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Abstract 

Customer service is essential for any business, significantly impacting customer satisfaction, brand reputation, and 
reducing associated costs. In the electricity industry, this importance is heightened due to the critical nature of 
electricity in daily life and growing usage rate of new technologies. Effective customer service in electric distribution 
companies involves handling a wide range of inquiries, from billing issues to technical support, requiring both remote 
and on-site assistance. The variability in customer calls, influenced by factors such as peak electricity hours, and 
different service and customer types, presents unique challenges in designing efficient service centers. This research 
develops a tailored model for the service center operations of a power distribution company, focusing on optimal staffing 
levels within budget constraints. A two-stage queuing model is proposed to address the needs of residential and non-
residential customers. The study employs nested simulation techniques to account for variability in customer arrival 
times and peak hours. Key performance indicators (KPIs) are used to evaluate the effectiveness of staffing policies, 
considering both quantitative and qualitative costs. The study integrates stochastic optimization and ranking and 
selection methods to identify the best staffing configurations. The findings offer actionable insights for improving 
customer service efficiency and operational effectiveness in electricity customer service centers. 

Keywords: Optimization; Nested simulation; Electricity distribution company; Service center; Variable peak 
electricity time 

1. Introduction

Customer service is a critical component of any successful business, as it directly impacts customer satisfaction, loyalty, 
and overall brand reputation. Efficient customer service ensures that customers feel valued and heard, fostering a 
positive relationship Invalid source specified.. It involves promptly addressing customer inquiries, resolving issues 
efficiently, and providing knowledgeable assistance, which collectively enhance the customer experience Invalid 
source specified.. 

While customer service objectives in electricity distribution companies are inherently different from those in other 
sectors, such as business companies, and the importance of effectively managing customer relations remains critical 
due to the essential nature of electricity in modern life Invalid source specified., it has gained few attention in the 
literature on how to design an effective customer support center for an electricity distribution company Invalid source 
specified. 
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Online-resolvable issues such as questions related to renewable energies (e.g., using solar panels), billing inquiries, 
connect and disconnect requests, and service delays, as well as issues requiring onsite assistance, such as power 
outages due to line problems, are expected to be handled by the customer service center. The costs incurred by 
customer dissatisfaction in these service centers can be significant, potentially leading to substantial expenses for 
customers. Additionally, the variability of customer calls throughout the day is influenced by factors such as 
peak electricity hours. Customers generally fall into two distinct groups: residential and non-residential. Given 
the complexity of power distribution services, both residential and non-residential customers are likely to 
encounter issues that prompt them to seek assistance. These inquiries typically fall into distinct categories, each 
requiring tailored solutions. 

Studying these service centers involves using queuing systems to manage resources and customers. Traditional 
methods fall short in capturing the complexities where incorporating stochastic simulation techniques into queuing 
systems provides the tools needed to effectively analyze objectives within the service center and select the optimal 
staffing configurationInvalid source specified.. We employ a two-stage queuing model to address the specific needs of 
residential and non- residential customers, a practical approach supported by literature that emphasizes tailored 
service strategies. Upon constructing the proper queueing model, our focus shifts to formulating the objective function 
and constraints, which can be categorized as either deterministic or stochastic. Deterministic constraints are effectively 
managed through integer programming techniques. Subsequently, stochastic simulation emerges as a robust strategy 
to tackle the stochastic elements inherent in the problem. Our research utilizes nested simulation techniques to handle 
different layers of uncertainty, conducting outer simulations to generate scenarios and inner simulations to assess 
performance Invalid source specified.. Ultimately, a procedure for comparing the outcomes, specifically the screen-to-
the-best (STTB) algorithm in our case, serves to distinguish favorable outcomes among candidates. In this work we 
develop a model and further a framework for service center operations of a power distribution company, addressing 
both remote and on-site issues. The model aims to determine the optimal staffing levels, taking into account predefined 
budget constraints and oper ator costs. We simulate feasible scenarios to evaluate KPIs for each scenario, using a ranking 
and selection technique to identify the best-performing systemsInvalid source specified.. By articulating these key 
components, our paper lays the groundwork for optimizing staffing levels in the Electricity Customer Service Center 
(ECSCs), by considering a multi-skill, multi-stage queueing system with impatient customers contributing to the 
enhancement of customer service efficiency and operational effectiveness in this vital sector. 

