

eISSN: 2581-9615 CODEN (USA): WJARAI Cross Ref DOI: 10.30574/wjarr Journal homepage: https://wjarr.com/

(REVIEW ARTICLE)

Check for updates

Characterization of a wiener process taking values in a Hilbert space

M. GEETHA *

Department Of Mathematics, Saradha Gangadharan College, Puducherry – 605010, India.

World Journal of Advanced Research and Reviews, 2024, 24(01), 2379–2385

Publication history: Received on 08 September 2024; revised on 15 October 2024; accepted on 18 October 2024

Article DOI: https://doi.org/10.30574/wjarr.2024.24.1.3164

Abstract

This paper characterize wiener process by taking values in a Hilbert space.

A standard wiener process is stochastic process $\{W_t\}_{t \ge 0+}$ indesed by nonnegative real numbers t with the following properties:

 $W_0=0$

With probability 1, the function t \rightarrow W_t is continuous in t.

The process $\{W_t\}_{t\geq 0}$ has stationary, independent increments.

The increments W_{t+s} - W_s has the NORMAL (0,t) distribution

Keywords: Wiener process; Hilbert space; Characteristic function; Orthonormal system.

1 Introduction

Characterization theorems for wieners process by taking values in a Hilbert space have been discussed.

Renyi [1] discussed the characterization of a Wiener process taking values in a Hilbert space a follows:

Let Δ be the interval [0,1] and *B* denote the σ - algebra of Borel subsets of [0,1].

For each $\Delta \in B$, let Φ (Δ) be a random element taking values in a real separable Hilbert space *H*. Suppose (Δ) satisfies the following properties.

(i) If (Φ) and (Δ') are disjoint Borel subsets of [0,1], then Φ (Δ) and Φ (Δ')are independent.

$$\Phi\left(\Delta\cup\Delta'\right) = \Phi\left(\Delta\right) + \Phi\left(\Delta'\right)$$

(ii) $\Phi(\Delta)$ has stationary increments (ie) $\Phi(\Delta)$ and $\Phi(\Delta')$ are identically distributed if Φ and Δ' have the same Lebsegue measure.

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

^{*} Corresponding author: M. GEETHA

(iii) If μ_1 denotes the probability measure of Φ [0,t] then μ_1 converges weakly to the distribution degenerate at the origin as $t \rightarrow 0$.

For any two x, y in R^k

$$k$$

$$(\overline{x, y}) = \sum x_{j} y_{j}$$

$$j = 1$$

$$\mu(\overline{t}) = \int e^{i(t, \overline{x})} \cdot d\mu(\overline{x}), \quad \overline{t} \in \mathbb{R}^{k}$$

The complex valued function μ^{\wedge} on R^{k} is called the Fourier transform or characteristic function of the probability measure. If \bar{f} is an R^{k} valued random variable on a probability space (Ω, s, p) and $\mu = p\bar{f}^{-1}$ is the distribution of \bar{f} , its characteristic function μ^{\wedge} is given by

$$\mu(\bar{t}) = \int e^{i(\bar{t},\bar{x})} \cdot d\mu(\bar{x})$$
$$= \int e^{i(\bar{t},\bar{f})} \cdot dp$$
$$= E[e^{i(\bar{t},\bar{f})}]$$

 μ 'is the characteristics function of the random variable \bar{f}

2 Proposition 1

The multivariate normal distribution in R^k with mean vector \bar{m} and co – variance matrix Σ has characteristic function $e^{i(t,\bar{t})} - 1/2 t^{-1} \sum \bar{j}$.

2.1 Definition 1

2.1.1 Orthonormal System

A sequence ξ_n (n = 1, 2, ..., ...) of random variable on a probability space

 $S = (\Omega, A, P)$ is called on orthonormal system, if ξ_n belongs to the Hilbert space

 $L_{2}(S).$

(ie).,

 (ξ^2) exists and has n $(\xi^2) = 1, n = 1, 2, \dots \dots$ $[\xi_n \ \xi_m] = 0, n \neq m$

2.2 Definition 2

2.2.1 Hilbert Space

A Banach space is called a Hilbert space, if the function (*x*, *y*) inner product of *x* and *y* has the following properties.

- 1. (x, y) = (y, x)
- 2. $(x, x) = ||x||^2$
- 3. For fixed y, (x) = (x, y) is a linear functional. (i.e) [A(ax + by)] =

aA(x) + b(A(y))

2.3 Definition 3

Complete Orthonormal System

The orthonormal system {} is complete if $\eta \in L_2(s), E(\eta \xi_n) = 0$,

n = 1,2, it follows that η = 0 almost surely.

