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Abstract 

Introduction/Background: Deep neural networks have shown great promise in advancing drug discovery and 
precision medicine. By leveraging large amounts of complex biomedical and chemical data, deep learning approaches 
can identify novel targets, predict drug-target and drug-drug interactions, generate new molecular structures, and assist 
in personalized treatment selection and development. However, fully utilizing deep learning techniques for 
optimization across the drug development pipeline remains an ongoing challenge.  

Materials and Methods: A comprehensive literature review was conducted using major bibliographic databases 
including PubMed, Web of Science, and Scopus. Search terms included combinations of "deep learning", "drug 
discovery", "precision medicine", "biomedical data", and "neural networks". Over 200 papers published between 2010-
2023 related to deep learning applications in pharmacology and genomics were identified and reviewed.  

Results: Deep learning has been widely applied at various stages of the drug discovery process including target 
identification/prioritization, lead generation/optimization, and prediction of molecular properties. Convolutional 
neural networks are commonly used for the representation and classification of biological sequence and image data for 
tasks such as gene expression analysis and pathogen detection from microscopy images. Graph neural networks 
effectively model compound structures and interactome networks to predict molecular bindings and disease 
associations. Multi-modal neural networks integrate diverse data types for personalized treatment response prediction 
and biomarker discovery. Challenges remain around data and model interpretation, generalization to new 
targets/diseases, and integration across domains. 

Discussion: While deep learning has shown promise, rigorous benchmarking and validation on real-world clinical 
endpoints are still needed to establish usefulness in decision-making. Data and model transparency must be improved 
to enable scientific insights. Privacy and security risks accompanying "real world" biomedical big data will require 
ethical practices. Standardization and sharing of resources/protocols could accelerate progress by enabling comparison 
of techniques. Combining deep learning with other AI paradigms like causal inference may further improve utility in 
drug discovery and precision healthcare.  

Conclusion: Deep neural networks demonstrate potential for optimizing drug development and precision medicine 
applications. Continued advancement relies on addressing challenges around data, models, validation, and ethics. Multi-
disciplinary collaborations integrating machine learning, molecular biology, medicine, and other domains are needed 
to fully realize benefits to patients.  

Keywords: Deep Learning; Drug Discovery; Precision Medicine; Neural Networks; Graph Neural Networks; De Novo 
Drug Design; Variational Autoencoders; Pharmacokinetics; Pharmacodynamics. 
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1. Introduction 

Deep neural networks have demonstrated tremendous potential for advancing drug discovery and optimizing precision 
medicine applications. In their capabilities of identifying patterns and representations from large and complex 
biomedical datasets, deep learning techniques are seen to be capable of transforming various stages of the drug 
development process including target identification to response prediction (Askr et al., 2023; Bahi & Batouche, 2018; 
Baskin et al., 2016; Gawehn et al., 2016). Nevertheless, it is argued that full utilization of the potential opportunities of 
deep learning remains dependent on several established and remaining issues associated with data, models, validation, 
and interdisciplinary application of the technology in different sciences. This present work is therefore an attempt to 
systematically review the literature on deep neural network interventions that have been explored for drug discovery 
and precision medicine to determine the known gaps and make recommendations on the future work that needs to be 
done to fully unlock the potential of deep learning for patients.  

 The application of deep learning has been seen concerning the drug discovery process of sorting/exploring new targets 
of drugs. Part of the very first stage of the process is targeting selection, which codes for when one tries to anticipate 
which proteins could possibly become suitable drug targets according to the projected functions of proteins in affliction 
pathways (Askr et al., 2023). For instance, gene expression along with molecular interactivity is analyzed using 
convolutional neural networks (CNNs) that in turn help to identify potential targets (Camacho et al., 2018; Mamoshina 
et al., 2016; Venkatasubramanian, 2019). CNNs can learn hierarchical representation in a fundamentally direct manner 
from the biological sequence and network structure data. Further, GNNs have been shown as effective tools for 
reconstructing protein interactomes and disease ontology graphs to predict potential drug targets (Bai et al., 2020; Zeng 
et al., 2020). In this way, through the ability to pick up context and move information through the interactome links, the 
GNN approach can reveal targets that are not easily discovered when one focuses on a narrow region. As depicted in 
Figure 1 below, GNNs present an effective solution in our case of integrating multi-modal biological network data for 
the prioritization of the targets. Other pharmacological and genomic deep learning models pre-trained with large raters 
have also been used to predict disease-related protein targets based on their functional annotations (Askr et al., 2023; 
Feng et al., 2018). 

Figure 1 above illustrates a simple multilayer perceptron that can be used to introduce concepts related to neural 
network architecture and learning. The left diagram (Figure 1a) shows an input layer, a single hidden layer, and an 
output layer, represented by circles for each layer. Some of the weights were such as w11, w12, and w13 shown in 
Figure 1b while illustrating the relations between the layers of the network without the hidden layer however, the roles 
and functions are the same. 

These first-mentioned networks are called feedforward networks or, in other words, multilayer perceptrons, or MLP 
and they are currently being used comprehensively (McCulloch & Pitts, 1943; Rosenblatt, 1958). As already 
demonstrated in Fig 1, feedforward networks contain layered nodes where each node mimics a biological neuron. They 
pass information from an input layer through one or more hidden layers to the output layer while they can implement 
nonlinear transformation of data (Hecht-Nielsen, 1989; Rumelhart et al., 1986). The connections between nodes are 
weighted, and it is by adjusting these weights that the network can learn patterns in its training data.  

 

Figure 1 A multilayer perceptron network with (a) an input layer, a single hidden layer, and an output layer and (b) a 
simplified diagram showing direct connections from the input to output layers. 

Deep learning has also been applied in other computational methods in the identification and enhancement of potential 
leads in drug discovery and drug repositioning. In addition, architectures such as convolutional neural networks and 
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graph neural networks, have been trained to predict molecular descriptors or quantities of interest such as solubility, 
permeability, and toxicity of compounds to facilitate the optimization of leads (Wallach et al., 2015; Withnall et al., 
2020). These approaches utilize extensive molecular fingerprint databases and accurately encode hierarchical 
structural patterns and substructure linkages required for physicochem­ical description. Particularly, graph neural 
networks proved high efficacy by modeling compounds as graphs where nodes, atoms, and edges are bonds (Withnall 
et al., 2020). Structure-based deep learning methods as those outlined above might help medicinal chemists in further 
refining from lead molecule to lead molecule, to afford the best pharmacologic characteristics together with minimal 
risk to safety concerns. Neural networks have also been employed for large-scale similarity searching for computational 
drug repurposing based on the molecules with known structures or activities matched to new disease targets (Bahi & 
Batouche, 2018). This has helped in the identification of new indications for old compounds making the development 
processes short and risky compared to the development of new drug molecules from scratch. 

For that reason, Artificial neural networks (ANNs) are a type of computational modeling based on biological neural 
systems. Specifically, ANN desires to perform as the human brain does while analyzing large data sets and learning from 
them (Drug Discovery Today 2021). Essentially, they are a complex arrangement of interconnected nodes that 
collectively solve the problem of pattern recognition to make predictions. That is why ANNs are complicated to 
understand from the inside; however, many visualization tools explain how the networks and the learning processes 
look. Depending on their development during the last decades, the ANNs’ structures have become more and more 
complex. In our case, using a similar approach, it has become challenging for students and new entrants to the field of 
artificial intelligence to have an ability and a feel of how even the simplest models of ANN are constructed and how they 
work. Visualization is useful in constructing mental representations that can enhance the speed and ease of learning by 
the students while aiding the learners to grasp concepts being described mathematically. Fig. 1 from Drug Discovery 
Today (2021) proves to be a valuable source for constructing a simplified yet relevant model of feedforward neural 
networks.  

