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Abstract 

Fault tolerance in cloud data centers is a critical mechanism for handling the escalating frequency of failures. As the size 
and complexity of large-scale systems grow, the challenge of predicting and mitigating failures becomes increasingly 
exponential, rendering previous solutions inadequate for meeting the high-performance demands of both cloud users 
and providers. This paper aims to address the growing need for improved fault tolerance by developing a management 
computational intelligence scheme tailored for real-time, on-demand cloud data center environments. In this study, a 
fault-tolerant computational intelligence scheme was elicited for the parameters necessary for the design. A 
computational system was also designed to determine league winners based on scheduling checkpoints. Also, the 
designed system was simulated using java programming language in CloudSim simulation toolkit (3.0.3) with a 
customized Cloud Analyst Graphic User Interface (GUI) on the Eclipse Integrated Development Environment (IDE) Luna 
release 4.4. The developed system (Checkpointed League Winner Algorithm) was compared with existing scheme such 
as Ant Colony Optimization (ACO), Genetic Algorithm (GA) and League Championship Algorithm (LCA) in real time.  
Checkpointed League Winner Algorithm was also evaluated to check the scheme's resistance to faults and the 
improvement percentage of the cloud data centres. The parameters used to evaluate the scheme are: failure to perform 
Ratio (FPR), Failure that causes a Delay in Performance (FDP), and the Rate at which Performance improves (RPI). The 
result indicates that when the whole average life of each scheme is considered, Checkpointed League Winner Algorithm 
(CPLWA) results in a 38.2%, 29.9%, and 20.5% improvement over ACO, GA, and LCA, respectively. The average 
makespan of the scheme indicates that the Checkpointed League Winner Algorithm exhibits a significant improvement, 
outperforming the ACO, GA, and LCA with 41%, 33%, and 23%, respectively; the response time of the scheme indicates 
that the Checkpointed League Winner Algorithm outperformed the ACO, GA, and LCA with 54.3%, 56.6%, and 30.2%, 
respectively; and the failure ratio of the scheme indicates that the Checkpointed League Winner Algorithm performs 
better than existing meta-heuristics methods (ACO, GA, and LCA) with a lower failure ratio. This improvement can be 
attributed to the iterative structure, the migration, and the checkpointing approaches employed in the scheme. This 
study developed a fault tolerance computational intelligence scheme for an on-demand real-time data centre cloud 
environment in which the Checkpointed League Winner Algorithm outperformed the existing scheme in terms of 
response time, average makepan and failure ratio. It is then suggested to explore the application of the Checkpointed 
League Winner Algorithm scheme to address resource management, provisioning, and virtual machine placement 
challenges within distributed systems. 
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1. Introduction 

The rapid expansion and increasing complexity of large-scale systems have brought about significant challenges in 
predicting failures and mitigating the consequences of system breakdowns. Traditional failure management techniques 
often fall short in meeting the high-performance requirements demanded by both cloud users and providers 
(Mohammed et al., 2019). Cloud infrastructures, particularly under heavy use, are susceptible to failures at the cloud 
node level, which can disrupt service availability. These failures can stem from various causes, including software bugs, 
hardware malfunctions, human errors, and malicious attacks (Kumari, 2018). Despite advancements in hardware 
functionality within cloud infrastructures, failure rates remain notably high (Dwivedi, 2018). 

Cloud computing has become a focal point in both academic research and industrial applications due to its on-demand 
flexibility, scalability, and cost-efficiency, eliminating the need for significant upfront investments (Sefraoui et al., 2014). 
According to the National Institute of Standards and Technology (NIST), cloud computing is defined as a model that 
enables convenient, on-demand network access to a shared pool of configurable computing resources, such as networks, 
storage, servers, applications, and services, which can be quickly provisioned and released with minimal management 
effort (Mell & Grance, 2011). This technology encompasses a wide range of technologies, including virtualization, 
distributed computing, utility computing, and emerging trends in networking and software services. Cloud computing 
relies on hardware and software managed by third-party providers at remote locations, allowing individuals and 
organizations to access various services, such as social networking, online file storage, webmail, and business 
applications. These applications often require robust fault tolerance and high dependability to ensure uninterrupted 
operation. 

