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Abstract 

The integration of Artificial Intelligence (AI) in Electrocardiography (ECG) and Photoplethysmography (PPG) signifies 
AI's profound influence on heart rate monitoring and analysis. ECG traditionally offers critical insights into cardiac 
health, necessitating expert interpretation. This study introduces an AI framework with Fast Fourier Transformation 
Analysis for swift, human-like interpretation of complex ECG signals. A multilayer AI Network accurately detects 
intricate features, enhancing ECG analysis precision. Leveraging comprehensive datasets, AI models proficiently identify 
heart dysfunctions like atrial fibrillation and hypertrophic cardiomyopathy, and can estimate age, sex, and race. The 
proliferation of mobile ECG technologies has spurred AI-based ECG phenotyping, impacting clinical and population 
health. This research explores AI's role in enhancing cardiac health assessment and clinical decision-making using 
MATLAB, acknowledging its transformative potential and inherent limitations. 

Keywords: Artificial Intelligence; Electrocardiography (ECG); Fast Fourier Transformation; Heart Rate Monitoring; 
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1. Introduction

Heart rate monitoring has evolved significantly over the centuries. Ancient Egyptians and Greeks recognized the 
importance of the pulse and its connection to life, observing it by palpating various body sites. In the 18th century, 
Giovanni Maria Lancisi developed the first portable pulse chronometer in 1790, which counted pulse beats over time. 
The stethoscope, invented by René Laennec in the early 19th century, revolutionized cardiovascular understanding by 
allowing physicians to listen to heart sounds. Willem Einthoven's creation of the first functional electrocardiogram 
(ECG) in 1901 marked a significant advancement. ECGs measure voltage changes on the skin caused by the heart's ionic 
currents, becoming vital for diagnosing and monitoring heart conditions. By the late 20th century, heart rate monitors, 
often consisting of chest straps with electrodes transmitting data to a wrist display, became available to the public. 
Modern heart rate monitors now include optical sensors, fitness trackers, smartwatches, and smartphone apps that 
provide real-time data. 

Recent technological advancements have led to non-contact heart rate monitoring techniques using cameras and live 
image processing, primarily analyzing green channel image data. This remote photoplethysmography method detects 
heart pulses from pixel changes in images of human skin surfaces. Heart Rate Variability (HRV), measuring the intervals 
between heartbeats, is crucial for this research, which simulates an ECG test model using MATLAB. Traditional ECG 
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analysis relied on manually selected data features, such as QT, QRS, and RR intervals. However, these methods had 
limitations due to mechanical selection and potential errors. AI-enhanced ECG models, employing deep learning 
techniques like fast Fourier transform (FFT), offer improved accuracy. This research demonstrates optimizing ECG-
based HRV monitoring using AI and MATLAB, aiming to develop a non-contact heart rate monitoring system with a 
webcam and image processing application. 

1.1. Objectives of the Study 

 Conduct a literature review on the history, modernization, and future trends of heart rate monitoring 
techniques.  

 Design and propose a system setup.  
 Using MATLAB application designer, develop an application that enables live image acquisition and processing 

in other to determine heart rate. 
 Furthermore, to develop the MATLAB application to produce a test report on the collected data.  
 Finally, the assessment feasibility for monitoring more than one individual simultaneously and provision of 

proof of concept.  

1.2. Significance of the Study 

Heart rate monitoring has long been essential in assessing cardiovascular health. Electrocardiograms (ECGs) are crucial 
tools for monitoring heartbeats and their patterns, linking directly to an individual's heart to measure heart rate. 
Utilizing MATLAB for image acquisition and processing represents an advanced phase of ECG analysis. This approach 
involves applying Fast Fourier Transform (FFT) to enhance the accuracy and automation of ECG evaluations, reducing 
errors and losses. 

 

Figure 1 ECG heart monitor [Holton, B. D., Mannapperuma, K., Lesniewski, P. J., & Thomas, J. C. (2013).] 

Understanding how heart monitors record heart rate requires knowledge of the heart's stimulation and the relationship 
between heartbeat frequency and cardiovascular performance. Heart rate, measured in beats per minute, is directly 
related to cardiac output—the volume of blood pumped through the body. The heart's pace-making cells, primarily in 
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the sinoatrial node and secondarily in the atrioventricular node, regulate heart rate. Electrical currents in the heart, 
influenced by potassium and sodium ion flows, trigger heartbeats. Heart monitors detect and measure these currents. 