1.1.  Statement of the Problem  

PDE methods have also been used successfully in pharmacokinetic/pharmacodynamic (PK/PD) modeling and 
simulations to identify the rate and extent of Absorption, Distribution, Metabolism, and Excretion of drugs in the body 
over time (Askr et al., 2023; Bahi & Batouche, 2018). Deep learning models such as recurrent neural networks which 
include long short-term memory models are ideal for developing temporal profiles of drug concentrations and 
responses based on the dosage history, physiological characteristics, and properties of the molecular structure 
(Demyanov et al., 2020; Martins et al., 2019; Vamathevan et al., 2019). As compared to the conventional methods, LSTMs 
can provide a significantly better estimation and capture long-term dependencies of the dynamic PK/PD processes. 
Convolutional neural networks have also been used for the prediction of time series of drug concentration from a one-
dimensional input sequence of dosage regimens and subject data (Vamathevan et al., 2019). It has been noted that deep 
learning-based PK/PD models could further improve the possibilities of individualized pharmacotherapy by making 
better dosing based on the patient’s characteristics.  

Although both deep learning has pushed the frontier of many stages of drug discovery and Precision Medicine, critical 
questions at present remain that prevent the full realization of potential of deep learning and its broader clinical 
applicability. This is particularly due to the effect that the quality of the curated datasets that feed deep neural networks 
has on the accuracy of predictions based on such networks (Lam et al., 2019; Ma et al., 2021). Accumulation of publicly 
available biomedical and drug discovery databases increases unabated, however, combining information originating 
from different sources and environments adds various illusions and voids that plug predictive precision from models 
trying to learn across heterogeneous data (Esteva et al., 2019; Jia et al., 2019). Some limitations also include issues of 
validation and later generalization of the deep learning models that have been developed to other sets of data apart 
from the sets that were used in training. Biomedical data are limited mainly composed of complex, containing the subject 
of cohort effects, and the identification of reliability across patient populations and therapeutic scenarios is considerably 
challenging for model confirmation (Jiang et al., 2020). Some pre-clinical validation attempted in the DL of cancer have 
produced optimistic outcomes in areas like target prediction, however, these are far from clinical trial necessities, and 
it is without any doubt that very stringent testing is required to have the technology in a position to inform everyday 
clinical decisions (Wang et al., 2020).  

 However, a stronger weakness in every deep learning approach to drug discovery is the official inability to explain the 
patterns the model picks and how they make their predictions (Ahmed et al., 2022; Bhatt et al., 2020; Pan et al., 2021). 
This limitation prevents the ability to gain the mechanistic understanding required for scientific advancement and 
regulatory approval solely on the basis of a machine’s predictions (Good et al., 2022; Mueller et al., 2021; Yousefi et al., 
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2019). On the same note, in precision medicine, clinicians need a clear and accurate rationale behind any diagnosis, 
prognosis, or even treatment choices (Rudin, 2019; Topol, 2019; Yu et al., 2019).  

A key challenge for deep learning in biomedicine is the effective integration of diverse data types including sequences, 
structured records, images, and free text (Askr et al., 2023). Multimodal integration allows comprehensive modeling by 
leveraging multiple complementary views of phenotypes, mechanisms, and outcomes. Multitask deep learning 
approaches utilizing joint or transferred representations have shown promise for unifying genomic, chemical, clinical, 
and other biomedical domains (Hu et al., 2019; Min et al., 2017; Raganato et al., 2017; Zhang & Poole, 2018). However, 
techniques for deep multimodal fusion and cooperation between task-specific modules require further refinement to 
fully capitalize on diverse data sources. Addressing challenges related to data heterogeneity, sparse annotations, and 
domain shifts will help deep learning models better generalize across applications and translate to real-world clinical 
use. 

1.2. Aim and Objectives 

With these considerations in mind, this comprehensive review aims to evaluate the state of the science for applications 
of deep learning across drug discovery and related precision medicine domains. Specifically, the objectives are: 

 Provide an overview of deep learning techniques investigated for problems in target identification, lead 
generation and optimization, interaction prediction, and clinical applications.  

 Critically analyze the datasets, models, and validation approaches used in key studies applying deep learning 
to drug discovery.  

 Identify major gaps and limitations in existing research relating to data availability and quality, model 
interpretability, and integration across scientific domains. 

 Suggest directions for future work developing deep learning techniques with broader applicability and 
generalizability through improved data resources, multimodal modeling approaches, and rigorous prospective 
validation.  

 Discuss regulatory, ethical, and technological considerations important for translating deep learning research 
into practice and improving human health. 

By addressing these objectives, this review aims to comprehensively evaluate progress, challenges, and opportunities 
for advancing the capabilities of deep learning to revolutionize drug discovery workflows and enable more effective 
precision medicines. The next sections will cover the methods used to survey the literature, categorize findings, and 
analyze key works applying deep neural networks across target identification, compound generation, and other areas. 

2. Methods and Materials 

To achieve the outlined objectives, a systematic review of the published literature on applications of deep learning 
across drug discovery domains was conducted. Both qualitative and quantitative methods were employed to explore 
relevant studies, map trends over time, analyze techniques and findings, and identify current challenges. The review 
aimed to provide a comprehensive yet critical perspective on progress and limitations in this developing field. No 
primary experimental work was conducted as part of this study. 

2.1. Search Strategy and Literature Sources  

A multifaceted search strategy was adopted to locate peer-reviewed articles reporting on deep learning techniques for 
problems in target identification, compound design and optimization, interaction prediction, clinical support, and 
related areas. The following electronic databases were searched from inception to February 2023:  

 PubMed  
 MEDLINE 
 EMBASE 
 Web of Science 
 Scopus 
 IEEE Xplore 
 ACM Digital Library 

Search terms used in the title, abstract, and keyword fields included combinations and variants of "deep learning", 
"artificial neural networks", "drug discovery", "target identification", "compound design", "adverse drug reactions", and 
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"precision medicine". Reference lists of relevant articles were also manually screened to identify additional studies not 
captured in the databases. Conference proceedings from major artificial intelligence and biomedical informatics 
meetings from 2015 onwards were manually reviewed to incorporate recent work. There were no language restrictions 
applied to the search strategy or inclusion criteria.  

2.2. Eligibility Criteria 

Studies meeting the following criteria were included in the review: 

 Applied deep learning techniques including convolutional neural networks, graph neural networks, recurrent 
neural networks, or other related approaches.  

 Focused on problems in target identification, compound generation, property optimization, biological 
interaction prediction, clinical applications, or aspects relevant to drug discovery workflows.  

 Reported quantitative model development and validation results using real biomedical/pharmacological 
datasets. 

 Published as full-text peer-reviewed journal articles or extended conference papers from 2015 onwards to 
reflect recent advances in deep learning.  

 Written in the English language. 

Studies were excluded if they solely discussed methodology without providing application results, analyzed non-
biomedical datasets, or focused purely on fundamental deep learning algorithm development without a drug discovery 
context. Opinion articles, abstracts, posters, and unpublished work were also excluded. 

2.3. Data Extraction and Analysis 

Relevant studies identified through the search process underwent full-text screening for eligibility by two independent 
reviewers. Data was extracted on key study details such as the specific deep learning technique, type and source of 
biomedical data, prediction task addressed, model performance evaluation metrics, and main findings. A qualitative 
synthesis was conducted to categorize studies according to the drug discovery problem domain and map trends over 
time. Quantitative analysis on aspects like the most applied models and datasets helped identify patterns in deep 
learning usage across target identification and other areas. Critical appraisal evaluated study strengths and limitations 
in terms of model validation, generalizability, and translation potential. 

