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Abstract 

OLS models have several assumptions for its interval estimations to be unbiased and efficient. Non-constant variance of 
residuals can cause serious issues in making inferences on coefficients as well as interval estimations. In this paper, we 
discuss the presence of heteroscedasticity in a linear model and suggest a paired bootstrap approach as an assumption-
free approach on constructing confidence intervals. We carry a simulation study to compare bootstrap confidence 
intervals to traditional intervals. We conclude bootstrap intervals, though not perfect, can give better interval estimates 
when heteroscedasticity is observed and no remedy is applied. 
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1. Introduction

Linear regression is quite broadly used methodology to explain relationships between different variables in many 
domains. Linear model (often referred as OLS model) is used primarily for two purposes. First, this model can explain 
the relationship between two or more factors. Second, linear models are often used to make simple and still efficient 
forecasting. Linear models are very popular due to the fact that they are relatively easy to learn, build and interpret. Yet, 
we almost never meet a perfect linear relationship between two or more factors in real life, thus linear regression is 
almost always an approximation of real life relationships. Linear regression, sometimes referred to as OLS, has a set of 
assumptions that should be met in order to make the outcomes of the OLS model reliable. These assumptions are:  

 Homoscedasticity (or no heteroscedasticity)
 Stationarity or no autocorrelation of residuals (in case of time series data)
 No strong multicollinearity between explanatory variables
 No severe outliers
 Sample size to be larger than 30 observation
 Linearity in relationship
 Normality of residuals

Violations of one or more of the above assumptions can lead to inaccuracy or even bias in the estimation. Interested 
readers are encouraged to explore more details of each assumption, but in this study we will discuss in more detail the 
presence of heteroscedasticity, how OLS estimates can suffer and how bootstrap can be a remedy in absence of 
homoscedasticity. 
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2. Literature Review 

Bootstrap method is a resampling method of a given dataset to build a sampling distribution of a specific statistic. 
Bootstrapping has become popular because it has proven to provide reliable inferences in many cases even when 
underlying assumptions are not satisfied. This also applied to cases of heteroscedastic residuals which is first discussed 
in papers of Efron (1979). Since then, theoretical foundations have been concentrated on justifying validity and 
efficiency of bootstrap confidence intervals with non-constant variance of errors (Davison and Hinkley, 1997).  

In the context of linear models, there have been primarily two types of bootstrapping used for estimating point and 
interval estimates, bootstrapping residuals and bootstrapping pairs (Chernick and LaBudde, 2011).  

Bootstrapping residuals: This method of bootstrapping was first introduced by Efron (1982). Imagine we have the 
following model  

𝑌𝑖 = 𝑔𝑖(𝛽) +  𝑒𝑖 , for i=1,2,….,n 

where 𝑔𝑖(𝛽) is a function with a known form. To estimate 𝛽, we minimize distance between our true dependent variable 

𝑌𝑖  and estimated function 𝑔𝑖(𝛽). These distances are expressed in terms of residuals 𝑒𝑖̂ = 𝑌𝑖 − 𝑔𝑖(𝛽̂). The idea behind 
Wild bootstrap is to take the distribution of residuals each having probability of 1/n for i=1,2,….,n and sample n times 
from this distribution to get bootstrap sample of residuals which can be denoted as (𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛) . Afterwards, 

bootstrap dependent variable can be generated using 𝑌𝑖
∗ = 𝑔𝑖(𝛽̂) + 𝑒𝑖

∗. Now, as we have our bootstrap dataset, we use 
simple OLS method to estimate 𝛽∗. We repeat the above procedure B times to get a distribution of 𝛽𝑗

∗  estimates for 

j=1,2,….,B. One can get standard deviation of 𝛽∗  to build bootstrap confidence intervals.  

Bootstrapping pairs: bootstrapping pairs is a rather simple but powerful approach proposed first by Freedman (1981). 
Under this approach, we resample independent and dependent variables from the original sample which results in a 
bootstrap sample. We then use usual OLS method to estimate 𝛽∗  from the bootstrap sample. This procedure is repeated 
B times in order to get distribution of coefficients 𝛽𝑗

∗ estimates for j=1,2,….,B. This distribution in turn can give bootstrap 

standard deviation. 