Virtualization technologies play a crucial role in cloud environments by consolidating and managing resources 
effectively. The growing demand for computational capacity and resources driven by developments in artificial 
intelligence, machine learning, big data, and cloud-based high-performance systems has heightened the potential for 
system failures (Gainaru & Cappello, 2015). Implementing a reliable fault tolerance management system is vital for the 
seamless operation of data center infrastructures, ensuring high availability and dependability even in the face of 
unexpected failures (Patidar et al., 2011). High-performance computing (HPC) systems, often relied upon by scientists 
and researchers for complex computational tasks, underscore the critical importance of fault tolerance (Egwutuoha et 
al., 2012). Outsourcing IT services to external providers, as seen in the cloud computing model, offers the advantage of 
paying only for utilized resources, with cloud providers managing the underlying infrastructure. However, this model 
also increases the risk of node failures, which can lead to frequent interruptions in long-running applications, 
necessitating a rollback to previous states. 

Real-time systems, which must produce responses within stringent time frames, depend on both timely delivery and 
logical accuracy to maintain dependability (Stankovic, 1988; Unsal et al., 2002). The challenge of enhancing fault 
tolerance in cloud data centers involves implementing mechanisms to effectively manage failures, given the increasing 
frequency of such occurrences. Ensuring system resilience and dependability is paramount in this context (Hosseini et 
al., 2015). The study aims to develop a fault-tolerant management scheme for on-demand real-time data center cloud 
environments. This involves designing a robust framework, developing the system, simulating it using the CloudSim 
simulation toolkit, and evaluating its performance based on response time and average makespan. The significance of 
this research lies in its potential to ensure continuous service availability, reduce downtime costs, and enhance the 
reliability of cloud services, ultimately contributing to advancements in cloud computing and inspiring further research 
in fault tolerance management. 

2. Related studies 

Kaur and Kinger (2014) investigated the integration of fault tolerance within advanced cloud computing environments, 
focusing on First Come First Serve (FCFS) and shortest job first principles. Their study also analyzed misses per 
instruction in extensive fault tolerance methods. The proposed algorithm aimed to enhance reactive fault tolerance by 
reallocating tasks from faulty servers to new servers with minimal load during fault occurrences within the cloud 
infrastructure. 

Oikonomou et al. (2015) explored efficient virtual machine provisioning in cloud data centers using CloudSim as a 
simulation platform. Their mechanism aimed to reduce the number of active hosts, decrease energy consumption, and 

minimize virtual machine migrations and service level agreement violations. However, their study did not consider 
failure incidents within virtual machines in cloud infrastructure. 
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Qasem and Madhu (2017) examined proactive fault tolerance in cloud data centers for performance efficiency. They 
proposed a Fuzzy Min-Max Neural Network classification approach to predict faults, anticipating failures in advance. 
Using CloudSim, their study demonstrated the practical possibility of predicting virtual machine failures, showing that 
their approach yielded better prediction results for cloud data centers. 

Shwe and Aritsugi (2017) introduced a proactive replication strategy using CloudSim, incorporating predicted CPU and 
disk utilization, and the popularity of replicas to manage replication while balancing server workloads. Their approach 
considered the reliability of data blocks and node performance status for re-replication decisions. However, it did not 
apply high-accuracy prediction methods. 

Meroufel and Belalem (2017) proposed a smart checkpoint infrastructure for cloud computing tasks, storing 
checkpoints in pre-paid alternative virtual machines to expedite task resumption and reduce costs following node 
crashes. Their study demonstrated this strategy's effectiveness in terms of energy consumption, system-level 
aggregation, violation mitigation, and reliability. 

Kurziborae et al. (2019) developed methods and tools for identifying abnormal situations during large-scale 
computational experiments in high-performance computing environments. Their approach focused on localizing 
malfunctions, automatically troubleshooting, and reconfiguring the computing environment. By integrating monitoring 
systems from different nodes into a unified meta-monitoring system, they minimized diagnostic and troubleshooting 
time through parallel operations, enhancing computing environment resiliency. 

Ragmani et al. (2020) examined an adaptive fault tolerance model to improve cloud computing performance using an 
artificial neural network. Their study explored the correlation between hard drive parameters and failure, leveraging 
attributes of self-monitoring, analysis, and reporting technology (SMART). They also evaluated the predictive 
capabilities of five machine learning models, including naïve Bayes and artificial neural network (ANN), to define a 
failure prediction module for cloud architecture. Their experimental results indicated that the artificial neural network 
model offered the best prediction accuracy. 