2. Problem Definition 

In this section, we begin by explaining the underlying logic of our model and the rationale behind the inclusion of each 
feature. Subsequently, we address the scenario of fixed peak times and employ a stochastic model to account for 
variability in customer arrival rates. This approach involves the use of simulation techniques to effectively manage 
uncertainty and determine optimal staffing solutions. Moreover, we introduce an added layer of complexity by 
considering two distinct sources of variability, the other one being the variable peak electricity times. To capture the 
intricate dynamics and interactions impacting service levels, we employ nested simulation methods. 

2.1. Model Logic 

The ECSC offers a diverse range of service, primarily categorized for residential and non-residential customers Invalid 
source specified.. This segmentation facilitates targeted assistance, ensuring that callers are routed to operators with 
specialized expertise to address their specific concerns effectively. In an electricity provider service center, the Non-
residential Service Team (NST) is specialized in servicing non-residential customers. Non-residential customers, such 
as businesses and industrial facilities, often have more intricate electrical infrastructure and higher power demands, 
necessitating operators with specific expertise and experience to manage these needs effectively. These operators are 
trained to handle the technical complexities and ensure minimal disruption to critical operations. As a result, when 
there are no non-residential customers in the queue, these operators can still provide service to residential customers. 
Conversely, the Residential Service Team (RST), who primarily serve residential customers, may not possess the 
specialized training or experience required to address more complex and larger-scale issues presented by non-
residential customers. Residential electrical systems are generally simpler, and allowing residential-focused operators 
to serve non-residential customers could lead to potential errors and inadequate handling of the non- residential 
customers’ needs, thereby compromising service quality and cost Invalid source specified.. NST and RST form the first 
stage of the service center. There is a possibility that some customers may leave the queue due to prolonged waiting 
times and some customers might need on-site assistance due to the severity of their problem; this will remain unknown 
until an operator from RST or NST detects it. Those needing further on-site assistance will be directed to the Technical 
support team (TST). More waiting times for non-residential customers induces significant costs due to economic losses 
from downtime. Non-residential customers heavily depend on continuous power for their operations, so any 
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interruption leads to halted production and missed business opportunities Invalid source specified.. Hence, the economic 
losses are high for non-residential customers due to their dependency on continuous power for operations and the high 
value of lost productivity ; therefore in the technical queue the priority is with the nonresidential customers and due to 
the importance of issues, it is assumed that no one abandons the technical queue. 

Handling variable peak electricity hours and its impact on the rate of calls is the unique challenge of this sector. 
During peak hours, the call rate for the service center of an electric distribution company tends to increase significantly, 
as customers experience more frequent issues and inquiries related to power usage and reliability. The peak 
electricity time is assumed to be variable, making it challenging to determine the exact rush hours and their 
duration. However,  we assume knowledge of the distribution of both the length and timing of rush hours. 

The service center operates in three shifts and staffing levels during each shift could be different. The call rate 
throughout the day, the percentage of residential and non-residential customers, and the percentage of customers 
seeking technical assistance vary at different times of the day. For instance, calls related to general inquiries, such as 
bill payments or submitting move-in or move-out requests, are more frequent during the daytime, while the percentage 
of customers seeking technical assistance is higher at night. During rush hours, the percentage of nonresidential 
customers as well  as those seeking technical assistance increases. However, the length, start, and end times of the peak 
hours vary from day to day. Consequently, we need to perform nested simulations to account  for this variability Invalid 
source specified.. 

2.2. Fixed Peak Electricity Time 

In the deterministic model of the ECSC, we consider three units within the service center: the RST as the first unit, 
the NST as the second unit, and the TST as the third unit. 

We have 9 decision variables in our problem, being the number of operators in RST, NST, and TST, in the first, second 
and third shift. Asssuming 𝑐 = (𝑐1, 𝑐2, 𝑐3) to be the cost of hiring one operator for each unit, we find the feasible staffing 
levels based on the deterministic cost constraint, 𝑋𝑑𝑒𝑡 , as below  

𝑋𝑑𝑒𝑡   =  {(𝑋1, 𝑋2 , 𝑋3 ) :  𝑋1
′𝑐  +  𝑋2

′ 𝑐  +  𝑋3
′ 𝑐   ≤ 𝐶𝑚𝑎𝑥} 

Where X1, X2, and X3 represent the three-dimensional vectors corresponding to the staffing levels of the first, second, 
and third shifts, respectively. The transposes of these vectors are denoted by 𝑋1

′ , 𝑋2
′ , and 𝑋3

′ . Note that other 
deterministic constraints such as minimum cost and minimum or maximum number of staff in each section can be 
applied in this stage. 