Efron and Tibshirani (1986) conclude that two approaches are equivalent when the model is correctly specified, but 
they can perform differently when the sample is small. Flachaire (2003) compared bootstrapping residuals and 
bootstrapping pairs when the model is correctly specified and when heteroscedasticity is present in the linear models. 
Flachaire (2003) concludes that when a proper transformation to the residual term is applied (wild bootstrap), 
residuals bootstrap performs better than bootstrapping pairs. Chernick and LaBudde (2011) conclude however that 
bootstrapping vectors are less sensitive to violations of model assumptions and can still perform well if those 
assumptions are not met. This can be explained by the fact that the vector method does not depend on model structure 
while bootstrapping residuals do. 

Other approaches are stationary bootstrap (Politis and Roman, 1994), and the percentile-t bootstrap (Diciccio and 
Efron, 1992) each used under different scenarios of non-constant variance of the residuals.  

This study tries to shed further light into implementing bootstrapping pair in the context of linear models with 
heteroscedastic residuals and test bootstrap interval performance under different sample sizes.  

3. Linear regression models 

First of all, let’s look into how linear models are built and how coefficients as well as their intervals are estimated. As 
mentioned earlier, the linear model evaluates the impact of one or more variables (explanatory variables) to another 
variable (explained or dependent variable). This is done by estimating coefficients of estimates of each explanatory 
variable. For instance, imagine that we want to evaluate whether your year of education affects your income and by how 
much. If we build our simple OLS model where income is dependent “Y” variable, and year of education is “X_1” 
explanatory variable, then coefficient of “years of educations” (𝛽1) shows the size and direction (positive or negative) 
of the impact. 

𝑌 = 𝛽0  + 𝛽1 ∗ 𝑋1 +  𝑒 

 



World Journal of Advanced Research and Reviews, 2024, 23(03), 2250–2259 

2252 

Where  
𝑌 − dependent variable,  
𝛽0 – intercept,  
𝛽1 − coefficient of first explanatory variable 
𝑋1 − explanatory or independent variable 
𝑒 − error or residual term 

The above model is the simplest one variable example of linear regression and usually most studies take into account 
more explanatory variables that will improve the model (there are metrics to evaluate whether a model is improving or 
not, e.g. adj. R squared, AIC, MSE).  

Estimation of coefficients in the above model is done with the method of least squares commonly known as OLS 
(ordinary least squares). Least squares estimate of 𝛽1  is given by:  

𝛽̂1 =  
∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌) 

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋)

2  

where 
𝑛 − number of observations 
𝑋𝑖 − value of the independent variable for the i-th observation 
𝑌𝑖 − value of the dependent variable for the i-th observation 
𝑋 − mean of the independent variable 𝑋 

𝑌 − mean of the independent variable 𝑌 

4. Traditional Confidence intervals 

Researchers are often interested not only in point estimates of coefficient, but also interval estimations. This is because 
point estimates of coefficients are always an approximation to true population value. In contrast, interval estimations, 
commonly known as confidence intervals, have a set of advantages. Firstly, it gives a range of values where true 
population value can be located. Secondly, confidence intervals will indicate whether the true population parameter 
might be equal to 0. In other words, whether the effect of that specific explanatory/independent variable to dependent 
variable is insignificant. Currently, all statistical softwares provide both point and interval estimates by default. Below, 
we will look at the theoretical side of building confidence intervals of coefficients of linear models.  

4.1. Central Limit Theorem 

Central Limit theorem (CLM) is the core concept of statistics that is employed also in building confidence intervals. The 
theory says that irrespectful of the true population dataset, if one derives many sample averages from many samples 
generated from the same population, then the distribution of sample averages is approximately normal (also referred 
as Gaussian, see graph below) (Lind et al, 1967). The midpoint of resulting distribution of sample averages will be equal 
to the true population mean (see Figure 1). This is a very strong finding that can also be applied in confidence interval 
construction.  

In practice, we often cannot take many samples from the same population and very often left to work with only one 
sample. Nevertheless, one can still make some estimation regarding the population value (e.g. mean, coefficient) using 
the central limit theorem even when the distribution of the population dataset is not known. 

4.2. Confidence interval based on CLT 

Consider we have only one sample from the population data. Firstly, we can estimate the sample coefficient using the 
method of ordinary least squares (discussed in previous chapter). Afterwards, we can estimate standard error of the 
estimated coefficient using the following formula also arising from the method of least squares.  

𝑠𝑒(𝛽̂1) =  
𝑠

√∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋)

2
 

where 
𝑠 − standard deviation of the residuals (residual standard error) 
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𝑛 − number of observations 
𝑋𝑖 − value of the independent variable for the i-th observation 
𝑋 − mean of the independent variable 𝑋 

As distribution of 𝛽̂1  coefficient is approximately normal distribution based on central limit theorem, we employ 
properties of standard normal distribution (z-distribution) and build 90%, 95% or 99% confidence intervals.  