2.4 Definition 4

2.4.1 Fourier Co – efficient

If {} is an orthonormal system on *S* and η is an arbitrary random variable

 $\eta \in L_2(s)$, the sequence $C_n = E[\eta \xi_n]$ is called the sequence of fourier coefficient of η and the series $\sum C_n \xi_n$ is fourier series of η with respect to $\{\xi_n\}$.

$$\sum_{n=1}^{\infty} C_n^2 = E(\eta^2)$$

is Parseval's relation.

2.5 Definition 5

2.5.1 Rademacher Function

Let *S* be Lebesgue probability space and consider the Rademacher function.

 $R_n(x) = (\sin 2^n \pi x) \ (0 \le x \le 1, n = 1, 2, \dots)$

2.6 Definition 6

2.6.1 Walsh Functions

Let us now define the functions $W_n(x)$, $0 \le x \le 1$, n = 0, 1, 2,as follows.

Let $W_0(x), 0 \le x \le 1$.

Further if the representation of $n \ge 1$ in the binary system is $n = 2^{k1} + 2^{k2} + \dots + 2^{kr}$ are integer

2

Put $W_n(x) = R_{k_1+1}(x) R_{k_2+1}(x)$ $R_{k_r+1}(x)$

The function $W_n(x)$, [n = 0,1,2,...] are called Walsh functions.

To prove that $\{w_n(x)\}\$ form an orthonormal system on the Lebesgue probability space. If $\xi_1, \xi_2, \dots, \xi_n$ are independent random variables with finite expectation then $\xi_1, \xi_2, \dots, \xi_n$ also has finite expectation and

n($\xi 1, \xi 2, , \xi n$) = GE(ξk).

k=1

bability space.

3 Theorem 1

If the random variables ξn are independent ($n = 1, 2, \dots, k$), $E(\xi_n^2) = 1$ and $E(\xi_n) = 0$ for $n = 1, 2, \dots$ then all the products $\xi k_1, \xi k_2, \dots, \xi k_r$ ($1 \le k_1 < k_2 < \dots < k_r, r = 1, 2, \dots$) belong to $L_2(s)$ and they form together with the constant 1 and orthonormal system.

Proof

We have $\xi_{k1}, \xi_{k2}, \dots, \xi_{kr} = \prod_{j=1}^{r} E(\xi_{k^2}) = 1$

If we take any two non identical product ξ_{k_1} , ξ_{k_2} ,..., ξ_{k_r} .

 $(k_1 < k_2 < \dots < k_r)$ and $\xi l_1, \xi l_2, \dots, \xi l_s$ $(l_1 < l_2 < \dots < k_r)$.

 $(\xi_n) = 0, n \ge 1$ and their product has expectation zero.

Then we have $(l^2) = 1$.

 $(1 \cdot \xi_{k_1}, \xi_{k_2}, \dots, \xi_{k_r}) = 0$

Next to prove that this system is complete.

Let *x* be a real number $0 \le x \le 1$ which is not a binary rational number.

Let the binary expansion of x be $x = \sum_{k=1}^{\infty} \frac{\xi_k(x)}{2^k}$ ($\xi_k(x) = 0$ or 1)

Then
$$\xi_k(x) = \frac{1-R_k(x)}{2}$$

 $(x) = 1 \text{ or } -1 \text{ when } \xi(x) = 0 \text{ or } 1.$

Let i(x) denotes the indicator function of the interval $(\frac{m}{2n}, \frac{m+1}{2n})$ where m and n are non negative integers and $0 \le m < 2^n$. Let the binary expantion of m / 2^n be

$$\frac{m}{2n} = \sum_{k=1}^{n} \frac{\delta_{k}}{2k} \quad (\delta k = 0 \text{ or } 1, k = 1, 2,$$

Then $i_{n}(x)$ can be written in the form

$$i_{n,m}(x) = \sum_{l=0}^{2^{n}-1} a_{n,m,l} W_{l}(x)$$

It follows that if $f = (x) \in L_2(s)$ is such a function that

 $(fw_n) = 0, n = 0, 1, \dots$

Then we have

m+1/2n

 $\begin{aligned} \int f(x)dx &= 0, 0 \le m < 2^n, \quad n = 1, 2, \dots \dots \\ m/2n \\ m+1/2n \\ \int f(x)dx &= 0, 0 \le m < 2^n, \quad n = 1, 2, \dots \dots \\ 0 \\ t \end{aligned}$

Thus putting $(x) = \int (t) = 0.$ 0

We get (r) = 0 for every binary rational number r in (0,1). The function (x) being the indefinite integral of an integrable function is continuous thus (x) = 0 for all X in [0,1].

Therefore (x) = 0 for almost all x.

Therefore the system of Walsh functions is complete.