We consider two sets of KPIs in our problem that induce different kinds of cost: quantitative and qualitative. 
Quantitative costs are those that can be measured in monetary terms including costs associated with operational 
disruptions faced by non-residential customers seeking technical assistance. These disruptions can prevent them from 
continuing all or part of their operations, leading to financial losses. Operators are paid based on a fixed number of 
work hours, but they cannot end their shift while customers are still waiting or being serviced. Therefore, operators 
in the first and second shifts must continue serving the last customer, even if their shift ends. Similarly, third-shift 
operators must serve all waiting customers until none remain. This situation leads to overtime work, which is 
compensated for separately and varies depending on the duration of the overtime worked. 

Qualitative costs are mostly associated with customer and operator satisfaction, which, while not directly 
measurable in monetary terms, can significantly impact overall service quality and employee morale. These costs 
include the mean utilization of operators, the number of customers who abandon the queue, the average waiting times 
of residential customers in both initial and technical service queues, and the average waiting times of those non-
residential customers that don’t seek technical assistance in the initial service queue. 

One set of costs can be included in the objective function, while the other set can be included as constraints. 
Incorporating quantitative costs in the objective function and qualitative costs as constraints allows for a balanced 
optimization approach. This strategy ensures that financial goals, such as minimizing costs, are directly targeted while 
still upholding critical qualitative aspects like customer and operator satisfaction. By setting qualitative factors as 
constraints, we can guarantee that service quality and employee well-being are not compromised for cost efficiency. 
This dual focus helps maintain a high standard of service and operational integrity, ultimately benefiting both the 
company and its customers. Conversely, placing qualitative costs in the objective function and quantitative costs as 
constraints would shift the focus towards optimizing service quality and customer satisfaction while treating financial 
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considerations as boundary conditions. However, this approach might lead to solutions that are less cost-effective, as 
the model would prioritize achieving high service standards potentially at any cost and make it impractical in real-world 
scenarios where budgetary constraints are critical. 

Table 1 The notations of the problem 

Notation Description 

𝑊𝑖  Service time for Customer 𝑖 in initial queues 

𝑇𝑖  Service time for Customer 𝑖 in technical queues 

𝑌𝑖  Waiting time of Customer 𝑖 in initial queue 

𝑍𝑖  Waiting time of Customer 𝑖 in technical queue 

𝑎𝑖  1 if Customer 𝑖 has abandoned the queue, and 0 otherwise 

𝑡𝑖  1 if Customer 𝑖 needs technical service, and 0 otherwise 

𝑟𝑖  1 if Customer 𝑖 is residential, and 0 otherwise 

𝑂𝑗  Overwork time of Operator 𝑗 

𝛿1𝑗 1 if Operator 𝑗 is in NST, and 0 otherwise 

𝛿2𝑗 1 if Operator 𝑗 is in RST, and 0 otherwise 

𝛿3𝑗 1 if Operator 𝑗 is in TST, and 0 otherwise 

In the ECSC we have 𝑀 operators in total, and we serve 𝑁 customers during a working day whose arrivals 
are treated as random variables. This reflects the inherent uncertainty and variability in customer arrivals, making it 
necessary to formulate the problem as a stochastic optimization problem. The objective function aims to minimize the 
expected total quantitative cost associated with operating the service center. This includes the expectation of costs 
imposed by nonresidential customers who seek technical assistance multiplied by 𝑤1, and the overwork times of 
operators across three types—NST, RST, and TST—each weighted by constants 𝑤2, 𝑤3, and 𝑤4, respectively and 
the constraints are related to qualitative costs. 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝑋𝑑𝑒𝑡
𝐸 [𝑤1 ∑(𝑊𝑖 + 𝑇𝑖 + 𝑌𝑖 + 𝑍𝑖)(1 − 𝑎𝑖)𝑡𝑖𝑟𝑖