𝛽̂1 ± 𝑧𝛼
2

∗ 𝑠𝑒(𝛽̂1) 

where  

𝛽̂1- is sample coefficient estimate 

 𝑧𝛼

2
 – is a value from the standard normal distribution the give an area of 

𝛼

2
 

𝑠𝑒(𝛽̂1) - sample variance of the coefficient 

The above interval estimation is interpreted in the following way. 97% interval indicates that if we construct 100 
confidence intervals from 100 random samples generated from the true population, then 97 of those confidence 
intervals will contain true population coefficient 𝛽1 . Also, employing this confidence interval you can verify whether 
population coefficient is insignificant. If estimated confidence interval contains zero, then one can suspect that the true 
population parameter can be equal to zero (Gujarati, 2004) 

However, one can see that estimation of the standard error of the same coefficient depends on the normality of the 
residual term. In the presence of heteroscedasticity, standard deviation of the error term can be inflated which will 
result in inaccuracies in confidence interval constructions using the CLT approach (Gujarati, 2004).  

Heteroscedasticity can arise from various sources, such as: 

 Omitted variables 
 Measurement error 
 Non-linearity of the relationship of dependent and independent variable 
 Outliers 
 Residual variance that deviates with time 
 Endogeneity 
 Model misspecification 

If no remedy is applied to heteroscedasticity in residuals, it will make the standard error of the residuals biased and can 
lead to wrong conclusions in hypothesis testing. Academia suggested a set of way on how heteroscedasticity, such 
transforming variables, weighted least squares, including important variables and many others (Greene, 2021) 

Below, we suggest another way, bootstrap, of handling heteroscedasticity in residuals for construction of our confidence 
intervals for coefficients.  

5. Bootstrap confidence interval estimation 

In the first place, it is necessary to explain the concept of bootstrapping. Bootstrap is a relatively easy resampling 
technique that can offer alternative ways of building confidence intervals. Bootstrap implies selecting one sample and 
generating many other different samples from this single original sample and estimating your parameter of interest in 
each newly created sample. Under the bootstrap approach, the original sample is considered as a population and we 
generate many other samples (known as bootstrap samples) out of it. When a large number of bootstrap samples are 
created, we estimate sample parameters (e.g. coefficient) from every bootstrap sample. Consequently, we will have a 
distribution of bootstrap sample estimates.  

This distribution of bootstrap sample estimates can be used to construct our confidence intervals. For example, if we 
want to construct a 95 percent interval, we take 2.5th and 97.5th percentiles from bootstrap distribution. Figure 2 
explains visually the method of bootstrapping. 

 



World Journal of Advanced Research and Reviews, 2024, 23(03), 2250–2259 

2254 

 

5.1. Bootstrap in case of heteroscedasticity 

Consider a sample that indicates presence of heteroscedasticity as a result of measurement of error in some data points. 
Earlier, we discussed that heteroscedasticity can lead to a bias if we employ traditional OLS based methods of building 
confidence intervals. This is because standard errors of residuals will be affected by heteroscedastic residuals. This in 
turn influences standard errors of estimated coefficients which is used for building traditional confidence intervals. 
There are a set of advantages to this approach over traditional methods. Firstly, if sample size is smaller than 30 if we 
remove outliers from the original dataset, bootstrap interval estimation can still be derived. In contrast, traditional 
methods required sample size to be larger than 30 for estimates to be reliable enough. Secondly, by removing samples 
that contain potential outliers, our distribution of estimates should not be influenced by extreme outliers. Lastly, 
bootstrap distributions of estimates do not have any assumptions of true distribution of population dataset.  

In contrast, bootstrap confidence intervals do not rely on standard deviation of residuals. It generally has no 
assumptions on the distribution of the coefficient which serves as its biggest advantage over the traditional approach.  

6. Simulation 

In order to evaluate performance of bootstrap confidence intervals when heteroscedasticity is present, it is necessary 
to carry out a simulation of a linear model. Simulation is necessary for two reasons. First, we need to know the true 
population coefficient 𝛽1  and in practice we rarely know the true population parameter. Secondly, we need to evaluate 
performance of estimated confidence intervals in presence of heteroscedasticity. Although real data can have 
heteroscedasticity of residuals, we do not know the true form of residuals distribution. For these two reasons we need 
to model our linear model with heteroscedastic residuals. We select the simplest form of linear model with one 
explanatory variable that is correlated with the error term.  