3. Results and Discussion 

3.1. Principles of deep learning 

According to researchers such as Mamoshina et al. (2016), deep learning is a type of machine learning that utilizes 
multiple layers of artificial neural networks to perform complex functions such as object detection, speech recognition, 
and machine translation. It takes inspiration from the networks of neurons in the human brain and helps computers 
learn from large amounts of data. Deep learning algorithms such as deep neural networks, convolutional neural 
networks, and recurrent neural networks have achieved state-of-the-art results in many domains including drug 
discovery and precision medicine according to studies by Chen and Snyder (2013), Collins and Varmus (2015), Jameson 
and Longo (2015).  
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Figure 2 The architectures of some commonly used neural networks include the fully connected deep neural network, 
convolutional neural network, recurrent neural network, and autoencoder. 

One of the fundamental deep learning models is the multilayer perceptron which consists of an input layer, hidden 
layers, and an output layer as shown in Figure 2 below. According to equation 1, the value Yi at the output neuron i is 
calculated as a nonlinear function g of the weighted sum of inputs from all neurons in the previous layer, where Wij is 
the weight of the connection between the jth input and ith output neuron and aj is the activity or output of neuron j as 
explained in studies such as Baskin et al. (2016) and Askar et al. (2023). The weights are learned during the training 
process by propagating errors backward to update the weights to minimize the error between predicted and true 
outputs. This architecture enables deep learning models to learn complex patterns in large, high-dimensional data. 

𝑌𝑖 = 𝑔 (∑ 𝑊𝑖𝑗 × 𝑎𝑗

𝑗

)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Deep learning is a further class of machine learning algorithms that utilize multi-layered neural networks to perform 
complex tasks such as image and speech recognition, natural language processing, and more. Deep learning algorithms 
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are modeled after the human brain where information is processed through layers of neurons that form connections 
with each other. A deep learning model is composed of an input layer, multiple hidden layers, and an output layer as 
shown in the neural network diagram in Figure 2. The input layer accepts the raw data that is fed into the network. In 
deep learning, this input data can include images, text, DNA sequences, or other types of data. The input is passed to the 
first hidden layer where a set of neurons collectively analyze different aspects of the input. Each neuron in one layer 
connects to various neurons in the next layer through weighted connections.  

The weightage of these connections, represented by 𝑊𝑖𝑗 in equation 1, determine how much importance is given to 
different inputs while passing information between the layers. These connection weights are learned by the network 
during training. During the forward pass, each neuron in a layer calculates its activation value based on the weighted 
sum of inputs from the previous layer using an activation function such as the sigmoid or rectified linear unit (ReLU) 
function. Non-linear activation functions allow the network to learn complex patterns from the data that would not be 
possible with simple linear functions. The output of the first hidden layer then acts as input for the second hidden layer 
where further processing is done to extract even more complex features. This process continues through multiple 
hidden layers with the final output layer producing the network's predictions or decisions for the given input. 

The data flow of a sample neural network along with one input two hidden and one output layer is shown in Figure 2. 
The first layer is the input layer which contains 4 neurons which are represented as x1, x2, x3, and x4. These are taken 
forward to the first hidden layer comprising three neurons labeled a1, a2, and a3 respectively. Connection weights 
between the input and first hidden layer neurons are represented by W11, W21, etc. where the first digit indicates the 
connection to the hidden neuron and the second digit indicates the input neuron. For instance, W11 is the weight of 
the connection between an input x1 and hidden neuron a1. In every neuron within the hidden layer, the weighted inputs 
are summed while applying an activation function to yield an output. These outputs from the first hidden layer thus 
become the inputs into the second layer or another hidden layer depending on the specific architecture of the ANN that 
has been designed.  

The second hidden layer embeds two neurons which have been named a4 and a5 respectively. The weights in between 
the first and second neurons of the hidden layers are represented as W41, W42 … so the last neuron of the last hidden 
layer node feeds forward to the only output node where a weighted sum is done to produce network output. The weights 
between the final hidden layer and the output neuron are defined as W61, and W62 respectively. In this way, the 
designed multilayered neural network is trainable to capture other higher-order nonlinear interactions or relationships 
between the inputs to output or vice-versa with high accuracy. While training a variety of inputs and corresponding 
outputs are used to train the network and the weights are adjusted using certain mathematical models such as 
backpropagation to minimize the Error between actual output and predicted output.  

3.2. Origins of specificity in protein-DNA recognition 

According to the review by Rohs et al. (2010), the readout from the protein–DNA complex is basically of two kinds, 
namely base readout and shape readout. Base readout includes contact point, and side chain mediated readout, where 
side chains on a cognate amino acid interact with functional atoms in a specific DNA base to read the differences in the 
DNA base chemistries. Structure reading out, concerns the contacts that have their dependence on the size and shape 
of the DNA structure rather than the base-by-base contacts.  

As depicted in Figure 2 base readout can be subclassified as recognition in the major groove compared to recognition 
in the minor groove of the DNA double helix. The major groove recognition is to distinguish between the families of 
proteins, whereas the minor groove can provide more refined selectivity between proteins that belong to the same 
family. Another distinction is global shape consisting of the identification of the bending or twister of the DNA overall 
as compared to local shape is kinks or compressions between base pair steps or narrowing of the minor groove.  

 The review reminds us, that multiple combinations of these various mechanisms for readout enable single proteins to 
convey improved DNA-binding selectivity (Rohs et al., 2010). For instance, the Major groove base readout is employed 
by the transcription factors for broad recognition of families, and with the Minor groove or local shapes to recognize 
related sequences more finely. moreover, this integrated framework shows the possibility and necessity for various 
readout types to function in combination for sufficient sequence differentiation. Moreover, the deep learning models 
use multiple layers of non-linear processing functions to discover the high-order relationships in a large amount of data 
as in equation 1 below. It assists applications such as drug response prediction since it identifies non-linear gene-drug 
interactions. Specificity of Protein-DNA recognition also involves a combination of base readout and shape readout at 
multi-grade as described in figure 2. Integrated multi-level readouts enable proteins to attain a repertoire of precise 
resolution to DNA discriminations that are strategized for usual gene regulation.  
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3.3. Application Of Deep Learning in Compound Property and Activity Prediction 

Machine learning in particular deep learning has impacted the field of compound property and activity prediction in 
drug discovery. Compared with other paradigms of machine learning, such as support vector machines, deep neural 
networks (DNNs) are capable of handling high-dimensional input data with relatively little feature engineering. This 
advantage was also seen by Dahl et al. in the Merck Kaggle challenge whereby DNNs were more accurate than the 
random forests in most of the targets Askr et al., 2023). The models used in deep learning can analyze thousands of 
descriptors at the same time, avoid overfitting by applying the dropout procedures, and be optimized with the help of 
hyperparameters. The common architecture of the machine is composed of an input layer that describes molecular 
structure; this can be represented in several ways such as fingerprints or descriptors. In graph convolutional neural 
networks (CNNs), the input can be the molecular graph itself, the atoms, and bonds at different levels (Duvenaud et al. 
2015 cited in Askr et al. 2023). This is especially because this approach facilitates a closer representation of the 
molecular structures, thus including more features for the prediction of properties. Due to the freedom of constructing 
deep architectures, it allows researchers to fine-tune models to make specific predictions thus enhancing the drug 
discovery processes (Mamoshina et al., 2016; Baskin et al., 2016). 

 

Figure 3 The figure shows a graph convolutional neural network approach for analyzing molecular structures.  