𝑁

𝑖=1

+ 𝑤2 ∑ 𝑂𝑗𝛿1𝑗

𝑀

𝑗=1

+ 𝑤3 ∑ 𝑂𝑗𝛿2𝑗

𝑀

𝑗=1

+ 𝑤4 ∑ 𝑂𝑗𝛿3𝑗

𝑀

𝑗=1

] 

𝑃 [
1

∑ 𝑟𝑖
𝑁
𝑖=1 − ∑ 𝑎𝑖𝑟𝑖

𝑁
𝑖=1

∑(𝑌𝑖)(1 − 𝑎𝑖)𝑟𝑖

𝑁

𝑖=1

< 𝑏1] > 𝛾1 

𝑃 [
1

∑ 𝑟𝑖
𝑁
𝑖=1 𝑡𝑖 − ∑ 𝑎𝑖𝑟𝑖

𝑁
𝑖=1 𝑡𝑖

∑(𝑍𝑖)(1 − 𝑎𝑖)𝑟𝑖

𝑁

𝑖=1

< 𝑏2] > 𝛾2 

𝑃 [
1

∑ (1 − 𝑟𝑖)
𝑁
𝑖=1 − ∑ (𝑎𝑖 + 𝑡𝑖)(1 − 𝑟𝑖)

𝑁
𝑖=1

∑(𝑌𝑖)(1 − 𝑎𝑖)(1 − 𝑟𝑖)(1 − 𝑡𝑖)

𝑁

𝑖=1

< 𝑏3] > 𝛾3 

𝑃 [
1

𝑁
∑ 𝑎𝑖

𝑁

𝑖=1

< 𝑏4] > 𝛾4 

𝑃 [
1

∑ 𝛿1𝑗
𝑀
𝑗=1

∑ 𝑢𝑗𝛿1𝑗

𝑀

𝑗=1

< 𝑏5] > 𝛾5 
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𝑃 [
1

∑ 𝛿2𝑗
𝑀
𝑗=1

∑ 𝑢𝑗𝛿2𝑗

𝑀

𝑗=1

< 𝑏6] > 𝛾6 

𝑃 [
1

∑ 𝛿3𝑗
𝑀
𝑗=1

∑ 𝑢𝑗𝛿3𝑗

𝑀

𝑗=1

< 𝑏7] > 𝛾7 

For the sake of readability, we will denote the objective function as 𝑓 (𝑥) and the functions appearing in the constraints 
as 𝑔ℎ(𝑥) , where ℎ =  1, 2, . . . , 7 . This notation simplifies the representation of the model and allows for clearer 
reference to the components of the optimization problem. 

To solve the problem, we conduct L replications at each staffing level, 𝑥 ∈ 𝑋𝑑𝑒𝑡 , and approximate 𝐸[𝑓 (𝑥)] with 𝐸[𝑓(𝑥)] , 

and 𝑃[𝑔ℎ(𝑥) < 𝑏ℎ] with 𝑃[�̂�ℎ(𝑥) < 𝑏ℎ] calculated as follows: 

𝐸[𝑓(𝑥)] =
1

𝐿
∑ 𝑓𝑙(𝑥)

𝐿

𝑙=1

 

𝑃[�̂�ℎ(𝑥) < 𝑏ℎ] =
1

𝐿
∑ 𝐼(𝑔ℎ,𝑙(𝑥) < 𝑏ℎ)

𝐿

𝑙=1

 

Where 𝑓𝑙(𝑥) and 𝑔ℎ,𝑙(𝑥) denote the output of the 𝑙th replication and 𝐼 denotes the indicator function. 

2.3. Variable Peak Time 

Now we can consider the case where the peak electricity times, and consequently, the rush hours for the service center, 
are variable and follow a joint distribution, Q(S, E). Using the law of total expectation we will have: 

𝐸[𝑓(𝑥)] = 𝐸𝑆,𝐸 [𝐸[𝑓�̂�|𝑆, 𝐸]] 

𝑃[�̂�ℎ(𝑥) < 𝑏ℎ] = 𝐸𝑆,𝐸[𝑃[�̂�ℎ(𝑥) < 𝑏ℎ|𝑆, 𝐸]] 