The increasing reliance on cloud computing across various industries necessitates robust and fault-tolerant 
management schemes in data center environments. This research aims to develop a fault-tolerant management scheme 
for on-demand real-time data center cloud environments, focusing on identifying and mitigating potential failures to 
ensure continuous service availability. The proposed scheme will be evaluated through simulations and real-world case 
studies to demonstrate its effectiveness in enhancing the reliability and resilience of data center clouds. The ultimate 
goal is to provide a reliable and cost-effective solution for managing data center clouds in on-demand real-time 
scenarios. 

3. Methodology 

3.1. Research Approach 

The developed management framework for cloud data centres in this research is presented in Figure 1. The following 
methodologies was carried out in order to achieve the stated aim for this research. 

• For the parameters required for the design that influence the frequent attribute of the scheduling system in 

large-scale distributed environments and scheduling issues in the cloud environment of data centers, a fault 

tolerance computational intelligence scheme is elicited. 

• A fault tolerance computational system is designed based on using an algorithm on task leagues winner based 

on scheduling checkpoints. 

• The developed system is simulated (i.e the developed scheme) and compared with the existing scheme such 

as Ant Colony Optimization and Genetic Algorithm, in real time using java programming language in Cloudsim 

simulation toolkit (3.0.3) with a customized Cloud Analyst GUI interface on the Eclipse IDE luna release 4.4 

was used to simulate the method performance. 

• The system was evaluated in other to check the scheme resistant to faults and the improvement percentage of 

the cloud data centres. The following parameters were used to evaluate the scheme such as Failure to 

Perform Ratio (FPR), Failure that causes a Delay in Performance (FDP), Rate at which Performance Improve 

(RPI).  
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3.2. Scheduling Strategies Design of Fault Tolerance Data Centres Framework 

This section describes in depth the functionality and harmonic functions of each of the components that combine to 
form the entire system.  

3.2.1. Check-pointing and Restarting the Data Centers 

This component is going to periodically record the task's state as it is being executed. In the event that the job fails, it 
resumes the failed task on the same virtual machine, starting from the point of failure. In the event that this is not the 
case, the operation is resumed from the most recent known state and the computer is moved to another virtual machine. 
In the event of a task or virtual machine (VM) failure, this effective fault-tolerant component regularly snaps to preserve 
redundant process execution in the memory. Since it enables the storing of incomplete computations in the event of a 
process failure and the customer is not charged for this, it is very helpful in spot occurrences. Checkpointing policies 
are taken at a rate set by the customer and applied as needed. On the one hand, checkpointing overhead situations are 
considered. The number of checkpoints needed for the duration of the failure-free interval between consecutive 
checkpoints must be determined first, and then the overhead of each checkpoint (γ) must be calculated. Equation (3.1) 
states that given a discrete checkpointing series of points (t_1, t_2,... t_n) and a continuous checkpointing incidence 
function (n(t), the integral of the incidence function with respect to the series of checking points equals one. 

∫ 𝑛(𝑡)𝑑𝑡 = 1
𝑡𝑖
𝑡𝑖−1

,  ∀𝑖 = 1       (3.1) 

When ti is the sequence of checkpoints in the data cloud's virtual machines (VMs) and i = 1, 2, 3, are the placements. The 
following equation for the checkpointing overhead can then be written as equation (3.2), given that N, T i indicates the 
number of checkpoints that occurred during the period zero to Ti and is represented by the integral of the checkpoint 
incidence function n(t) during the interval [0, Ti]. 

