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Abstract 

N2O, also known as nitrous oxide, is a greenhouse gas that is roughly 300 times more potent than CO2 and destroys the 
the stratospheric ozone layer causing climate change. One of the primary causes of the rapid increase of N2O in our 
ecosystem is the application of nitrogen fertilizer to agricultural land. This stimulates N2O emissions and accounts for 
approximately 5% of the global greenhouse gases, forcing harm to the environment and atmosphere (Aronson and 
Allison, 2012). Previous models severely underestimated N2O flux in various crops, causing inaccurate predictions to 
form. In our study, we utilized data from automated flux chambers to train and evaluate different machine-learning 
models to predict the field-level flux of N2O which assist farmers to predict fertilizer amounts to use. The best machine 
learning model, Random Forest, performed considerably better than the standard empirical and biophysical models by 
roughly 15%, and show promise in improving predictive accuracy and guiding sustainable agricultural practices.  
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1. Summary

Nitrous oxide (N2O), is a greenhouse gas that is roughly 300 times more potent than carbon dioxide causing climate 
change and destroys the stratospheric ozone layer. One of the primary causes of the rapid increase of N2O in the 
atmosphere is the application of nitrogen fertilizer to agricultural land. This stimulates N2O emissions, which account 
for a significant percentage of global greenhouse gasses. Previous models severely underestimated N2O flux in various 
crops, causing inaccurate predictions. Implementing Machine Learning methods to predict nitrous oxide flux in 
precision-managed agricultural systems trained on data split by crop and experiment type can accurately predict N2O 
flux and also shows promise in outperforming empirical and biophysical models. In our study, we utilized data from 
automated flux chambers to train and evaluate different machine-learning models to predict the field-level flux of N2O. 
After testing various Machine Learning techniques on the Random Forest, LSTM, and XGBoost models, we gathered 
results on which model would be most accurate, in addition to what code should be implemented on the model. The 
Machine Learning model, Random Forest, proved to be the best and performed considerably better than the standard 
empirical and biophysical models by roughly 15. This new method of using Machine Learning to predict N2O flux 
showed promise in improving predictive accuracy and guiding sustainable agricultural practices using data 
segmentation techniques that we had designed and implemented. 

A novel machine learning-driven approach for predicting nitrous oxide flux 
in precision managed agricultural systems 
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2. Introduction 

2.1. Problem 

The agricultural sector is a major contributor to global greenhouse gas emissions, with nitrous oxide (N2O) being a 
significant component (Rees et al., 2020). N2O is a potent, long-lived greenhouse gas with a global warming potential 
265-298 times greater than carbon dioxide (3). N2O emissions account for 5% of the global greenhouse gasses in the 
atmosphere (Aronson and Allison, 2012) and over the past 50 years, N2O concentrations in the atmosphere have 
increased by 20%, largely due to the increased use of nitrogen fertilizers and manure application in agriculture to meet 
this growing global food demand (Sapkota et al., 2021; Rees et al., 2020). Additionally, the demand for food has 
increased with global population rise, which has led to intensified agricultural practices, including the extensive use of 
nitrogen-based fertilizers. While these practices are critical for enhancing crop yields and food security, they have 
inadvertently contributed significantly to global greenhouse gas emissions. These agricultural inputs lead to increased 
N2O emissions, a greenhouse gas that has a far greater impact on global warming than CO2. Projected climate change 
will further increase emissions if current practices continue (Rees et al., 2020). This is due to mechanisms such as 
increased temperatures, which lead to higher energy demands for cooling, and the release of nitrous oxide from 
agricultural soils. Warmer temperatures can also alter natural carbon sinks and increase the decomposition rates in 
soils, releasing more greenhouse gasses (Rees et al., 2020). Furthermore, the feedback loop between agriculture and 
climate change needs to be examined. As the climate warms, it affects agricultural productivity, leading to potential 
changes in farming practices that could either mitigate or exacerbate greenhouse gas emissions. For instance, higher 
temperatures and altered precipitation patterns can influence the rate of N2O emissions from soil. Potential mitigation 
strategies, such as the adoption of precision agriculture techniques, improved nitrogen management practices, and the 
use of alternative fertilizers, are essential for reducing N2O emissions while maintaining agricultural productivity. 