The molecular graph first undergoes a convolution operation using a neural network to encode each atom and bond 
into fixed-length vectors. These encode local neighbourhood information at different distances from each atom. The 
convolutional outputs are then processed with a SoftMax and summed to generate differentiable "neural fingerprints" 
of the compound. These fingerprints summarize the structure and pass through fully connected layers to produce the 
model's predictions. The bits in the fingerprints are learned during training to best represent structural features 
important for the target task. 

The convolution layer in deep learning models for compound property prediction is especially significant since it is 
responsible for the hierarchical feature extraction from the molecular structure. Every neural network in this layer is 
tuned to understand specific details regarding the molecule including the local atomic contexts or segments. This is 
because, this method enables the model to capture intricate and latent features in the molecular structure that may have 
a connection with the property under prediction (Wallach et al., 2015). After the convolutional layer, the pooling layer 
is usually employed to decrease the dimensionality of features while preserving relevant information. In Figure 3 the 
SoftMax function is applied to the outputs of the implemented neural networks to normalize the further process (Baskin 
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et al., 2016). The last integration step often sums up features extracted from separate levels of molecular abstraction 
storing both local and global structure features. Such a multi-level approach is important for the correct property 
prediction as it considers all the scales of molecular structure at once. The combined features are then passed to a fully 
connected neural network that is further used for processing and producing the final output (Gawehn et al., 2016). The 
efficiency in processing information at different times makes this architecture suitable for predicting complicated 
molecular properties. 

The general framework of deep learning models in predicting the compound property is generally structured as 
depicted in Figure 3. The input layer normally gives the molecular structure that can be represented in various ways 
such as the fingerprints or descriptors. An example of such frameworks is graph convolutional neural networks, 
depicted in Fig. 3 where an example of input can be the graph of the molecule itself – with atoms and bonds attributed 
at different levels (Duvenaud et al., 2015 cited in Askr et al., 2023). As illustrated in Fig 3, the convolutional layer is a 
critical component that is responsible for obtaining hierarchical features of molecular structure. Every one of the neural 
networks in this layer contributes a particular characteristic of the molecule, for example, atomic neighborhood or sub-
groups. That way, it is possible for the model to identify sophisticated features that are in the molecular structure and 
that might be related to the property that is being predicted (Wallach et al., 2015).  

The pooling layer is also commonly used right after the convolutional layer to down-sample the features extracted while 
preserving their pertinent data. In Figure 3, this is denoted by the SoftMax function acting on each of the neural 
networks’ output. It becomes easier to normalize the outputs with the SoftMax function and make them ready for the 
subsequent processes (Baskin et al., 2016). The last step depicted in Figure 3 involves summing the features that are 
obtained after they have been processed to different levels of molecular representation. This method ensures that the 
model considers both local and global structures hence enhancing the property prediction accuracy. These are then 
passed through a feed-forward fully connected neural network for further processing and generation of the output 
(Gawehn et al., 2016).  

One of the major advantages of this architectural style is that it is capable of performing multitask learning. Mayr et al. 
(as cited in Askr et al., 2023) have also explained how multitask deep neural networks can predict multiple properties 
or activities as illustrated by the application in the winning model of the Tox21 challenge. In their study, they used 
12,000 compounds and 12 high throughput toxicity assays and one of the examples where they were able to 
demonstrate the power of deep learning for solving complicated multi-dimensional prediction problems (Askr et al., 
2023). The ability of multi-task learning in deep neural networks toward drug discovery was again vindicated by 
Ramsundar et al. cited in Askr et al. (2023). Their systematic investigation showed that the multitask models yielded 
superior performance when compared to both single-task models as well as traditional machine learning algorithms 
such as the random forests. This approach takes advantage of the information flow between the various tasks which 
goes a long way in helping the model to learn better generalize features (Askr et al., 2023).  

 Not only multitask learning, but the combination of multiple datasets is also quite impactful approach when it comes 
to deep learning models in drug discovery. For example, Lenselink et al. (cited in Askr et al., 2023) included protein 
descriptors in the deep learning models which are called proteochemometric (PCM) modeling. Their study which 
considered more than 314K target-compound interaction data indicated that PCM implementations improve the deep 
neural networks performance even more especially in terms of Boltzmann enhanced discrimination of ROC (Receiver 
operating characteristic) curve (BEDROC) (Askr et al., 2023). The use of deep learning in the prediction of the 
compounds’ properties goes beyond the descriptor-based methods. Novel developments have emerged around 
representation learning where instead of forcing the neural networks to identify the molecular structure we make the 
neural networks learn the representations from structures. This approach discards the use of some predetermined 
molecular descriptors that might hamper the identification of relevant features for the prediction task at hand (Askr et 
al., 2023).  

In this category, we have cited the graph convolutional model we are going to illustrate in Figure 3. Based on the Morgan 
circular fingerprint method, Duvenaud et al., use the neural fingerprint method (Duvenaud et al., as cited in Askr et al., 
2023). This approach translates the 2D molecular structure to a state matrix with atom and bond data in it. Convolution 
under the state matrix takes place through single-layer neural networks at various levels after considering the 
interference of neighboring atoms. The resultant vectors are then transformed and added to generate the final neural 
fingerprint for encoding molecular-level information (Askr et al., 2023).  

 Neural fingerprinting employs several benefits over traditional fingerprinting techniques (Horn et al., 2017). First, it 
constructs task-specified descriptors that are trained in the training process and may have better representation 
capability for the features needed for the prediction task. Second, these descriptors are fully differentiable, which means 
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that you can optimize this entire model end-to-end. Finally, it is possible to display the significant substructures in the 
graph convolution model, which allows an understanding of the prediction results (Askr et al., 2023). As graph 
convolutional models have been proven to achieve good performance in compound property prediction, researchers 
continue similar studies. Several types of developments and enhancements to the fundamental technique have been 
introduced by other authors including Kearnes et al., Xu et al., Li et al., and Coley et al. As stated by Askr et al ., 2023. 
These advancements have produced more complex models with the capability of predicting various molecular 
characteristics and behavior (Askr et al., 2023).  

3.4. De novo design through deep learning 

 Machine learning itself has pushed the boundaries of De novo design of new molecules and provided the tools for 
designing novel chemical compounds with certain given characteristics. The most promising method for this field 
belongs to the VAE family, which is shown in Fig. 4, (Askr et al., 2023). The VAE approach is a major enhancement in the 
field of computational chemistry for generating new molecules based on the continuous representation in a latent space. 
This method has also demonstrated great promise in several drug discovery workflows ranging from lead identification 
to compound space exploration (Baskin et al., 2016; Gawehn et al., 2016). De novo molecular design meant to sample 
and optimize structures in silico can help enhance and accelerate the drug discovery process and can revolutionize the 
way high-throughput screening from resource-intensive to a more realistic problem(Chan et al., 2019). Also, VAEs can 
be applied to chemical areas, that are currently not easily accessible or forbidden by the canonical synthesis protocols, 
which could result in novel classes of therapeutic agents. (Ekins, 2016). 

As shown in Figure 4, The VAE method has several components as shown next. The process starts with the input 
molecule which can be in the form of a Simple Molecular Input Line Entry Specification (SMILES string) or a graph 
structure. The second operation is to feed this input to an encoder neural network which maps a discrete molecular 
representation, Z, to a continuous numerical vector in the latent space. This is quite important as it identifies a latent 
space representation where one can easily interpolate between molecular structures (Askr et al., 2023). The encoder 
network can achieve the desired objective of reducing the highly informative molecular structure data into a less 
complex form having fewer dimensions (Mamoshina et al., 2016). This compression step is crucial for learning patterns 
and underlying structures much akin to the relationships between features of the molecules to be able to generate valid 
chemical structures. Again, the new representations learned by the encoder of the generative model have a variety of 
applications, mainly property prediction and similarity search tasks for molecular structures (Wallach et al., 2015; Wu 
et al., 2018). 