Y = 𝛽 0+ 𝛽 1 * 𝑋1+ Ɛ 

where 
𝑋1 ~ 𝑁(5, 4) 
Ɛ ~ 𝑁(0, 𝑋12) 

where intercept ( 𝛽0 ) and 𝛽1  are defined by us. Independent variables (X1) come from normal distribution with mean 
of 5 and standard deviation of 4. Error term (Ɛ) is simulated following the approach suggested by Flachaire (2003). 
Under this scenario, error term is correlated with explanatory variable and its variance grow as the value of 𝑋12 grows.  

We check the performance of bootstrap confidence intervals in different sample sizes. Thus, we have a first sample size 
of 30 and then we increase it by 10 observations up to 200 observations. All of the simulations are carried out in R 
software. 

We take the following steps for simulation of linear model with heteroscedasticity with different sample sizes 

 Step 1: set intercept 𝛽 0= 4 and coefficient B1=5 
 Step 2: Set sample size to n=30 
 Step 3: generate X1 ~ N(5, 4) starting with sample size n 
 Step 4: generate Y with Y = B0+ 𝛽 1 * 𝑋1+ Ɛ 

 Step 5: estimate confidence intervals using traditional and bootstrap methods in repeated simulations (1000 
times). Here we construction 95 percent confidence intervals 

 Step 6: evaluate how many times (out of 1000), true parameters were within estimated OLS and bootstrap 
confidence intervals 

 Step 7: repeat step 2 to step 8 by adding 10 observations to sample size (n=n+10). Finish when sample size 
reaches 200 observations  

Traditional and bootstrap confidence intervals estimations are discussed in above sections. For traditional intervals, we 
use the following formula which is estimated in any statistical package when we construct our linear model. 

𝛽̂1 ± 𝑡𝛼
2

∗ 𝑠𝑒(𝛽̂1) 



World Journal of Advanced Research and Reviews, 2024, 23(03), 2250–2259 

2255 

Bootstrap confidence intervals are built taking values in certain percentiles of parameter distributions that were 
generated as a result of bootstrapping.  

7. Results 

In this part, we will look into two results of the simulation. One is with homoscedastic residuals and second is with the 
presence of heteroscedasticity. We also take a look at how estimated intervals change as we change our sample size. 

7.1. Correctly specified model  

First of all, we want to see how traditional CLT based and bootstrap confidence intervals perform when no violations of 
OLS assumptions are present. We expect that both approaches will do relatively good work in building interval 
estimates. In other words, for 95 percent confidence intervals, we expect true parameters to fall within estimated 
intervals at least 95 per cent of cases.  

The first graph below shows often true coefficients fall within estimated confidence intervals built using traditional and 
bootstrap methods. One can see that both methods are doing relatively well, that is constructed intervals are containing 
true coefficient at least The chart clearly shows that both traditional and bootstrap confidence intervals contain true 
parameter in 90-100 percent of the cases which is expected outcomes (see Figure 3) 

Bootstrap confidence intervals contain true coefficients more often compared to traditional OLS intervals. This is 
explained in the second graph which shows that bootstrap intervals are larger in width compared to OLS intervals 
across all sample sizes ( (see Figures 4) 

7.2. Misspecified model: case of heteroscedastic residuals 

As explained in previous chapter, we introduce heteroscedasticity by making our residuals equal to 𝑋12
 * Ɛ. This will 

make variance of error term be dependent of values of 𝑋1 and thus make the error term heteroscedastic. In other words, 
the larger the explanatory variable, the larger the variance of the error term becomes. Here, we again plot the two graphs 
to check accuracy and width of traditional OLS confidence intervals compared to bootstrap ones. 

One can clearly see from the first graph below that neither of the approaches are reaching expected 95 per cent coverage 
of confidence intervals. Yet, accuracy of bootstrap confidence intervals are much higher than that of traditional intervals. 
To put in other words, approximately 90 per cent or more bootstrap confidence intervals contain true population 
coefficient across different sample sizes. In contrast, traditional confidence intervals’ accuracy are below 80 per cent 
which clearly indicates that confidence intervals are highly influenced by non-constant variance of residuals which 
distorts standard deviation of estimated coefficient. Higher coverage of bootstrap intervals are explained by the fact 
that the width of bootstrap intervals are wider compared to traditional ones (see second chart below). 

As pointed out in the literature review part, Chernick and LaBudde (2011) claim that bootstrap intervals constructed 
using bootstrapping pairs are less sensitive to violations of model assumptions which is also justified in the current 
simulation.  