By iterating over multiple scenarios in the outer simulation and performing simulations in the inner layer, nested 
simulation helps in obtaining a comprehensive understanding of the system’s performance across a range of potential 
conditions. This methodology is effective in capturing and analyzing variability and uncertainty in complex 
systems. To implement this approach, we will conduct nested simulation, a technique used to analyze complex 
systems with multiple levels of uncertainty. It involves running an “outer simulation” to generate scenarios 
based on the first source of variability, followed by an “inner simulation” within each scenario to account for the second 
source of variability. This approach allows for a detailed exploration of system performance under various conditions. 
The outer simulation involves sampling start and end times (𝑠1, 𝑒1), (𝑠2, 𝑒2), . . . , (𝑠𝐿 , 𝑒𝐿)  from the joint distribution 
𝑄(𝑆, 𝐸). Each pair (𝑠𝑙 , 𝑒𝑙) represents a distinct scenario derived from the outer simulation. Subsequently, the inner 
simulation for each sampled pair (𝑠𝑙 , 𝑒𝑙) entails simulating the system 𝐾  times to compute specific performance 
metrics. In the inner simulation, we compute 

𝐸[ 𝑓(𝑥) ∣∣ 𝑆 = 𝑠𝑙 , 𝐸 = 𝑒𝑙 ] =
1

𝐾
∑ 𝑓𝑙𝑘(𝑥)

𝐾

𝑘=1

 

𝑃[ �̂�ℎ(𝑥) < 𝑏ℎ ∣∣ 𝑆 = 𝑠𝑙 , 𝐸 = 𝑒𝑙 ] =
1

𝐾
∑ 𝐼(𝑔ℎ,𝑙𝑘(𝑥) < 𝑏ℎ)

𝐾

𝑘=1

 

Then, compute the overall expectation using both the outputs of inner and outer simulation replications. We will 
have 
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𝐸[𝑓(𝑥)] =
1

𝐿
∑ (

1

𝐾
∑ 𝑓𝑙𝑘(𝑥)

𝐾

𝑘=1

)

𝐿

𝑙=1

 

𝐸[�̂�ℎ(𝑥) < 𝑏ℎ] =
1

𝐿
∑ (

1

𝐾
∑ 𝐼(𝑔ℎ,𝑙𝑘(𝑥) < 𝑏ℎ)

𝐾

𝑘=1

)

𝐿

𝑙=1

 

The set of staffing configurations that satisfy the constraints based on the simulation outputs, Xcons is then derived 

𝑋𝑐𝑜𝑛𝑠 = {𝑥: 𝑥 ∈ 𝑋𝑑𝑒𝑡 , 𝑃[�̂�ℎ(𝑥) < 𝑏ℎ] > 𝛾ℎ   for  ℎ ∈ {1,2, … , 7} 

2.4. Finding The Set of Best Systems Using STTB 

Now that we have identified feasible staffing levels that meet both deterministic and stochastic constraints, we 
determine the optimal staffing levels using ranking and selection procedures. ranking and selection procedures are 
systematic methodologies that assist decision makers in choosing the best alternatives from a pool of options, especially 
when direct observation of their performance is impractical or costly. Among the various ranking and selection 
procedures, we opt for STTB method due to its computational efficiency and conservativeness. Computational efficiency 
is crucial because our framework is designed for ECSC, regardless of size, and does not assume specific computational 
resources. The conservativeness of the algorithm is important because selecting the staffing level is, most of the time, a 
one-time decision and incorrect choices can be highly costly in terms of both money and time. In the STTB procedure, 
systems undergo pairwise comparisons, with each system being evaluated against all others. Based on these 
comparisons, decisions are made regarding the elimination or retention of each system. Systems found consistently 
inferior to others are eliminated, while those that remain after this process constitute the subset that is retained for 
further consideration. When Xcons is obtained, for each staffing level we compute the pair (μ̂𝑓(𝑥), σ̂𝑓(𝑥)

2 ) as the mean 

and variance of the outer simulation outputs. Then we perform STTB on 𝑋𝑠𝑡𝑜𝑐ℎ  to get the subset of the best systems with 
1 −  𝛼 confidence level as described in algorithm 1. 