 

Figure 4 The figure illustrates the variational autoencoder (VAE) method for molecular design. An encoder neural 
network transforms a discrete molecular structure into a continuous Gaussian distribution in latent space. 

This distribution is reparametrized, and a point is sampled from it. A decoder neural network then reconstructs a 
molecule from this latent representation. For generating new molecules, only the decoder is used, taking sampled points 
from the learned latent space as input. 

The sample is then passed through a noise distribution sampled from the Gaussian distribution with a given mean (μ) 
and variance (σ). This step becomes random in some way and that makes sense because the model needs to produce 
different molecular structures. From this reparametrized point, a sample is drawn to make a new Stochastic Latent 
Space (z). The reparameterization trick is one of the great innovations in the VAE, as it makes derivatives of the sampling 
away from zero and enables the process to backpropagate gradients (Askr et al., 2023). This stochastic aspect is 
important for creating enhanced and new forms of structures It also enables the model to sample different zones of the 
latent space in the training and generation process (Bahi & Batouche, 2018). The assumption of Gaussian distribution 
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in the latent space also opens the possibility of traveling from one molecular structure to another by gradually modifying 
a few of the latent features or by sampling molecules closer to the known active ones (Wenzel et al., 2019).  

Lastly, a decoder neural network tries to convert this latent vector back into the initial molecule, which presupposes 
that the model learns how to create correct chemical structures using the continuous latent domain (Askr et al., 2023). 
The role of the decoder is to guarantee that all the synthesized structures are chemically reasonable and that they can 
be synthesized. During training, the model can bring the points in the latent space back to realistic molecular structures 
and is generative (Withnall et al., 2020). The reconstruction process frequently consists of predicting SMILES strings or 
graph structures that can be decoded into 2D or 3D molecular representations for other purposes of analysis or 
representation (Cereto-Massagué et al., 2015). The decoder’s ability to produce valid structures from continuous latent 
representations makes VAEs highly suitable for de novo molecular design, as the method provides a way to navigate 
chemical space that makes sense and can be controlled (Dara et al., 2022).  

The strength of this way of thinking is that it provides for the meaningful and seemingly endless reconstruction of 
chemical space. After the training, the VAE could be directly employed to generate completely novel molecules by 
sampling from the learned latent space and then decoding the resultant vectors. This method has several benefits over 
the conventional rule-based approach of de novo design: in particular, the capability of producing different structures 
and the future possibility of the directed evolution of molecular characteristics (Askr et al., 2023). Since the latent space 
is continuous, the various molecular structures can be transformed from one to the other which makes it possible for 
the optimization of multiple properties (Wenzel et al., 2019). Moreover, as stated by Wu et al., 2018 the learnable latent 
space for other tasks includes similarity searches, improving property prediction, and transfer learning to other 
chemical-related fields. Because of the versatility of the VAE approach, it has been utilized in different stages of the drug 
discovery process including hit identification, lead optimization, and even in predicting the synthetic accessibility of the 
molecules (Ekins, 2016; Gawehn et al., 2016).  

 Following the VAE framework, even more, advanced plans have been proposed for de novo molecular design. For 
example, Kadurin et al. (As cited in Askr et al., 2023) employed VAEs for the generation of new molecular structures 
that can be controlled with GANs for targeting anticancer properties. Separating the generation of the latent-space 
interpolation from the reinforcement learning motivates the use of the VAE architecture–the former benefits from the 
VAE’s well-defined latent space, and the latter benefits from the GAN’s ability to generate realistic and diverse molecular 
conformations. This hybrid has proven useful where the aim is to generate molecules with certain properties but with 
distinct structures (Dash et al., 2019). Some other authors conducted similar research concerning the reinforcement 
learning joint with the VAEs to control the generation process according to the preferred molecular characteristics 
(Stokes et al., 2020). These hybrid techniques show the application and the adaptability of deep learning methods in 
dealing with the corresponding issues in molecular design and indicate the possibility of using mixed machine learning 
approaches for developing more efficient and specific generative frameworks (Chan et al., 2019).  

The other breakthrough in this field is the use of reinforcement learning to help in the synthesis of molecules for the 
required functions. Jaques et al. (as cited in Askr et al., 2023) expressed Deep Q-learning integrated with recurrent 
neural Markup Language (RNN) to synthesize SMILES strings to specific molecular activity profiles which include cLogP 
and QED drug-likeness scores. However, this approach initially involves the handwriting of rules to penalize undesirable 
structures, thereby, pointing to the problem of achieving between property optimality and structural realizability. 
Direct optimization is possible in molecular design by using reinforcement learning because it is possible to instruct the 
model to create new molecules that possess the desired properties by rewarding the correct output. The advantages of 
using this type of approach can be seen in the enhanced drug-like properties of the generated molecules, their solubility, 
and sometimes even specific biological activities of the designed molecules (Ekins, 2016). However, the problem of 
identifying the appropriate reward functions that encompass the multiplicity of drug-like properties has remained an 
open field of research to date (Dara et al., 2022).  

 To overcome these limitations, Olivecrona et al. (as cited in Askr et al., 2023) forwarded a policy-based reinforcement 
learning strategy. This method retrains generic RNNs specifically for the generation of molecules with desired 
properties, and the examples shown here prove that this method yields good results when it comes to producing 
compounds that are likely to interact with target proteins. The policy-based approach provides more stable training 
compared to the value-based approaches such as Deep Q-learning, to help give better control of the generated structures 
(Stokes et al., 2020). Different applications of this method have been described as offering high promise in crafting 
exactly tailored libraries of representatives according to the properties required, which may lead to expediting the 
stages of hit-to-lead pharmacophore and lead optimization during drug discovery (Chan et al., 2019). This is frequently 
expressed as the capacity to ‘freeze’ some layers of pre-trained models also makes it possible to incorporate prior 
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knowledge domain-specific in generative models, thus it is possible to adjust models to the therapeutic areas or 
chemical classes (Ekins, 2016; Gawehn et al., 2016).  

In the following sub-section, we discuss some of the limitations and remaining challenges in the field of deep learning-
based de novo design. However, some concerns are critical to the success of generative models such as mode collapse 
in that the model ends up generating only a few structures with variations. This has been underscored in recent surveys 
and has led to a lot of research towards the development of more reliable and varied generative models (Askr et al., 
2023). Mode collapse can restrain chemical space sampling and could fail to discover noteworthy and useful structures 
Dara et al., (2022). There are several approaches, which was suggested by the authors to combat some of these 
problems, such as the use of different training datasets, changed loss functions, and new architectural solutions in the 
generative models (Wu et al., 2018). Another problem is in understanding and verifying the generated structures and 
their synthetic accessibility and in accurate prediction of their biological activity (Ekins, 2016). Solving these issues calls 
for interprofessional cooperation in which machine learning engineers, chemists, and biologists need to work together 
to develop better and more useful generative models (Chan et al., 2019).  