𝛾. 𝑁0, 𝑇𝑖 = 𝛾 ∫ 𝑛(𝑡)𝑑𝑡
𝑇𝑖
0

       (3.2) 

Before going into the checkpointing technique, it's important to define the terms stage, time step index tn, and 
expendability of a checkpoint. A maximum number of checkpoints, represented by the letter s, is assigned and 
maintained by the procedure. When tagging the intermediate solutions of an original model alongside the adjoint model 
at a particular time, the time step index is frequently utilized. It begins at 0 for the original model's first state, increases 
to 1 for the solution found after the first tn, and keeps going up as the complexity of the original model increases. When 
dealing with adjoint solutions, on the other hand, the 𝑡𝑛 index declines with time until it approaches zero for the last 𝑡𝑛 
of the adjoint time inclusion. The checkpoint with 𝑡𝑛  index i or more consistently, the checkpoint at time step i is 
characterized as the checkpoint that saves the intermediary solution with 𝑡𝑛 index or the checkpoint that saves the 
intermediate solution (i.e. a fault) with 𝑡𝑛 index i. As a result, if a checkpoint's tn index is lower than that of another 
stated checkpoint at a higher stage, it is deemed disposable.  

3.2.2. Data Center Job Transfer 

All stopped jobs (Jn) are reassigned via the job migration technique to the next available under-loaded virtual machine 
job (VMj), also known as the backup cloud. A specific machine may not complete process implementation for some 
assigned jobs (Jn) due to unforeseen circumstances (e.g., task overloading or VMi breakdown). In this scenario, the 
stopped or terminated jobs (Jn) will be moved right away to the following virtual machine that becomes available so 
that the process can start right away. 

3.3. Development of a Fault Tolerance Mechanism for Data Cloud Centre Environment  

The League Championship Algorithm (LCA) optimization technique has been effectively applied to a wide variety of 
non-deterministic polynomial time problems that are both discrete and continuous in nature. It is a quick, metaheuristic 
optimization technique that may be used to find optimality on a local or global search space. It also has the ability to 
break free from a local minimum in the search space. Its recent applications in a range of research domains have shown 
that it can eventually match other cutting-edge methods in terms of performance. Because the LCA optimization 
technique effectively achieves an appropriate balance between global and local optima while maintaining scalability, its 
application to tackle fault tolerance in the cloud scheduling problem is therefore justified. By utilizing checkpoints in 
the LCA optimization technique, the study's main objective to develop a secure fault tolerance aware task scheduling 
system for cloud technology is achieved. 
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3.3.1. Model Formulation  

In order to get an optimal solution to this non-deterministic polynomial time-hard scheduling issue, the problem is 
formalized in order to mathematically characterize the cloud data center system. In the model formulation of the system, 
we begin by examining a collection of separate jobs 𝑗1, 𝑗2, … 𝑗𝑛 that must be scheduled on a succession of diverse and 
changing resources 𝑟1, 𝑟2, … 𝑟𝑚  in order for the system to be executed successfully. 𝑅 = {𝑟𝑘|𝑚 ≥ 𝑘 ≥ 1}is the number of 
resources in the group, and m  is the number of resources available,  𝑗1 is the number of jobs in the group, and m is the 

number of tasks that can be done in one go,  𝐽 = {𝑗𝑖|𝑛 ≥ 𝑖 ≥ 1} is a group of jobs, and the value of i is the counter for the 
number of jobs (Aaron et al, 2015). We considered the fact that consumers want to reduce the cost of making virtual 
resources available by lowering the make span, while cloud administrators want to maximize revenues in order to 
model the objective function. As a result, we may compute the Fitness value by employing the make span as shown in 
equation (3.3). 

𝑓(𝑥𝑖
𝑡) = 𝜃𝑐𝑜𝑠𝑡 + ẟ𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛       (3.3) 

Where the values of θ and ẟ, which are masses used to calculate the fitness function's mechanism, are in the ranges of 
1 > 𝜃 ≥ 0 and 1 > ẟ ≥ 0, respectively, and 𝑓(𝑥𝑖

𝑡)is the fitness function. 

, and  

𝑐𝑜𝑠𝑡 = 𝑚𝑖𝑛(𝑐(𝑟𝑘 , 𝑗𝑖)); 𝑓𝑜𝑟𝑚 ≥ 𝑘 ≥ 1, 𝑛 ≥ 𝑖 ≥ 1    (3.4) 

The fitness function is represented by the cost 𝑐(𝑟𝑘 , 𝑗𝑖), which reflects the cost of tasks 𝑗𝑖  that are done on resource 𝑟𝑘 . 
Equations (3.5) to (3.8) are used to compute the cost of security assurance associated with the function. 