2.2. Current Model 

Current models to predict N2O flux in agricultural systems include process-based models like ecosys, which incorporate 
mechanistic representations of biophysical and biochemical processes in agroecosystems (Yang et al., 2022). When 
validated against field measurements, ecosys demonstrated R² values of 0.64 for cumulative N2O emissions 
(RMSE=0.89 kg N/ha/y) and 0.83 for corn yield (RMSE=1.91 Mg/ha) across multiple sites in the US Midwest. The model 
was validated using a variety of data sources, including AmeriFlux network sites for CO2 flux, soil temperature, and soil 
moisture; sites with N2O observations during growing seasons and winters using static and automated chambers; and 
a total of 108 site-year estimates of cumulative N2O emissions across eight Midwestern states. Additionally, snow depth 
and soil temperature data were used for winter validations at one site. The model relies on inputs such as air 
temperature, precipitation, relative humidity, wind speed, net solar radiation, and soil properties from the gSSURGO 
database. These performances are comparable to similar studies in North American cropping systems using other 
process-based models. However, the authors acknowledge uncertainties in the regional estimates due to model 
limitations, estimation of observations, and lack of validations on non-growing season N2O emissions in some areas, N 
leaching, and soil organic carbon changes (Yang et al., 2022). While machine learning (ML) models also face challenges 
in scaling to global predictions, they offer a promising approach by learning complex patterns from large datasets. ML 
models can integrate diverse data sources, including soil properties, weather data, and management practices, to 
improve prediction accuracy. Unlike traditional models, ML models can potentially adapt to new data, making them 
more flexible and capable of capturing the spatial and temporal variability of N2O emissions. However, they still require 
extensive, high-quality data to train effectively and perform well across different scales. Current models have severely 
underestimated N2O flux, which leads to inaccurate predictions of emissions from fertilizer usage and other practices. 
Specifically, predicting N2O flux peaks has been an imperative issue. To address the limitations of current models, it is 
crucial to explore advanced machine learning (ML) techniques that offer both improved accuracy and computational 
efficiency. By identifying and implementing ML models that excel in predictive power while maintaining rapid 
processing times, we can significantly reduce errors in the existing approaches. 

2.3. ML Model 

To address these limitations, researchers have proposed the use of advanced ML models to enhance the predictive 
power of N2O emission models (Xu and Zeng, 2022)(Dorich et al., 2020). Recent studies have demonstrated the 
potential of advanced ML models like random forests, gradient boosting, and neural networks to outperform traditional 
empirical and biophysical models in predicting N2O flux from agricultural soils due to their ability to capture the non-
linear relationship between N2O flux and its underlying processes (Szelgg et al. 2023)(Saha et al., 2021). Our study, like 
those by Szelgg et al. (2023) and Saha et al. (2021), leverages advanced ML models to improve N2O emission predictions 
and highlight the limitations of traditional models. However, we focus on agricultural systems and use data 
segmentation by crop and experiment type, whereas Szelgg et al. (2023) focuses on wastewater treatment plants, and 
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Saha et al. (2021) couples ML with cropping systems models. Additionally, we test three different types of ML models 
for this situation: XGBoost, LSTM, and Random Forest to find the best performing model. Saha found that using a 
Random Forest model along while training based on different experiments they were able to achieve a maximum R2 of 
0.89 on the Arlington site. We were able to achieve similar results as we found the best option was using the Random 
Forest model, and our highest R2 value was 0.95 on the Arlington site as well. Szlegg on the other hand used a different 
dataset due to the fact that the experiment was based on finding N2O in wastewater treatment plants, however, his 
results showed that he had the lowest error using the XGBoost model, which is similar to our study as we got the second 
lowest error using the XGBoost model as well. Szlegg did not use the Random Forest model in his testing so we do not 
know if using it would have yielded higher accuracy similar to ours. Additionally, the functionality of using a Machine 
Learning model is now significantly more plausible due to the availability of long- term high-frequency observations 
from automated flux chambers that improve predictability and allow us to better understand the factors controlling 
daily N2O flux variation (Saha et al., 2021). In summary, understanding the contribution of agriculture to greenhouse 
gas emissions, the subsequent impact on climate change, and the potential pathways for mitigating these effects is 
crucial for ensuring sustainable agricultural practices in the face of a changing climate. We hypothesized that training 
different Machine Learning models on data split by experiment and vegetation type would perform better than standard 
biophysical and empirical models in predicting N2O while utilizing the optimal model. After testing our hypothesis and 
implementing different code, we found that the Random Forest Model performed best, although it is important to 
implement proper techniques such as data segmentation on specific features included. 