Algorithm 1 STTB [13] 

 1: Input: 𝑋𝑐𝑜𝑛𝑠, 𝛼, 𝐿 

 2: 𝑋𝑓𝑖𝑛𝑎𝑙 ← 𝑋𝑐𝑜𝑛𝑠 

3: for 𝑥 ∈ 𝑋final do 

4:  for 𝑥′ ∈ 𝑋𝑓𝑖𝑛𝑎𝑙  \{𝑥} do 

5:   if μ̂𝑓(𝑥′) + 𝛿 < μ̂𝑓(𝑥) − 𝑡𝛽,𝑑
√σ̂𝑓(𝑥)

2

𝐿
+

σ̂
𝑓(𝑥′)
2

𝐿
 then 

6:    𝑋𝑓𝑖𝑛𝑎𝑙 = 𝑋𝑓𝑖𝑛𝑎𝑙\{𝑥} and break 

7:  end if 

8: end for 

9: end for 

10: return 𝑋𝑓𝑖𝑛𝑎𝑙  

Where 𝛽 = (1 − 𝛼)
1

|𝑋𝑐𝑜𝑛𝑠|−1  and 𝑑 = 𝑛 −  1 , and 𝑡𝛽,𝑑  indicates the 𝛽  quantile of a t-distribution with 𝑑  degrees of 

freedom, and δ could be set to zero. 
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2.5. Proposed Algorithm 

The algorithm starts by taking several input parameters: 𝐶𝑚𝑎𝑥 , which represents the maximum allowable total cost for 
staffing; 𝑐, a vector detailing the cost associated with each type of operator; 𝛾, the set of probability thresholds for 
constraints; 𝐿, the number of outer simulation replications and 𝐾 as the number of inner simulation replications; and 
𝛼, the significance level used for STTB. Next, the deterministic feasible set of staffing levels is calculated using Equation 
1. The algorithm then conducts the nested simulation for each staffing configuration. Following this, the algorithm 
evaluates whether the constraints are satisfied in 𝑋𝑐𝑜𝑛𝑠 , and finally, selects the best subset of staffing levels by 
applying Algorithm 1, resulting in 𝑋𝑓𝑖𝑛𝑎𝑙 . This final set is then returned as the output of the algorithm. An additional 

round of optimization could be performed on the staffing levels in 𝑋𝑓𝑖𝑛𝑎𝑙  focusing on identifying the configuration 

with the lowest cost or the one that maximizes the expected value of the objective function. 

Algorithm 2 ECSC staffing configuration 

1: Inputs: 𝐶𝑚𝑎𝑥 , 𝑐, 𝛾, 𝐿, 𝐾, 𝛼, 𝑏 

2: 𝑋𝑠𝑡𝑜𝑐ℎ ←  {}. 

3: Obtain 𝑋𝑑𝑒𝑡 . 

4: for 𝑥 ∈ 𝑋𝑑𝑒𝑡  do 

5: Run nested simulation 𝐿 and 𝐾 times, respectively. 

6: end for 

7: Obtain 𝑋𝑐𝑜𝑛𝑠 . 

8: Obtain 𝑋𝑓𝑖𝑛𝑎𝑙  using Algorithm 1. 

9: return 𝑋𝑓𝑖𝑛𝑎𝑙 . 

3. Computational results 

In the numerical experiment section, we have designed the simulation model and selected the parameters to closely 
reflect real-world scenarios. Our model aims to accurately represent these real-world assumptions, and we carefully 
choose the values accordingly. The call center operates for 18 hours daily, from 6 a.m. to midnight. A similar 
simulation model has been utilized in [17]. The start and end of the peak time follow truncated normal distributions, 
specifically 𝑁 (720, 5, 700, 740) and 𝑁 (840, 10, 820, 860), meaning that the mean start and end times for rush hour 
are 6 p.m. and 8 p.m., respectively. During normal hours, the customer call rate is 120 calls per hour, increasing to 200 
calls per hour during peak times. 

The percentage of customers requiring technical assistance is 5%, with 5% being nonresidential customers. During 
rush hour, these percentages increase to 10% and 8%, respectively. Additionally, 15% of customers decide to leave 
the queue if they service does not start in a customer-specific time. The service time for residential customers averages 
2 minutes and follows an exponential distribution. For nonresidential customers in the initial queue, the service time 
follows an exponential distribution with a mean of 5 minutes. Technical service for residential customers averages 
30 minutes, while for nonresidential customers, it averages 60 minutes, both following exponential distributions. 
Impatient customers leave the queue after a random time that follows a uniform distribution between 3 and 5 minutes. 

