.P (1969), Stochastic Integrals, Academic Press, New York, 1969
- [3] Parthasarathy K.R (1967), Probability measures on Metric Space, Academic Press, New York.
- [4] Rossberg H.G on a problem of Kolmogorov Concerning the normal distribution Theo.Prob.App.19, 824-828. 1974