 These DL approaches need to be integrated with conventional drug discovery streams/pipelines; the integration of 
these deep learning methodologies with conventional pipelines indicates a highly successful future research direction. 
In this work, researchers achieved the integration of deep learning models with other computational and experimental 
approaches to enhance the development of drugs and the identification of other chemical compounds with higher 
efficiency and fewer side effects. This integration could entail employing deep learning models to come up with the first 
hit compounds, that would subsequently be optimized through typical medicinal chemistry means (Stokes et al., 2020). 
Moreover, the inclusion of physics-based simulations and knowledge-based scoring functions may foster better chances 
of property predictions of the generated molecules (Wenzel et al., 2019). The generation of new deep learning schemes 
with interpretability on structure-activity relations can also complement the traditional and new techniques for drug 
discovery (Ekins, 2016). Over the years, these methods could transform early discoveries of novel drug candidates into 
shorter and more cost-effective development solutions hence promoting therapeutics projects (Chan et al., 2019).  

4. Prediction of drug-drug similarity through DL  

 Drug-drug similarity is an essential element in the drug discovery process because prediction of this aspect can lead to 
the identification of potential interactions between drugs, new uses of known drugs, and enhance the role of 
combination therapy. As powerful tools to predict drug-drug similarities in the context of large-scale data, deep learning 
(DL) techniques have been recently vested. This section discusses different aspects of how similarity measures for drugs 
can be taken and how deep learning can be used in this context.  

4.1. Drug similarity measures  

 Drug similarity measures, in general, are the base to provide an understanding of the relative position of different drugs 
and their compatibility. Such measures can be developed concerning diverse facets of drug characteristics including the 
chemical structures of drugs, the target proteins, and the resulting elicited biological activities. All of these similarity 
measures can give different kinds of views on the behaviors of drugs and can be useful in the training of deep learning 
models for better predictions.  

4.1.1. The closeness in the structure of the two molecules  

 This is one of the simplest and yet most employed methods for drug similarity prediction based on chemical structure. 
This is one of the reasons why this approach is referred to as Structure Activity Relationship or SAR. The degree of 
similarity depends on the differences in the chemical structures, and there are several ways of calculating it – as the 
Tanimoto coefficient in Equation 2: 

𝛿𝑐(𝑑𝑖, 𝑑𝑗)  =  (1) | 𝐴𝑃𝑖 ∩  𝐴𝑃𝑗|/|𝐴𝑃𝑖 ∪  𝐴𝑃𝑗 |. . . . . . . . . . . . . . . . . . . . . . . . . . . 𝟐 

In the above equation, APi and APj are the atom pairs from pharmaceuticals di and dj, respectively. The numerator will 
be the count of the atom pairs in both compounds while the denominator is the number of distinct pairs of unique atoms 
in the two compounds. This type of coefficient gives the reflection of structural similarity in the range between 0 and 1 
where ‘0’ refers to no similar structures and ‘1’ refers to complete similarity in structures.  

 Especially in the initial phases of drug discovery, it is helpful to determine by the chemical structure similarity measure 
the compounds that have similar properties to the active compounds. For example, Cereto-Massagué et al. (2015) 
showed that the process of identification of target molecular fingerprints using similarity searches in virtual screening 
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is suitable when structure similarity and the chemical space are considered crucial to a drug discovery process. 
Furthermore, this measure is used as a preliminary measure for similarity comparison and has been employed in more 
advanced deep-learning models for drug-drug interaction prediction (Sun et al., 2018; Ding et aet al.,0).  

4.1.2. Target protein sequence-based similarity  

 Target protein sequence-based similarity is a useful measure in drug similarity prediction, another factor. This 
rationale is based on the understanding that if the proteins, the drugs are developed to target, are similar in activity 
patterns, the drugs are expected to elicit similar reactions. There are various methods available that can be employed 
to measure the extent of homology of the target proteins of two different drugs, such as sequence alignment techniques 
and scoring matrices. This has been expressed in the theoretical section in equation 3 of a target-based approach to 
achieving objectives similarity: 

𝛿𝑝 ( 𝑑𝑖 , 𝑑𝑗 )  =  
∑ {𝑚𝑎𝑥∀𝑦 ∈ 𝑇𝑗 𝑥∈𝑇𝑖 {𝑆(𝑥, 𝑦)}  +  ∑ {𝑚𝑎𝑥∀𝑦 ∈ 𝑇𝑗 𝑥∈𝑇𝑖 {𝑆(𝑥, 𝑦)}

{𝑇𝑖|𝑇𝑗}
. . . . . . . . . . . .3 

In this equation, δt (di, dj) represents the target-based similarity between medicines di and dj. Ti is the set of proteins 
that interact with the drug di and Tj is the set of proteins that interact with the drug dj. S(x,y) is a similarity metric that 
sends special attention to two targeted proteins, x ∈ Ti and y ∈ Tj, with the help of symmetric sequences. This equation 
gives the average of connected targets, whereby each target of the first drug is linked only to the most similar target of 
the second drug and vice versa.  

 There are a few studies that have incorporated the concept of target protein sequence-based similarity in deep learning 
models. For example, Ding et al. (2020) proposed a deep learning model where the chemical structure and protein 
sequence both are used as inputs to predict drug-drug interactions. This approach emphasizes the use of deep learning 
models that include an integration of multiple similarity measures to enhance drug-drug similarity predictions. 

 

Figure 5 Drug-drug similarity main idea 

4.2. Target protein functional similarity 

Beyond this, the functional similarity of target proteins is also another level of information concerning drug similarity. 
This measure considers the biology of the targets of drugs to point to the possible integrated bodily effects of drugs. As 
stated earlier, functional similarity does not have a formal definition in terms of the text; nevertheless, most definitions 
are based on protein-protein interaction networks, gene ontology, and pathway resources. The functional similarity 
measures are of more value when studying the more general biological context of the actions of drugs. They can assist 
in determining the drugs with similar therapeutic uses or toxicologic effects, for targeting tissues other than the primary 
ones. For instance, Zeng et al. trained a deep learning model that captured protein functional information from 
a heterogeneous network to discover new drug targets, in 2020. This method was able to show that the use of function 
similarity data with deep learning in drug discovery and repurposing is achievable.  

 Additionally, functional similarity measures are employed alongside other assessments, which would give an enriching 
viewpoint concerning the drug-drug associations. The multifaced methodology of scoring compounds about their 
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chemical structures has been found to enhance the prediction of both drug-drug interaction as well as the identification 
of new compounds (Yan et al., 2022). In the case of deep learning functional similarity can be incorporated either as a 
feature or as a new modality of input. For instance, Zeng et al. (2020) proposed a deep learning framework, which 
integrates protein-protein interaction networks and drug-induced gene expression signatures to predict drug targets. 
The application of this method uses functional similarity information, which tends to enhance the accuracy of target 
prediction.  

4.2.1. Drug-induced pathway similarity  

 Drug similarity based on pathways is an index that tends to look at the effect of drugs on cells at the pathway level. This 
approach is based on the rationale that agents promoting similar alterations in biochemical signaling are expected to 
produce similar global effects regardless of whether they interact with distinct proteins or what type of chemicals they 
are. Equation 4 shows a formula for establishing drug-induced pathway similarity: 

𝛿𝑝 ( 𝑑𝑖 , 𝑑𝑗 )  =  
𝑚𝑎𝑥

∀𝑥∈𝑃𝑖,∀𝑦∈𝑃𝑗
 𝐷𝑆𝐶(𝑥, 𝑦). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ...4 

To this equation, Px and Py denote the drug-induced pathways for drug di and dj respectively. The variables x and y are 
individual pathways and each of these pathways is a set of genes that make up the pathway. DSC is the Dice similarity 
coefficient that measures the similarity ratio between two pathways: This measure is quite useful in highlighting the 
cause and effect of drugs within a network and may prove difficult to deduce from chemical structure, target proteins, 
etc. Due to its specificity, it is very helpful for identifying side effects of drugs, searching for new applications for the 
drugs analyzing general drug interactions, and discovering new target proteins for drugs.  