A heart monitor typically consists of a chest strap with electrodes and a display device, often a wristwatch. The strap, 
fastened securely around the chest, ensures accurate recordings by maintaining contact with the skin. Data from the 
monitor is transmitted wirelessly to the display, providing real-time heart rate snapshots. Advanced monitors also track 
personal heart rate zones and workout intensity, helping users achieve target heart rates. This is crucial for athletes 
aiming to optimize workouts and those monitoring their heart health to avoid overexertion. Middle-aged athletes in 
intense sports, like basketball or ice hockey, can use heart monitors to prevent heart attacks by staying within safe heart 
rate limits Goodfellow et al., 2016】【Smith & Johnson, 2018】【Fung et al., 2015】【Holton et al., 2013. In summary, 
heart rate monitors, enhanced by AI and MATLAB, provide sophisticated and precise heart rate tracking, crucial for both 
elite athletes and individuals monitoring their cardiovascular health. 

2. Review of related literature 

This literature review delves into the evolution, current challenges, and future prospects of heart rate monitoring 
techniques, highlighting its importance in both sports and healthcare. Heart rate monitoring has progressed from 
primitive methods to advanced technological systems, playing a crucial role in assessing cardiovascular health. It 
provides invaluable data for diagnosing conditions like arrhythmias, tachycardia, or bradycardia, and helps evaluate the 
risk of cardiovascular diseases. An elevated resting heart rate can indicate a higher risk of hypertension, coronary artery 
disease, or heart failure. 

In healthcare, heart rate monitoring is essential for prescribing personalized exercise regimens and ensuring safety 
during physical activity by monitoring intensity levels. It also helps in evaluating the effectiveness and side effects of 
medications, such as adjusting dosages or identifying adverse reactions based on heart rate fluctuations. For athletes, 
heart rate monitoring is key to optimizing training and performance, determining exertion zones, and avoiding 
overexertion. It provides insights into recovery, with a lower heart rate during rest indicating improved cardiovascular 
fitness. 

Resting heart rate (RHR) measures the number of heart beats per minute while at rest, with a lower RHR generally 
indicating better cardiovascular health [Goodfellow, I., Bengio, Y., & Courvile, A. (2016)]. Regular exercise and a healthy 
lifestyle can reduce RHR as the heart becomes more efficient at pumping blood. Heart rate is crucial for calculating 
cardiac output, the volume of blood the heart pumps per minute, which is determined by multiplying heart rate by 
stroke volume (the amount of blood expelled with each heartbeat). Maintaining an appropriate heart rate ensures 
sufficient blood supply to organs and tissues. 

Heart rate is also a critical measure of exercise intensity. During physical activity, heart rate increases to meet the higher 
oxygen and nutrient demands of working muscles. Monitoring heart rate helps individuals assess exertion levels and 
adjust intensity to maximize cardiovascular benefits and prevent overexertion. Irregular heart rate patterns can signal 
cardiovascular issues; a persistently high resting heart rate might indicate conditions like hypertension or heart failure, 
while an unusually low heart rate could suggest electrical system problems or other cardiac disorders. Additionally, 
heart rate monitoring is used to gauge the impact of medications like beta-blockers, which are prescribed to lower heart 
rate in patients with hypertension or heart conditions. Monitoring helps healthcare professionals assess the 
effectiveness of these medications. 

In summary, heart rate monitoring is a vital tool in both sports and healthcare, aiding in the diagnosis, treatment, and 
management of various cardiovascular conditions and optimizing physical performance and recovery. 

2.1. History of heart rate monitoring techniques 

The history of heart rate monitoring techniques spans several centuries, starting from the early attempts to measure 
the pulse manually to the development of modern wearable devices and medical technologies. Here's an overview of 
the major milestones in the history of heart rate monitoring. 

2.1.1. Evolution Trend 

In antiquity, healers in Egypt and India felt wrist or neck pulses to estimate heartbeats [Shaffer & Ginsberg, 2017]. In 
1816, French physician René Laennec invented the stethoscope, enabling doctors to listen to heart and lung sounds 
[Shaffer & Ginsberg, 2017]. This advanced cardiac assessment. Later, 19th-century scientists like Augustus Waller, 
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Gabriel Lippmann, and Willem Einthoven made significant ECG developments [Shaffer & Ginsberg, 2017]. Einthoven's 
1903 string galvanometer allowed recording heart's electric signals, leading to ECG's widespread diagnostic use [Shaffer 
& Ginsberg, 2017]. 

 

Figure 2 Pulse Oximeter. [Holton, B. D., Mannapperuma, K., Lesniewski, P. J., & Thomas, J. C. (2013).] 

Cardiotachometers, emerging in the early 20th century, used spinning drums and styluses to measure heart rate, 
inspired by ECG signals【Smith & Johnson, 2018】. By the mid-20th century, wireless technology led to portable ECG 
monitors, enhancing heart rate monitoring. In the 1970s, pulse oximetry provided a non-invasive method to measure 
heart rate and blood oxygen saturation with fingertip sensors. With digital advances, wearable devices like fitness 
trackers and smartwatches became popular for real-time heart rate tracking. Medical-grade monitors in clinical settings 
remain crucial for continuous patient monitoring, especially during surgeries and intensive care. 