2.4. Data 

The dataset for this study was obtained from three long-term experiments conducted at the W.K. Kellogg Biological 
Station in Michigan ("BCSE_KBS" and "MCSE-T2") and the Arlington Agricultural Research Station in Wisconsin 
("Arlington WI") (Saha et al., 2020). These experiments included continuous no-till corn and corn-soybean-wheat 
rotations, with BCSE_KBS and Arlington WI having only corn but MCSE-T2 having all 3 types of vegetation. N2O flux 
measurements were taken using automated flux chambers, which provided daily average N2O flux data, resulting in a 
dataset with 2246 data points across 15 non-consecutive years. Additionally, the dataset included various predictive 
variables such as soil moisture, air temperature, cumulative precipitation, and nitrogen fertilization rates. These 
variables are crucial for understanding the environmental factors influencing N2O emissions. Data preprocessing 
involved iterative imputation to handle missing values and robust scaler to normalize the features, ensuring accurate 
and reliable inputs for the machine learning models. The preprocessing steps aimed to enhance the stability and 
performance of the models to make a model that would be able to predict N2O flux efficiently. 

3. Methodology 

3.1. Model Building 

We used the Python programming language with the pandas, numpy, scikit-learn, matplotlib, tensor-flow, XGBoost, and 
LightGBM libraries to build and train the XGBoost, Random Forest, and LSTM machine learning models. XGBoost is a 
gradient-boosting decision tree algorithm ideal for tabular data, training trees sequentially with Gradient Descent 
Optimization and L1 and L2 regularization to prevent overfitting (Dhillon et al., 2023)(Shahhosseini et al., 2019)(Wang 
et al., 2020). Random Forest is a sequential technique fitting multiple decision tree models on subsets of the training 
data, averaging their predictions to increase accuracy, and is known for its simplicity and efficiency. The Long Short-
Term Memory (LSTM) Recurrent Neural Network was chosen for modeling temporal dynamics of the N2O flux time 
series, using specific cells to regulate the flow of information and capture temporal data effectively. We trained it to 
predict daily N2O flux from the numeric features provided in the data. 

3.2. Data Manipulation 

To process the data, we had to go through many steps, including data imputation, feature scaling, binning, 
hyperparameter optimization, and proper train test split to be compatible with the binning. For data imputation, we 
used scikit- learn’s iterative imputer, which iteratively modeled each feature with missing values as a function of other 
features, allowing for more accurate estimates of the missing data. To handle feature scaling, which allows all features 
to contribute to the training process equally, we used robust scaler, which scales according to the median and 
interquartile range. This makes it less sensitive to outliers compared to other scaling techniques. For hyperparameter 
tuning, we used GridSearchCV from scikit-learn to perform an exhaustive search and find the best hyperparameters 
using K-Fold cross-validation. For training and testing data split, we split the data up using a 70% training and 30% 
evaluation/testing split. The most important data manipulation technique we did was Quantile binning which handled 
the uneven distribution of our target variable, N2O . This divided the target variable into bins of equal size allowing for 
a uniform distribution of the target variable across the bins. This binning strategy improved the stability and 
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performance of the model compared to training on the raw continuous target variables. The model was evaluated using 
the standard regression evaluation methods R², RMSE, and MAE. 

4. Results 

4.1. Model Performance 

We employed three different types of Machine Learning models (XGBoost, Random Forest, and LSTM) to predict N2O 
flux based on N2O flux data and associated environmental observations from three different experiments (BCSE_KBS, 
MCSE_T2, Arlington, WI). N2O flux data was collected from automated flux chambers and the feature data we trained 
on included a range of environmental and management variables. These variables encompassed nitrogen management 
(e.g., N fertilization rate, days after fertilizer application), precipitation, air temperature, soil properties (e.g., water-
filled pore space, NH4-N and NO3-N content, clay concentration, and soil organic matter in the top 25-cm soil layer), 
and temporal information. The experiments covered different vegetation types: continuous no-till corn in BCSE_KBS 
and Arlington, WI, and a three-year no-till rotation of corn, soybean, and wheat in MCSE_T2. We then tested the different 
models based on a split of vegetation type and experiment location after training them on this data and evaluated the 
different results. The experiments BCSE_KBS and Arlington, WI were primarily implemented in similar ways, 
particularly regarding the vegetation type under study. Both BCSE_KBS and Arlington, WI focused on the vegetation 
type of corn, ensuring a consistent approach in these two experiments. On the other hand, the experiment MCSE_T2 
diverged significantly from the other two in terms of the variety of vegetation types it included. Unlike BCSE_KBS and 
Arlington, WI, which were limited to corn, MCSE_T2 was a rotation experiment, covering Corn, Soybean (GLYMYX), and 
Wheat (TRIAE). 