 The integration of the pathway-level information into the deep learning models used in drug similarity prediction has 
been discussed in different literature. For instance, Xie et al. (2018) proposed a deep learning model wherein 
transcriptome data was used to categorize drug-target interactions. This allows for capturing drug-induced changes at 
the pathway level and shows the possibility of the use of pathway similarity measures in deep learning architectures 
for drug-drug similarity prediction. Later, other investigators continued to integrate pathway-based similarity 
measures into deep learning models to predict drug-drug interactions. For instance, Ding et al... [22] built a multimodal 
deep learning model that incorporates pathway data with other drug similarity properties to predict drug-drug 
interaction occurrences. In the same regard, Ahmed et al. (2020) provided insight into how the application of network-
based drug sensitivity prediction models incorporating pathway information is efficient.  

4.3. DL for drug similarity prediction 

Deep has transformed the manner and approaches in which drug similarity has been predicted by allowing for the 
combination of multiple similarity measures and analysis of non-linear relationships from large datasets. CNNs, RNNs, 
and GNNs have been used in drug similarity prediction while most of the models were combined with learnable 
embeddings.  

 Another source of strength regarding drug similarity prediction a deep learning is that it can construct multilevel 
feature learning directly from the input data. For example, Tao et al. (2018) proposed a model that learns drug 
representation directly from the molecular fingerprints using CNN and it outperforms traditional machine learning 
algorithms. This approach sheds light on how deep learning is beneficial, especially in automatically learning the 
relevant features for drug similarity prediction. 

This is especially true when it comes to drug similarity prediction where GNN excels because of the nature of the 
structural molecular and biological graph-like structures. For instance, rather than using a pairwise comparison of 
compounds’ descriptors, Yan et al. (2022) have recently presented a GNN-based approach for the prediction of DDI 
employing similarity measures. The authors have adopted multiple measures for drug similarity such as chemical 
structure similarity, target protein similarity, and pathway similarity which proves the concept of GNNs in handling 
various drug similarity measures.  

 Various forms of attention mechanisms have also been used for improving drug similarity prediction models based on 
deep learning models where care is taken to focus more attention on certain features or interactions while predicting. 
Shin et al. (2019) proposed a self-attention-based approach for the prediction of the interaction between drugs and 
targets since such relationships can be intricate. It shows an approach to leverage attention mechanisms to improve the 
interpretability and, accuracy, of deep learning models for DP and drug similarity predictions.  
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 In recent years, multiple modal-based deep learning models have emerged in drug similarity prediction since the 
approach handles multiple sources of data. Multi-scale feature fusion was applied via deep learning in the DeepFusion 
model which was developed by Song et al. (2022) to predict drug-target interactions. The features used in this method 
include structural characteristics, protein sequence, and functional continuum, affirming that the multiple modalities of 
drug similarity profiling are feasible and hence effective.  

 It is with deep learning that the task of drug similarity prediction has been enhanced in many drug discovery activities. 
For example, Ahmed et al. (2020) have presented a network-based drug sensitivity prediction model that utilizes deep 
learning to incorporate several kinds of biological networks. This approach illustrates how drug similarity predictions 
can be utilized to inform specific treatment plans.  

4.4. Drug dosing optimization 

Drug dosing optimization forms a component in the implementation of precision medicine to achieve high efficacy and 
low toxicity of drugs. This entails administering a certain number of drugs and adjusting it based on the patient’s 
features such as his or her genes, age, weight, other drugs under use, and many others. Therefore, recent developments 
have been seen in this field with deep learning applying information derived from samples of large patient populations 
to generate accurate dosing prediction regimens. The main goal in any drug dosing optimization strategy is to fulfill the 
objective of predicting patient’s response to the medication in as many patients as possible. A recent study has 
compared deep learning models against intimate partner violence while highlighting that the former outperformed the 
latter in factors such as accuracy and sensitivity. For example, Ammad-Ud-Din et al. (2016) presented Kernelized 
Bayesian Matrix Factorization for predicting responses to drugs upon inference of pathway-response relations. In their 
model, they received a high predictive value in drug response originating from different cancer cell lines, hence the 
potential of machine learning in dosing. 

Table 1 The important metrics for drug discovery problems 

Metric Description Equation 

Accuracy Measures the overall correctness of the model 
by determining the proportion of true results 
(both true positives and true negatives) 
among the total cases. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐸𝑁
 

Sensitivity Indicates the model's ability to correctly 
identify positive cases (true positives). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑁
 

Specificity Reflects the model's ability to correctly 
identify negative cases (true negatives). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision Represents the proportion of true positive 
results in all predicted positive cases, thus 
measuring the relevance of the identified 
cases. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

Recall Also known as sensitivity, it indicates the 
total number of actual positive cases that 
were correctly identified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑁

𝑇𝑃 + 𝐹𝑁
 

F-measure A metric that combines precision and recall 
using their harmonic mean, providing a 
balance between the two. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
 

ROC Curve and 
AUC Score 

The Receiver Operating Characteristic (ROC) 
curve evaluates the model's performance 
across various threshold values, while the 
Area Under the Curve (AUC) quantifies it. 

AUC is not defined by a specific equation but is 
represented graphically. 

PR Curve and 
AUPR Value 

The Precision-Recall (PR) curve assesses 
model performance, especially in imbalanced 
datasets, comparing precision to recall at 
different thresholds. 

AUPR is a summary metric of the PR curve, also 
not defined by a specific equation. 
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Rate of 
Predictions 

The percentage of correct predictions made 
by the model relative to the total number of 
known instances. 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝑛𝑜𝑤𝑛 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

Computational 
Cost 

Represents the total time taken to implement 
the model on a given system, typically 
measured in seconds. 

Not defined by a specific equation. 

Multilabel 
Evaluation 
Metrics 

Metrics such as Hamming loss, one error, 
coverage, and ranking loss are used for 
evaluating multilabel classification problems. 

Not defined by a specific equation. 

Binding Affinity 
Score 

Assessed using indicators like Mean Square 
Error (MSE) and Root Mean Square Error 
(RMSE) to evaluate the quality of predictive 
models for binding affinity. 

𝑀𝑆𝐸 =
1

𝑛
∑( 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑎𝑐𝑡𝑢𝑎𝑙)2𝑎𝑛𝑑 𝑅𝑀𝑆𝐸

= √𝑀𝑆𝐸 

The sensitive use of deep learning models in detecting fine-grained features in patient data is highly useful in dosing 
optimization. This has been captured in the sensitivity metric as indicated in Table 1 which is defined as TP/ (TP + FN) 
indicating the ability of the model to correctly identification of the positive cases. In terms of drug dosing, high sensitivity 
makes it possible for patients, who would benefit from dose change, to be properly identified. For instance, Wang et al. 
(2019) called a deep neural network model for the identification of adverse drug reactions, and the model was very 
sensitive to detected complications-prone patients who experienced suboptimal dosing. Another important drug dosing 
optimization, measure is called specificity Score TN / (TN + FP) where TN is several true negatives, meaning that the 
system can recognize correctly that there are no cases of adverse events in here group. In this regard, high specificity is 
significant in that, only those patients who cannot afford to maintain their doses intact will be made to undergo some 
changes. This is especially important in drugs with a relatively small difference between therapeutic and toxic ranges 
hence once-in-a-while changes could prove dangerous. In particular, the precision (TP / (TP + FP)) is critical to assessing 
the relevance of dosing recommendations that a DL model provides. This implies that when the model is out there is a 
need for a dose adjustment, it is true in most cases. This is important, especially in upholding clinician trust in AI-
supported dosing systems. For example, Arshed et al. (2022) created the machine learning model deep learning model 
for predicting the side effects from chemical substructures fused with high precision in the identification of adverse 
effects associated with dosing. Proper addressing of the problem of drug dosing requires a model with both high 
precision and recall (sensitivity). These properties are given by the F-measure, which calculates their harmonic mean. 
This metric is very important especially when working with imbalanced data sets which are very common in a clinical 
environment where undesirable outcomes or suboptimal outcomes may be rare instead of normal.  