As neither approaches perform at expected level of accuracy, readers are recommended to apply remedies to 
heteroscedastic residuals whenever possible. These include Weighted Least Squares, Robust standard errors approach 
and Box-Cox transformations of dependent variables. If none of the classical approaches work, then it is suggested to 
apply pair bootstrap at the cost of slightly lower accuracy of confidence intervals.  

8. Conclusion 

In this paper, we carried out a simulation study of building bootstrap confidence intervals in linear models when 
variance of residuals is not constant. We first looked at existing literature on this topic and then looked at the theoretical 
side of linear models with heteroscedasticity. We explained that traditional confidence intervals might be biased when 
heteroscedasticity is present in data and therefore suggested using bootstrapping pairs for building confidence intervals 
which do not have any assumptions of residual distribution. Our simulation study shows that bootstrap confidence 
intervals outperform traditional ones though they are still not reaching targeted 95 percent coverage rate. In contrast, 
traditional intervals are highly inaccurate as they contain true coefficients in less than 80 per cent of the cases compared 
to targeted 95 per cent. 



World Journal of Advanced Research and Reviews, 2024, 23(03), 2250–2259 

2256 

References 

[1] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 1-26. 

[2] Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadelphia 

[3] Efron, B., and Tibshirani , R. (1986). Bootstrap methods for standard errors, confidence intervals and other 
measures of statistical accuracy. Statistical Science. Vol. 1 , 54 – 77 

[4] Davison, A. C. , and Hinkley , D. V. (1997). Bootstrap Methods and Their Applications. Cambridge University Press, 
Cambridge. 

[5] Chernick, M. R., and LaBudde, R. A. (2014). An introduction to bootstrap methods with applications to R. John 
Wiley & Sons. 

[6] Chernozhukov, V., and Hong, H. (2003). An MCMC approach to classical estimation. Journal of Econometrics, 
115(2), 293-346.  

[7] DiCiccio, T., and Efron , B. (1992). More accurate confidence intervals in exponential families. Biometrika 79, 231 
– 245 . 

[8] Fan, Y., and Li, Q. (2004). A consistent model specification test based on the kernel density estimation. 
Econometrica, 72(6), 1845-1858. 

[9] Freedman, D. A. (1981). Bootstrapping regression models. Annals of Statistics, 9, 1218 – 1228 

[10] Flachaire, E. (2007). Bootstrapping heteroscedastic regression models: wild bootstrap vs pairs bootstrap. 
Computational Statistics and Data Analysis, 49 (2), 361-376 

[11] Horowitz, J. L., and Markatou, M. (1996). Semiparametric estimation of regression models for panel data. Review 
of Economic Studies, 63(1), 145-168. 

[12] Greene, W. H. (2021) Econometric Analysis, 8th edn, Pearson 

[13] Gujarati, D. N., Porter, D. C., and Gunasekar, S. (2012). Basic econometrics. McGraw-Hill Higher Education 

[14] James, G., Witten, D., Hastie, T., and Tibshirani, R. (2023). An Introduction to Statistical Learning. Publisher. 

[15] Politis, D. and Romano, J, (1994). The Stationary bootstap. The journal of American Statistical Association. 89 
(428), 1303-1312 

[16] Lind, D. A., Marchal, W. G., and Wathen, S. A. (1967). Statistical Techniques in Business and Economics (2nd ed). 
Publisher 

[17] Liu , R. Y. (1988). Bootstrap procedures under some non i.i.d. models. Annals of Statistics 16, 1696 – 1708 

[18] MacKinnon, J. G., and White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with 
improved finite sample properties. Journal of Econometrics, 29(3), 305-325. 

[19] Wu , C. F. J. (1986). Jackknife, bootstrap and other resampling plans in regression analysis (with discussion). 
Annals of Statistics 14 , 1261 – 1350 

[20] White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for 
heteroskedasticity. Econometrica, 48(4), 817-838. 



World Journal of Advanced Research and Reviews, 2024, 23(03), 2250–2259 

2257 

Appendix 

 

Figure 1 Central Limit Theorem 

 

 

Figure 2 Bootstrap distribution generated from original sample 
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Figure 3 Accuracy of confidence intervals when model is correctly specified 

 

 

Figure 4 Size or width of confidence intervals when model is correctly specified 
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Figure 5 Accuracy of confidence intervals when residuals of the model are heteroscedastic 

 

 

Figure 6 Size or width of confidence intervals when residuals of the model are heteroscedastic 

 