𝑐(𝑟𝑘 , 𝑗𝑖) = 𝑐𝑒(𝑟𝑘 , 𝑗𝑖) + 𝑐𝑠(𝑟𝑘 , 𝑗𝑖)       (3.5) 

and where, 

𝑐𝑒(𝑟𝑘 , 𝑗𝑖) = ∑
𝐶(𝑗𝑖,𝑟𝑘)

𝐶𝑚(𝑗𝑖)
𝑗𝑖∈𝐽

𝑋𝐽        (3.6) 

The completion time is defined as  

𝐶𝑚(𝑗𝑖)
= 𝑚𝑎𝑥𝑗𝑖 ∈ 𝐽, 𝑟𝑘 ∈ 𝑅. 𝐶(𝑟𝑘 , 𝑗𝑖)      (3.7) 

Where 𝑐𝑒  is the execution cost, 𝑐𝑠 is the security cost, 𝑅 is the resources, 𝐶 is the completion time, and 𝐽is the entire task. 
Then the cost security assurance function is expressed as shown in equation (3.8).  

𝑐𝑠(𝑟𝑘 , 𝑗𝑖) = ∑ 𝑃𝑓(𝑗𝑖 , 𝑟𝑘)𝑋
𝐸(𝑗𝑖,𝑟𝑘)

𝐸𝑚(𝑗𝑖)
𝑗𝑖∈𝐽

𝑋𝐽      (3.8) 

 where E is the approximate amount of time needed to finish the relevant jobs or tasks. The execution time is the amount 
of time needed to complete each task on a given resource, as calculated by the E matrix. The components of the matrix 
are represented as 𝐸(𝑗𝑖 , 𝑟𝑘), and the dimension of the matrix is obtained by dividing the number of cloud jobs by the 
number of resources. Furthermore, 𝑃𝑓(𝑗𝑖 , 𝑟𝑘) , is defined as the failure probability of tasks that are executed with 

checkpointing (𝛾) and a trust level, respectively (𝜏). As a result, the probability of executing job will be as shown in 
equation (3.9). 

𝑃𝑓(𝑗𝑖 , 𝑟𝑘) = {
0, 𝑖𝑓𝛾𝑖 ≤ 𝜏𝑘

1 − 𝑒−𝛼(𝛾𝑖−𝜏𝑘), 𝑖𝑓𝛾𝑖 > 𝜏𝑘
                          (3.9) 

In this case,  

𝐸𝑚(𝑗𝑖)
= 𝑚𝑎𝑥𝑗𝑖 ∈ 𝐽, 𝑟𝑘 ∈ 𝑅. 𝐸(𝑗𝑖 , 𝑟𝑘)               (3.10) 

and  
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𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑖𝑛(𝐹𝑗𝑖)𝑗𝑖 ∈ 𝐽                               (3.11) 

3.3.2. Mechanism for Fault Tolerance and Assumption  

Fault tolerance is a prerequisite for real-time systems in the cloud because of the potentially catastrophic effects of 
failures occurring in both heterogeneous and homogeneous computer environments. The following elements make up 
the fault tolerance technique covered in this research paper: a job migration and replication mechanism, a 
checkpointing and restart system, and a defect detector. The application of this notion requires the following 
presumptions. 

The datacenter is expected to generate enough cloud resources to prevent virtual machine (VM) rejections due to 
resource contention. The assumption isn't unduly ambitious because the datacenter can handle many fewer resources 
than what is needed 

At any one time, only one host or virtual machine can die, resulting in the transfer of all active jobs. It can also be 
completed or performed by its backups before another server goes down for the count. 

Faults can be either transient or stable, and they can also self-regulate by interacting with one another. 

 