Of the three types of ML models, the Random Forest model (Figure 1) performed best overall, explaining 95.26% of the 
variability in the Arlington WI experiment located at a station in Wisconsin, USA, 99.38% in the BCSE_KBS experiment, 
and 96.07% in the MCSE-T2 experiment which were both experiments at the W.K. Kellog Biological Station in southwest 
Michigan, USA. Specifically, the high percentage of variability explained in BCSE_KBS indicates that the model captured 
nearly all the significant factors affecting N2O flux in this region. The evaluation R Mean Square Error (RMSE) for the 
Random Forest model was 11.817, 1.177, and 1.462, and the Mean Absolute Error (MAE) was 2.2632, 0.2886, and 
0.2384 for Corn, Wheat (TRIAE), and Soybean (GLYMX), respectively, reflecting the model’s high precision and accuracy 
across different experimental sites (Table 1). Additionally, the model’s performance by vegetation type showed 92.17% 
variability explained for Corn, 95.03% for Soybean (GLYMX), and 97.16% for Wheat (TRIAE).  

 

Figure 1 Evaluation of N2O flux prediction with Random Forest on testing split of data. The X-axis represents the 
Sample Index and the Y-axis represents N2O flux in g N2O-N ha-1d-1 

These results highlight the model’s versatility in handling diverse crop types, with the highest accuracy observed for 
Wheat, however, this was likely due to the smaller nature of the dataset with 197 samples leading to less variability. 
This is likely also the reason that Corn had the lowest accuracy due to the large sample size of 1844, leading to more 
variability. The superior performance of the Random Forest model can be attributed to its ability to handle complex, 
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non-linear relationships and interactions among variables, making it particularly effective in capturing the variability 
in N2O flux across different experimental conditions and vegetation types. 

4.2. Critical Predictor Variables 

Water-Filled Pore Space at 25 centimeters (WFPS25cm), Nitrogen Fertilization Rate (N_rate), and Air Temperature 
(AirT) were identified as key variables in predicting N2O flux, capturing essential aspects of soil moisture, nitrogen 
application, and temperature. The other variables that were used in training included the Cumulative precipitation in 
the last two days before gas sampling (PP2), Cumulative precipitation in the last week before gas sampling (PP7), Daily 
average air temperature (AirT), Days after top-dressed N fertilizer application (DAF_TD), Days after side-dressed N 
fertilizer application (DAF_SD), NH4-N content in the top 25-cm soil layer in kg ha-1 (NH4), NO3-N content in the top 
25-cm soil layer in kg ha-1 (NO3), Clay concentration in the top 25-cmsoil layer in g kg-1 (Clay), soil organic matter 
concentration (SOM). In Arlington WI, WFPS25cm’s mean partial dependence ranged from 13.3157 to 14.2298, 
suggesting a strong influence of soil moisture on N2O flux. Similarly, the N_rate’s range from 15.3309 to 14.0046 
highlights the significant impact of nitrogen fertilization, while AirT ranged from 13.9678 to 14.0152, underscoring 
temperature’s role in emissions. In BCSE_KBS, WFPS25cm ranged from 4.5953 to 4.6638, and AirT from 4.6239 to 
4.6713, showing how these factors vary regionally. For MCSE-T2, WFPS25cm ranged from 3.0932 to 3.1506, N_rate 
from 3.1360 to 3.1514, and AirT from 3.1256 to 3.1476, indicating consistent influences across different sites. These 
results demonstrate that WFPS25cm, N_rate, and AirT are critical in driving N2O flux across various conditions. 
Grouping data points by experiment and vegetation type with quantile binning significantly improved model 
performance by capturing unique patterns within each subgroup, leading to more accurate and reliable predictions. The 
variability and influence of these factors in different regions and conditions emphasize the importance of considering 
both environmental and experimental contexts in modeling N2O emissions. 

5. Discussion 

The Random Forest model demonstrated superior performance compared to XGBoost and LSTM in predicting N2O flux 
in agricultural systems. It effectively captured variability across different experimental sites, with R2 values of 95.26% 
in Arlington WI, 99.38% in BCSE_KBS, and 96.07%. 