The series defining (*t*) is almost surely convergent, because denoting by $e_t(x) = \binom{0 < x < 1}{0 < t < 1}$ the indicator of the interval (0,*t*) and taking into account that

 $t \qquad l$ $\int Wn(x)dx = \int et(x)wn(x)dx$ $0 \qquad 0$

and Fourier Walsh co – efficient of function $e_t(x)$. Since $\{(x)\}$ is a complete orthonormal system. We get from Parseval's relation,

2

$$\sum_{n=0}^{\infty} \int_{0}^{t} \int_{0}^{2} W_{n}(x) dx = t$$

$$\sum_{n=0}^{\infty} \int_{0}^{t} W_{n}(x) dx = t$$
Therefore $(\eta 2(t)) = E\Sigma\xi 2(w) (\int W(x) dx) = t [sinPe E(\xi 2) = 1$

$$n \quad n \quad n$$
The Parseval's relation $\Rightarrow 0 < s < t < 1$

$$t \quad s$$

$$[\eta(s)\eta(t)] = E\Sigma\xi^{2} \quad (\int W(x)) (\int W(x) dx)$$

$$n \quad n \quad n$$

$$0 \quad 0$$

$$t \quad x \quad t$$

$$= \sum (\int W_{n}(x) dx) (\int W_{n}(x) dx) = \sum (\int W_{n}(x) dx)$$

$$1$$

$$= \int e_{s}(x) e_{t}(x) dx = s$$

$$0$$

$$[(t_{1}) - (s_{1})][(t_{2}) - (s_{2})] = t_{1} - s_{1} - t_{1} + s_{1}$$

$$= 0$$

$$[((t_{1}) - (s_{1})]^{2}] = t + s - 2s = t - s \text{ if } s < t$$

t

Similarly we get that the joint distribution of $((tW) - \eta(sW)) \le 1 \le W \le k$ is a *k* dimensional normal distribution. As the components of a *k* dimensional normally distributed vector are independent if and only if they are uncorrelated.

It follows that $(tW) - \eta(sW)$ (W = 1,2,..., k) are independent. The almost sure continuity of (t) as a function of t can be proved as follows:-

If
$$2^{s} \le n < 2^{s+1}$$
.
 $W_{n}(x) = \underline{R_{s+1}}(x) - 2S(x)$ where $W_{n-2}S(x)$ is a product of the

Rademacher functions $R_k(x), k \le s$ and thus is constant on every interval of the form $\left(\frac{r}{2^s}, \frac{r+1}{2^s}\right)$

On the other hand the indefinite integral of $R_{s+1}(x)$ over $(\frac{r}{2^s}, \frac{r+1}{2^s})$ increase linearly from increases linearly from zero to $\frac{1}{2^{s+1}}$ and the decrease linearly to zero.

If follows that

$$\sum_{n=2s}^{2s+1-1} \xi \int_{0}^{t} W_n(x) dx$$

is for fixed $\omega \in \Omega$ a continuous function of t such that on every interval $(\frac{r}{2^s}, \frac{r+1}{2^s})$ varies between

$$\pm \sum_{n=2^s}^{2^{s+1}-1} \xi_n \epsilon_{nr}$$

Now the sum $\sum_{n=2^{s}}^{2^{s+1}-1} \xi_n \epsilon_{nr}$ is normally distributed with variance 2^s

Thus put $\delta_{st} = \sum_{n=2^{s}}^{2^{s+1}-1} \xi_n \epsilon_{nn}$

$$P[\delta_{st} > s2^{s/2}] < e^{-s^2/2}$$

Borel cantelli lemma $\sum_{s=1}^{2} e^{-s^2/2}$ is convergebt for almost all $\omega \in \Omega$

 $\max_{1 \leq r < 2^{s}} |\delta_{st}| < s 2^{s/2} \text{ for all but a finite number of values of } s.$

This implies that for almost all values of ω , one has uniformly for $0 \le t < 1$

$$\sum_{k=1}^{\infty} |\sum_{n=2^{s}}^{2^{s+1}} \xi_{n}(\omega)| \frac{t}{W_{n}(x)} dx| < \sum_{k=1}^{\infty} \frac{s}{s'+1} < \cdots$$

Therefore $\eta(t)$ is for almost all ω the sum of a uniformly convergent series

of continuous function. (i.e.,) it is almost surely a continuous function of t.

Compliance with ethical standards

Disclosure of conflict of interest

I have no conflict of interest to be disclosed.

References

- [1] Alfred Renyi, Foundations of probability, Hoden, INC Cambridge, London, 1970.
- [2] Mckean H.P (1969), Stochastic Integrals, Academic Press, New York, 1969
- [3] Parthasarathy K.R (1967), Probability measures on Metric Space, Academic Press, New York.
- [4] Rossberg H.G on a problem of Kolmogorov Concerning the normal distribution Theo. Prob. App. 19, 824-828. 1974

2