Figure 1 The CPLWA System Control Framework 

3.4. Simulation Setup for the System in CloudSim 

We used a cloud framework named CloudSim 3.0.3 toolkit with a modified Cloud Analyst GUI interface on the Eclipse 
IDE Luna release 4.4 to simulate the performance of our recommended CPLWA algorithm for job scheduling scheme 
(Ahmad and Khan, 2019). The job traces of the cloud data centers from Hazlewood were created in approximately 
73.496 traces (Feitelsonet al., 2014). The workload archive is made publicly available through the San Diego 
Supercomputer Center (SDSC), and CloudSim is compatible with the Standard Workload Format (SWF) that it uses. The 
values of pc = 0.01 and φ_1 = φ_2 = 0.5 are the parameters for the LCA and CPLWA.  
The number of ants, the evaporation factor, the pheromone tracking weight, the heuristic information weight, and the 
pheromone updating constant Q were all adjusted to be 10, 0.01, 3, 3, and 10 respectively. These ant colony optimization 
(ACO) parameters were found using (Hu and Luo, 2018). Additionally, the genetic algorithm (GA) values were 
ascertained by setting the crossover rate to 0.5, the mutation rate to 0.1, the number of population sizes to 1000, and 
the number of maximum iterations to 1000 using the framework in Gaŧsior and Seredyński, 2013. Four datacenters 
were added to the system, and twenty cloud users were created, each with twenty associated cloud brokers. There are 
five servers in total in each of the datacenters. The Xen hypervisor, which runs on Linux, kept an eye on eight virtual 
machines (VMs) with 512 MB of RAM, a 10000 MB image size, and a single processor. All of these VMs were used with 
the Time-Shared policy. Following a 24-hour operation, the data center system is assigned 2048 Mb of host memory, 
1000000 Mb of storage capacity, and 10000 Mb/s of bandwidth. Additionally, job traces ranging in length from 100 to 
1000 minutes and in file size from 600 to 800000 bytes were made available for comparison. The metaheuristics ACO, 
LCA, and GA were employed in the comparison process. Up to twenty simulations of each algorithm were required, with 
the result being a distinct mean makespan, failure rate, and RPI value after each simulation. 
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4. Results and discussion 

4.1. Measuring the Effectiveness of the System Framework 

The effectiveness of the developed Checkpoint League Winner Algorithm (CPLWA), fault-tolerant management scheme 
is evaluated by measuring several parameters related to fault tolerance. These parameters include the Failure to 
Perform Ratio (FPR), Failure that Causes a Delay in Performance (FDP), and the Rate at which Performance Improves 
(RPI). The Failure to Perform Ratio (FPR) metric is used to assess the efficiency of the CPLWA fault tolerance scheme to 
indicate when a task or scheduled job fails to perform. 

 

Figure 2 Comparison of Failure to Perform Ratio (FPR) between Scenarios 'i' and 'k’ 

The bar graph represents the Failure to Perform Ratio (FPR) for two scenarios, denoted as 'i' and 'k'. The x-axis 
represents the scenarios, while the y-axis represents the counts of failures. Scenario ‘i’ represents the CPLWA algorithm 
implemented in the cloud environment while scenario ‘k’ represents the already established Ant Colony Optimization 
with Genetic Algorithm. 

Scenario 'i': This CPLWA scenario had a total of 6 failures. 

Scenario 'k': This ACOGA scenario had a total of 14 failures. 

The FPR is calculated by dividing the sum of failures in scenario 'i' by the sum of failures in scenario 'k'. In this case, FPR 
= 6/14 = 0.43. 

The plot visually demonstrates the difference in failure counts between scenarios 'i' and 'k'. The bar for scenario 'i' is 
lower, indicating a lower number of failures compared to scenario 'k'. This suggests that the fault tolerance scheme 
implemented in scenario 'i' is more effective in reducing failures and improving the overall performance of the system. 

In conclusion, the plot indicates that the fault tolerance scheme implemented in scenario 'i' outperforms scenario 'k' in 
terms of reducing failures. This is reflected in the lower Failure to Perform Ratio (FPR) value for scenario 'i'. 

By analyzing the plot, we can infer that the CPLWA fault tolerance management scheme applied in scenario 'i' has 
effectively enhanced the efficiency and fault tolerance of the cloud-based data center compared to scenario 'k'. It 
demonstrates the improved capability of the scheme in minimizing failures and ensuring reliable performance in real-
time data center environments. 
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4.2. Failure that Causes a Delay in Performance of the Developed CPLWA Fault Tolerance Scheme 

The Failure that Causes a Delay in Performance (FDP) of the CPLWA in the cloud data center, measures the time delay 
caused by failures in relation to the execution time of failure-free jobs. 