The service center faces certain constraints that limit its staffing choices. Each section must have at least one operator per 
shift, with a maximum of four operators in NST or RST and six operators in TST per shift. The costs for hiring an operator 
in NST, RST, and TST are 2, 1, and 4 units, respectively, with the budget allowed to vary between 73 and 79. This results 
in 2032 feasible staffing levels. The staffing levels can be represented as 9-dimensional tuples. 

Next, we will determine the set 𝑋𝑐𝑜𝑛𝑠  using the constraints. We set the thresholds for constraints to [50, 50, 45, 0.1, 0.8, 0.8, 
0.5] and the confidence levels to [0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9]. By conducting the nested simulation algorithm with 40 
macro and 40 micro replications and evaluating all 2032 feasible staffing levels, we identify 20 staffing configurations 
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that satisfy the constraints. The coefficients in the objective function are 3,2,1, and 2, respectively. The staffing 
configurations along with their mean and variance are presented in Table 2. STTB suggests 11 staffing configurations 
that satisfy the constraints and are non-dominated in terms of the objectives, as illustrated in Table 1. Among these 
configurations, we select the one with the lowest cost, which corresponds to the 9-dimensional tuple 
(1, 3, 5, 3, 2, 5, 2, 1, 4). This concludes the process of selecting an optimal staffing level for the service center. To further 
analyze the framework, we can observe how the optimal staffing configuration changes when we modify the parameters 
of the problem. This analysis is particularly beneficial for parameters that are vulnerable to change, as it allows us to 
assess the robustness of our analysis with respect to those variations. 

Table 2 Mean and standard deviation of the objective function for staffing configurations within 𝑿𝒔𝒕𝒐𝒄𝒉 , denoted as  
�̂� and �̂�, respectively. 

Staffing Levels �̂� �̂� 

(1, 3, 5, 3, 2, 5, 2, 1, 4) 2915.92 338.43 

(1, 3, 5, 3, 2, 5, 2, 2, 4) 2518.08 284.15 

(1, 3, 5, 3, 3, 5, 1, 1, 5) 2761.62 310.01 

(1, 3, 5, 3, 3, 5, 1, 2, 4) 2920.98 379.55 

(2, 2, 4, 3, 3, 5, 1, 1, 5) 2702.96 267.45 

(2, 2, 5, 3, 3, 5, 1, 1, 4) 2903.58 275.14 

(2, 2, 5, 3, 3, 5, 1, 1, 5) 2864.38 338.84 

(2, 3, 5, 2, 2, 5, 1, 1, 5) 2918.75 393.70 

(2, 3, 5, 2, 2, 5, 2, 1, 4) 2971.48 354.86 

(2, 3, 5, 3, 3, 4, 1, 1, 5) 2835.31 264.01 

(3, 1, 5, 2, 3, 5, 1, 1, 5) 2722.05 334.11 

(3, 1, 5, 2, 3, 5, 1, 2, 4) 2842.75 333.46 

(3, 1, 5, 3, 3, 4, 1, 1, 5) 2932.06 406.65 

(3, 1, 5, 3, 3, 5, 1, 1, 4) 2843.84 187.58 

(3, 2, 5, 2, 2, 5, 1, 2, 4) 2842.15 286.59 

(3, 2, 5, 3, 3, 4, 1, 1, 5) 2949.66 377.32 

(3, 2, 5, 3, 3, 5, 1, 1, 4) 3004.16 361.95 

(3, 3, 4, 3, 3, 5, 1, 1, 5) 2840.57 272.12 

(3, 3, 5, 2, 2, 5, 1, 1, 4) 2848.16 278.69 

(3, 3, 5, 2, 2, 5, 1, 2, 4) 2952.06 432.21 

We chose the threshold for NST utilization and tracked the optimal staffing configuration, as shown in Table 3. The 
results indicate that while the change in the optimal staffing configuration is not significant, there are slight 
adjustments. Specifically, as the threshold increases, the number of NST operators also tends to increase. 
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Table 3 Threshold for nonresidential utilization and the corresponding optimal staffing configuration (𝒃𝟓 in Equation 
7) 

𝒃𝟓 Optimal Staffing Configuration 

0.6 (1, 3, 5, 3, 3, 5, 1, 2, 4) 

0.65 (1, 3, 5, 3, 3, 5, 1, 2, 4) 

0.7 (1, 3, 5, 3, 3, 5, 1, 2, 4) 

0.75 (1, 3, 5, 3, 2, 5, 2, 1, 4) 

0.8 (1, 3, 5, 3, 2, 5, 2, 1, 4) 

0.85 (2, 2, 4, 3, 2, 5, 3, 2, 4) 

0.9 (2, 2, 4, 3, 2, 5, 3, 2, 4) 

In Table 4, we have adjusted the threshold for customer churn. We observe that as the threshold decreases, the staffing 
levels change, leading to an increase in the number of operators assigned to the initial queues during the first two 
shifts. 