Table 1 Model Evaluation Results 

Category Train MSE Train MAE Train R2 Eval MSE Eval MAE Eval R2 

Arlington WI Random Forest 

104.46 1.96 96.50% 139.70 2.26 95.26% 

BCSE_KBS 7.20 0.35 97.31% 1.38 0.29 99.38% 

MCSE-T2 1.71 0.18 96.99% 2.14 0.24 96.07% 

Corn 12.57 0.83 98.56% 94.47 1.26 92.17% 

GLYMX 0.11 0.25 99.63% 0.28 0.38 95.03% 

TRIAE 2.31 0.51 97.12% 0.44 0.41 97.16% 

Arlington WI  XGBoost    

0.02 0.09 99.99% 280.95 1.93 90.46% 

BCSE_KBS 0.00 0.04 99.99% 4.14 0.34 98.13% 

MCSE-T2 0.00 0.02 99.99% 4.35 0.24 92.01% 

Corn 0.00 0.03 99.99% 140.65 1.05 88.35% 

GLYMX 0.00 0.00 99.99% 0.07 0.12 98.69% 

TRIAE 0.00 0.00 99.99% 0.17 0.13 98.89% 

Arlington WI  LSTM    

365.32 2.97 87.75% 731.20 3.41 75.17% 
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BCSE_KBS 5.68 1.06 97.88% 2.62 1.08 98.82% 

MCSE-T2 0.53 0.40 99.08% 0.54 0.41 99.01% 

Corn 71.19 2.17 91.84% 83.80 2.25 93.06% 

GLYMX 0.14 0.25 99.55% 0.07 0.21 98.83% 

TRIAE 2.94 0.95 96.34% 0.59 0.66 96.15% 

 

in MCSE-T2. This outperformance was also consistent across various vegetation types, achieving accuracies of 92.17% 
for Corn, 95.03% for Soybean (GLYMX), and 97.16% for Wheat (TRIAE). 

Key predictor variables identified by the Random Forest model such as Water-Filled Pore Space at 25 centimeters 
(WFPS25cm), Nitrogen Fertilization Rate (N_rate), and Air Temperature (AirT) were found to be crucial in explaining 
N2O flux. In contrast, XGBoost and LSTM models placed different levels of emphasis on these predictors, leading to less 
accurate predictions. The grouping of data by experiment and vegetation type, along with the use of quantile binning, 
significantly enhanced the Random Forest model’s performance by enabling it to capture unique patterns within the 
data. 

While the Random Forest model achieved an almost perfect fit (R2 = 0.999994) within the training region, its 
generalization ability was challenged when applied to data from different regions, where the R2 value decreased to 
0.904599. This discrepancy underscores the importance of contextual factors such as environmental conditions and 
experimental design that influence model performance. By integrating these contextual elements we are able to 
highlight the necessity of considering both environmental and experimental contexts for accurate N2O emissions 
predictions, which was less effectively addressed by the alternative models. 

This discrepancy suggests that while the model performs exceptionally well within the confines of the training data, its 
generalizability to new regions with varying climates, soil types, and agricultural practices is limited. Several factors 
could have influenced the model’s performance. Firstly, the model was trained on data from only three experiments 
involving three crop types. The limited variety of crops and experimental conditions may have constrained the model’s 
ability to generalize to other agricultural systems. Additionally, wheat and soybeans were only represented in one of 
the experiments, limiting the model’s training diversity. More replicates and a broader variety of crops and conditions 
would likely improve the model’s robustness. 

Despite these limitations, the findings highlight the potential and constraints of using Random Forest models for 
predicting N2O flux in precision agriculture. The model’s high accuracy within the training region indicates that it 
effectively captures complex, non-linear interactions in controlled settings. However, the drop in performance in 
different regions underscores the need for caution when applying the model to diverse agricultural systems. While the 
model shows promise, its current limitations suggest that it should not be solely relied upon for N2O emission 
predictions in regions significantly different from the training environment. The research contributes to the 
understanding of machine learning applications in agriculture, emphasizing the importance of diverse and high-quality 
data. 

Improving the model’s generalizability across different regions and conditions requires adaptations and enhancements. 
Additional data and experimental designs are necessary to bolster the model’s efficiency. Long-term climate changes 
impact N2O emissions, and adjusting the model to account for these variations is essential. Future experiments should 
focus on longitudinal studies, conducting experiments over 10-20 years to provide insights into long-term N2O 
emissions and improve prediction reliability. Implementing techniques like SMOTE can address data imbalances and 
improve model accuracy, while tools like SHapley Additive exPlanations (SHAP) can help interpret model predictions 
and understand the influence of different variables on N2O flux. Expanding the dataset to include a broader range of 
crops, soil types, and climatic conditions will also enhance the model’s applicability. 

6. Conclusion 

In summary, the Random Forest model coupled with data segmentation shows significant potential for predicting 
nitrous oxide flux in precision-managed agricultural systems. The high accuracy within the training region highlights 
the model’s capability to capture complex interactions within N2O flux and its underlying factors. However, the reduced 
performance in new regions indicates the need for broader, more diverse datasets and improved experimental designs. 
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Future research should focus on addressing these limitations to enhance the model’s generalizability and reliability, 
ultimately contributing to better-informed agricultural management  
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