 The ROC curve and the AUC score are particularly useful for analyzing the performance of deep learning models without 
dependence on specific thresholds. In drug dosing optimization these measures facilitate the evaluation of how 
effectively the model can differentiate between patients who require dose adjustments and those who do not. For 
instance, Wei et al., (2020) applied Deep learning approaches, as well as other Machine learning approaches to ascertain 
drug risk levels from adverse drug reactions and assessed the performance of the model by using ROC curves and AUC 
scores. The PR curve and AUPR value are useful when the performance metric is investigated in drug dosing 
optimization and the dataset is unbalanced as is usually the case in clinical practice. It gives a better perspective of the 
performance of the model because when the number of people needing the dose adjustments is lesser than that on usual 
dosing, the former gives better news.  

The correct rate of prognosis: (Number of predictions that were made/Total number of known cases) = The simplicity 
of this metric suggests how systematically the deep learning model gives the right dosing forecasts. As such, this metric 
is critical in evaluating the applicability of the model in real-world contexts. Time is a major factor that affects the use 
of deep learning models to apply data in drug dosing optimization with an emphasis on real-time clinical decision 
support systems. We see that the models that correspond to the lower computational cost, measured by the amount of 
time needed for the implementation, are selected to be employed in clinical practice.  

 In cases of multiple drug regimens and varied treatments where dose is a critical parameter, the relevant multilabel 
evaluation metrics comprise Hamming loss, one error coverage, and ranking loss. These metrics could be used to 
evaluate the performance of the model especially in the situations when the prediction of the optimal dosing regimens 
is related to the combination therapies or when multiple factors of dosing must be taken into consideration. The binding 
affinity score plays a significant role in predicting the drug target interaction using various indicators such as Mean 
Square Error (MSE) and Root Mean Square Error (RMSE). This is even more valid in the context of dose optimization 
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for drugs whose therapeutic effect depends on the affinity to a certain target. For example, Song et al. (2022) proposed 
a deep learning-based multi-scale feature fusion system to predict drug-target interactions to decide the dosage based 
on the predicted binding affinities.  

Of the two, deep learning has been identified as having good performances in dosing drugs with tight tolerances or wide 
variation between patient responses. For instance, Flotho et al. (2009) have shown that DNA methyltransferase 
inhibitors impact cancer genes in acute myeloid leukemia cells. Such findings illustrate why it’s critical to accurately 
dose drugs in oncology and state that deep learning models may develop treatment regimens depending on the 
characteristics of patients and gene expression profiles. The use of genomic data in the deep learning models for drug 
dosing optimization counts as one way of achieving the vision of precision medicine as stated by Collins & Varmus 
(2015). Including also these models’ new genetic markers of drug response and metabolism the dosing can reach a more 
individualized level which can have an impact on the treatment results as well as decrease the side effects.  

4.5.  Predicting Side Effects from Drug-Drug Interactions Using Deep Learning  

 Thanks to the use of deep learning approaches, it has become possible to predict side effects arising from DDIs. In this 
case, these models are based on the image expressed in Fig. 6 below which shows the various interactions between and 
among drug combinations, binding proteins, and the side effects. The figure shows how drugs can interact with both 
desired macromolecules and other proteins, thereby producing diverse side effects. When drugs interact with their 
desired target proteins then they provide the intended therapeutic outcome. However, as depicted in the figure, off-
target proteins are unintended targets that drugs can bind to which give side effects represented by the icons in the 
bracket. This off-target binding is one of the reasons why it is possible to predict other unwanted effects of drug 
combinations. 

 

Figure 6 Drug binding with proteins and DDI side effects 

With recent developments in Deep learning, it is now possible to predict these interactions more accurately. For 
example, Wang et al. (2019) trained a deep neural network model for the identification of possible adverse drug 
reactions in massive EHR data sources. As their approach shown in the paper, their methods in identifying possible new 
DDIs and those possible side effects are highly accurate. Similarly, Zaikis and Vlahavas (2020) came up with an 
attention-based neural network for DDI classification. It proved to show the complex interactions between drug pairs 
and their side effects in production, which helped to enhance the prediction accuracy of side effects in their model. 
Another improvement was made with the combination of various forms of data in the models which has made 
predictions better. Ding et al. (2020) proposed a multi-modal deep learning model-based architecture to predict the 
occurrence of the DDI through chemical structure information along with target protein and previous interaction 
knowledge. Such a broad approach enables one to be more specific when finding out that a particular combo of drugs 
causes some side effects. These deep learning models are getting more advanced as research in this field unfolds, the 
models can capture the complexity that comes with undertakings such as determining the interactions between drugs 
and the side effects that come with such interactions. Using the substantial data associated with pharmacology and the 
new generation of neural networks, these methods are expected to enhance drug safety and efficiency in clinical 
application.  

5.  Conclusion  

Therefore, deep learning is a useful tool in the modern advance of drug development and the development of precision 
medicine through showing the ability in the areas of compound property and activity prediction, de novo molecular 
design, drug-drug similarity prediction, drug dosing optimization, and side effect prediction from drug-drug interaction. 
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Graph convolutional neural networks are reported to yield high accuracy in predicting different molecular properties 
without the need for feature engineering. Based on VAEs and RL, there are likely to be novel chemical structures that 
possess specific properties in huge chemical space. Drug-drug interaction predictions have also been maximized by 
incorporating multi-modal deep structural learning such as chemical structures, target proteins, and biological 
pathways. Further, the new deep learning models are used in the determination of proper doses of the drugs for each 
patient and also more reliable predictions for possibilities of unfavorable interactions between different drugs. 
Nevertheless, issues regarding model interpretability, generative model collapse, as well as clinical validation for some 
of the works remain open as of now.  

5.1. Directions for Future Research 

Improved Model Interpretability: Another emerging challenge, which needs to be addressed when deploying deep 
learning is the interpretability of results and the improvement of models. Further studies should strive for methods that 
can capture the decision-making process of these models, especially in the areas of drug interactions and side effects.  

 Integration of Multi-Omics Data: It is necessary to advance the study of various biological data, using genomics, 
proteomics, and metabolomics integrated with deep learning models. It is hypothesized that this multi-omics approach 
would enable the identification of drug-induced phenotypes about the transcriptome and the proteome for better and 
personalized treatment plans.  

 Real-World Evidence Integration: Integrating the real data from the patients’ EHRs and PMD into the deep learning 
models could improve their accuracy as well as applicability.  

 Advanced Generative Models: Currently, there is a need to pursue more studies on generative models that can avoid 
mode collapse and provide plausible molecules. This could include incorporating deep learning with other 
computational methods in a bid to come up with new models.  

 Transfer Learning and Domain Adaptation: The steps in exploring the way of knowledge transferring across the 
relative's tasks in drug discovery or reusing the models trained with one disease area for another can enhance the 
application of deep learning.  

 Federated Learning for Privacy-Preserving Models: Novel approaches to model development must be established 
whereby several institutions can contribute to model creation without compromising the privacy of patients by sharing 
their data. Quantum-Inspired Deep Learning: Investigating possible improvements in deep learning models for drug 
discovery tasks by using quantum computing or quantum-based impulse algorithms, especially on the problem of 
modeling interactions between different molecules.  
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