Table 4 Optimal staffing configurations corresponding to various thresholds of customer churn (𝒃𝟒 in Equation 6) 

b4 Optimal Staffing Configuration 

0.15 (1, 2, 5, 2, 3, 5, 2, 3, 4) 

0.13 (1, 2, 5, 2, 3, 5, 2, 3, 4) 

0.11 (1, 3, 5, 3, 2, 5, 2, 1, 4) 

0.1 (1, 3, 5, 3, 2, 5, 2, 1, 4) 

0.09 (2, 3, 5, 3, 3, 4, 1, 1, 5) 

0.07 (2, 3, 5, 3, 3, 4, 1, 1, 5) 

One can now examine the output distributions of the selected staffing configuration to analyze its characteristics, 
particularly its variability. We present two histograms for each performance metric included in the objective function 
or constraints. The first histogram displays the pooled data from all macro and micro replications, providing an 
overview of the system’s behavior. The second histogram shows the mean of the micro replications for each macro 
replication, highlighting the variability introduced by the fluctuations in peak hours. 

In terms of NST overwork, we observe a bimodal distribution in the overall data, which complicates the 
identification of the optimal staffing configuration. The histogram of the means also shows bimodality, but the 
probability of the second mode is higher compared to the pooled data. By carefully examining these histograms, 
we can assess variability both overall and in the means of the micro replications. If a decision maker finds the 
variance too high, a budget increase could be proposed to unlock better staffing configurations and achieve improved 
performance metrics. 
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e: total waiting times of nonresidential customers seeking technical assistance 

 

 

f: NST overwork 

 

g: RST overwork 
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h: TST overwork 

 

i: mean waiting of residential customers in the initial queue 

 

j: mean waiting time of non-residential customers not seeking technical assistance in the initial queue 
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k: mean waiting time of residential customers in the technical queue 

 

l: customer churn 

 

m: NST utilization 



World Journal of Advanced Research and Reviews, 2024, 24(01), 1433–1446 

1445 

 

n: RST utilization 

 

o: TST utilization 

Figure 1 Histograms of KPIs (plots a-k) pertaining to the optimal staffing configuration are presented, with the left 
histogram illustrating the aggregated data, while the right histogram depicts the mean derived from micro-

replications within each macro-replication 

4. Conclusion 

In this study, we have developed a [1]nd analyzed a tailored model for the service center operations of a power 
distribution company, focusing on the optimization of staffing levels under budget constraints. Our research addressed 
the complexities inherent in customer service within the electric industry, where variability in customer demand, 
especially during peak electricity hours, and the distinct needs of residential and non-residential customers pose 
significant challenges. By employing a two-stage queuing model and integrating nested simulation techniques, we 
accounted for the stochastic nature of customer arrivals and the variability of peak hours. This approach allowed us to 
evaluate KPIs and identify the best staffing configurations using a combination of stochastic optimization and ranking 
and selection methods. The histograms of the performance metrics revealed important insights into the overall system 
behavior and the variability introduced by different operational conditions. 

The findings of this research provide actionable insights for improving the efficiency and effectiveness of customer 
service operations in electricity distribution companies. The proposed model and methodologies can guide decision-
makers in implementing optimal staffing strategies that balance operational costs with customer satisfaction. 
Furthermore, by understanding the variability and uncertainty in service demands, companies can make informed 
decisions on budget allocation to enhance service quality and meet customer expectations more effectively. 
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This work advances the broader field of service center optimization by providing a versatile framework that can be 
tailored and implemented across industries where variability in customer service is a significant challenge. Future 
research endeavors could expand this model by integrating more dynamic elements of customer service operations, 
such as real-time staffing adjustments informed by predictive analytics, the adoption of emerging technologies in 
service management, and the inclusion of load curves during peak demand periods. 
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