 

Figure 3 Relationship between the Execution Time and the Failure Delay in Performance 

Figure 3 shows the relationship between the execution time and the FDP of the CPLWA. Each point on the graph 
represents a data point from the cloud data centre, and the line connecting the points shows the trend in the FDP values. 
The x-axis of the plot in Figure 3 represents the Execution Time in seconds, which is the time taken for error-free jobs 
to complete. The y-axis represents the Failure Delay in Performance (FDP), which measures the delay caused by failures 
in relation to the total number of jobs scheduled. The plot consists of points that represent individual data points from 
the example dataset. Each point corresponds to a specific combination of Execution Time and Failure Delay in 
Performance. The scatter plot helps visualize the distribution of the data and identify any patterns or trends. The line 
connecting the points in the plot helps to visualize the overall trend in the FDP values as the Execution Time varies. The 
line shows how the FDP changes as the Execution Time increases or decreases. By examining the result in Figure 3, we 
can interpret the relationship between Execution Time and FDP of the CPLWA. If the points on the plot tend to cluster 
towards the lower end of the y-axis, it suggests that failures are causing minimal delays in job performance, resulting in 
a lower FDP. Conversely, if the points are more spread out towards the upper end of the y-axis, it indicates that failures 
are causing significant delays, resulting in a higher FDP. Analyzing the specific cloud centre data provided in the 
simulation, the plot helps visualize the distribution of FDP values based on varying Execution Times. It shows that the 
more failures in the cloud data centres the higher the execution time of the fault tolerance system which may delay the 
effectiveness of the cloud systems in performance. 

4.3. Rate at which the CPLWA performance Improves 

The Rate at which Performance Improves (RPI) of the CPLWA quantifies the improvement in performance achieved by 
the proposed CPLWA scheme compared to other comparison schemes. 

The graph in Figure 4 represents the Rate at which Performance Improves (RPI) for different schemes. The “i” schemes 
indicate the baseline cloud datacenter algorithm ACO, GA, while the “k” schemes indicate the CPLWA algorithm in the 
simulation. The x-axis represents the schemes (k1-k5 and i1-i5), and the y-axis represents the rate of performance 
improvement in percentage. In the simulated cloud centre data provided, the RPI values are calculated for the schemes 
k1-k5 and i1-i5 based on the number of failures. Higher RPI values indicate greater improvement in performance 
compared to the baseline scheme i. Interpreting the result in Figure 4, we can observe that: Scheme k1 shows a slight 
improvement in performance with a positive RPI value. Scheme k2 exhibits a higher rate of improvement compared to 
k1, as indicated by a steeper upward slope. Scheme k3 shows a significant improvement, with the highest RPI among all 
the schemes. Scheme k4 also demonstrates improvement, although at a slightly lower rate than k3. Scheme k5 shows a 
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moderate improvement, represented by a smaller positive RPI value. On the other hand, schemes i1-i5 represent the 
baseline or reference schemes. They are compared to the k1-k5 schemes to assess their relative performance. As seen 
in the graph, the RPI values for the i1-i5 schemes are consistently lower or negative, indicating lesser or no improvement 
compared to the baseline. Overall, the graph illustrates the varying rates of performance improvement across different 
schemes. The steeper the slope of the line, the greater the improvement rate. Scheme k3 stands out as the most effective 
in terms of performance improvement, while k1 and k5 show relatively modest improvements. The comparison with 
the baseline schemes i1-i5 provides context and highlights the significance of the performance enhancements achieved 
by the k1-k5 schemes. 

 

Figure 4 Rate at which the 

4.4. Simulation Results of the CPLWA Framework 

Table 1 presents the experimental outcomes, including the minimum (min), maximum (max), average (avg), and 
standard deviation (std) values of the simulated cloud datacenters. It shows that both the LCA and CPLWA schemes 
generated excellent optimization outputs for benchmark functions f1 (x) and f2 (x), with CPLWA demonstrating superior 
performance in terms of average results and stability. When considering multimodal benchmark functions, CPLWA 
outperformed other methods, reaching the global minima for f3 (x), f4 (x), and f5 (x) after ten iterations. 

Table 1 Benchmark Functions Comparison Results 

Function Performance LCA CPLWA 

  Min 9.54E-56 2.78E-154 

 Max 2.60E-43 1.59E-143 

 Ave 7.87E-51 5.28E-149 

  StDev 8.22E-44 5.02E-144 

  Min 1.32E-03 2.62E-01 

 Max 4.64E+00 1.69E+00 

 Ave 2.08E+01 6.75E+00 

  StDev 1.71E+00 4.61E-01 

  Min 1.03E+00 0 

 Max 5.13E+00 5.75E+00 



World Journal of Advanced Research and Reviews, 2024, 24(03), 1554–1566 

1563 

 Ave 2.47E+00 2.51E+00 

  StDev 1.32E+00 1.70E+00 

 

  

Min 1.03E-02 1.05E-02 

 Max 3.77E-02 3.84E-02 

 Ave 1.90E-02 2.20E-02 

  StDev 9.03E-03 8.86E-03 

  Min 1.16E+00 1.96E+00 

 Max 8.76E+00 3.75E+00 

 Ave 3.50E+00 2.25E+00 

  StDev 1.98E+00 1.97E+00 

 

The comparisons Table 2 were limited to the average makespan of the algorithms and RPI, respectively. This result 
indicates that when the whole average life of each scheme is considered, CPLWA results in a 38.2%, 29.9%, and 20.5% 
improvement over ACO, GA, and LCA, respectively. 

Table 2 Rate at which CPLWA performance improves on Makespan 

  ACO GA LCA CPLWA 

Total Makespan 6862
5 

64497 5981
6 

49643 

RPI% over ACO - 6.4 14.7 38.2 

RPI% over GA - - 7.8 29.9 

RPI% over LCA - - - 20.5 
 

 

Figure 5 Makespan Time Comparison of Fault Tolerance Data Centres Schemes 

The performance comparison of different schemes is depicted in Figure 5, which shows the makespan time. CPLWA 
exhibits a significant improvement, outperforming ACO, GA, and LCA with a 41%, 33%, and 23% improvement, 
respectively. The response time of the schemes to fault is indicated in Figure 6 
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Figure 6 Response Time of the Data Centre Fault Tolerance Schemes 

The schemes' average reaction times as shown in Figure 6. demonstrates the quicker reaction time of the CPLWA 
compared to the other algorithms. Furthermore, the CPLWA fared better than the other plans; compared to ACO, GA, 
and LCA, it improved by 54.3 percent, 56.6 percent, and 30.2 percent, respectively. The average reaction time of the 
schemes as a whole is used to express this. The adjoining metaheuristic algorithm indicates a decreasing failure ratio as 
the number of jobs for all schemes increases. Furthermore, in comparison to earlier schemes, the proposed CPLWA 
reduces the failure ratio while increasing the number of jobs. This is probably because the iterative structure of the 
scheme has been improved. Furthermore, unsuccessful tasks can be moved to newly available resources using the 
migration methodology, and task execution can be resumed at the most recent checkpoint state using the checkpointing 
method. The success rate of job performance increases with a decreased failure ratio. The failure rate of the CPLWA and 
the earlier metaheuristic techniques is shown in Figure 7. 

 

Figure 7 Failure to Perform Ration of the Data Centre Fault Tolerant Schemes. 

The failure ratio, as represented in Figure 7, decreases as the number of jobs increases for all schemes. CPLWA performs 
better than previous metaheuristic methods, showing a lower failure ratio. This improvement can be attributed to the 
iterative structure and the migration and checkpointing approaches employed in the scheme. Similarly, Table 2 
indicates that the scheme's RPI percentage outperformed the other plans. This suggests that the proposed data centre 
CPLWA scheduling system is more fault-tolerant than the other methods. This study has found that the empirical results 
in Table 1 and Figures 1, 2 and 3 are consistent with the scheduling approach that are used in the cloud-based data 
centers. Table 2 indicates that the RPI percentage of the proposed scheme surpasses other plans, indicating its superior 
fault tolerance capabilities. 
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5. Conclusion 

Based on the simulation results, it can be concluded that the CPLWA metaheuristic approach effectively reduces task 
scheduling failures within secure failure rate constraints. Moreover, the CPLWA scheme outperforms existing methods 
such as GA, ACO, and traditional LCA in terms of minimum makespan, average reaction time, and secure fault tolerance 
measures. These results show that the CPLWA technique is appropriate for safe job scheduling in cloud-based data 
centers. The better task scheduling performance of the CPLWA method demonstrates how it can be used to improve the 
computational capacity and reliability of cloud computing environments. This enhancement is essential for improving 
task and resource management in data centers, which will enable society to receive high-quality cloud computing 
services. 
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