2.1.2. Development of ECG for Heart Rate Measurement 

The emergence of ECG for heart rate measurement marks a significant advancement in medical diagnostics. ECG 
documents the heart's electrical activity through electrodes on the skin, capturing signals from cardiac contractions. 
Technological progress has led to portable, streamlined ECG devices with multiple leads and advanced signal processing 
techniques, including deep learning and quantum signal processing. These devices measure heart rate, rhythm, and 
detect anomalies like arrhythmias. 

ECG-based heart rate measurement is non-invasive and straightforward, analyzing the intervals between P waves, QRS 
complexes, and T waves to determine heart rate accurately. This technique is widely used in hospitals, clinics, 
ambulances, and even at home with portable devices, offering crucial insights into cardiac health. The widespread 
adoption of ECG has revolutionized cardiovascular diagnosis and management, becoming an essential tool in cardiology 
for precise and rapid cardiac function assessment and anomaly detection. 

2.1.3. Advancements in heart rate monitoring during the 20th century 

The 20th century saw significant advancements in heart rate monitoring technologies, enhancing our understanding of 
cardiac health and improving medical care. Key breakthroughs include: 

 ECG/EKG: Emerging in the early 20th century, ECG/EKG technology revolutionized heart rate monitoring by 
capturing the heart's electrical activity. Over time, ECGs became more portable and widely used in hospitals 
and clinics. 

 Wearable Heart Rate Monitors: Initially used in clinical settings, these devices gained popularity among athletes 
and fitness enthusiasts. They use electrodes or chest straps to measure heart rate, displaying data on monitors. 

 Holter Monitors: Developed in the 1960s, these devices allowed continuous heart rate and rhythm monitoring 
over 24 to 48 hours, enabling healthcare professionals to detect irregularities [Allen, 2007]. 

 Pulse Oximetry: Gaining prominence in the late 20th century, pulse oximeters measure blood oxygen levels and 
heart rate through a sensor on a finger or earlobe. 

 Cardiac Telemetry Systems: Advances in wireless communication led to real-time remote monitoring of heart 
rate and rhythm in hospitals. 
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 Wearable Fitness Trackers: With advancements in flexible circuits and sensor integration, wearable fitness 
trackers became popular, offering real-time heart rate feedback during activities [Barbaro et al., 2010; Yan and 
Zhang, 2008; Lanatà et al., 2010]. 

Further efforts to reduce motion artifacts are needed to enhance the accuracy of these wearable technologies. 

2.2. Modernization of heart rate monitoring techniques 

Recent advancements in heart rate monitoring technology have significantly enhanced the ability to measure and 
analyze heart rate, benefiting individuals, healthcare professionals, and researchers. Wearable devices such as fitness 
trackers, smartwatches, and dedicated heart rate monitors have become central to this progress. These devices utilize 
optical sensors to measure heart rate by detecting blood flow changes beneath the skin, providing real-time heart rate 
data and additional features like activity tracking. They often integrate with smartphones and apps for comprehensive 
health monitoring. 

Photoplethysmography (PPG) is a non-invasive optical method used to measure blood volume changes by observing 
light absorption variations due to blood flow. PPG sensors, incorporated into various wearables, allow continuous heart 
rate monitoring and provide additional metrics like heart rate variability (HRV), which helps assess stress levels and 
cardiovascular health [Holton et al., 2013]. 

Electrocardiography (ECG), a well-established technique for recording the heart's electrical activity, has also seen 
significant innovations. Modern ECG devices are smaller and more portable, with some smartwatches now capable of 
providing single-lead ECG readings through built-in sensors. 

Biochemical sensors have emerged as an exciting area in wearable technology. These sensors monitor biochemical 
levels and atmospheric compounds, crucial for environments with health hazards. Although complex in design, 
advancements in micro and nanofabrication have accelerated progress. For example, Dudde et al. (2006) developed a 
minimally invasive wearable device for continuous blood glucose monitoring and insulin administration. This device 
uses a silicon sensor for glucose measurement and a modified insulin pump for continuous infusion, with Bluetooth 
capabilities for data transmission and remote control (Patel et al., 2012). 

The advent of telemedicine and remote patient monitoring has revolutionized heart rate data management. Heart rate 
data can now be transmitted and monitored remotely, which is particularly beneficial for patients with chronic 
conditions or those recovering from cardiovascular events. This remote monitoring enables healthcare professionals to 
track heart rate trends, detect anomalies, and provide timely interventions. Integration with Artificial Intelligence (AI) 
allows for advanced data analysis, revealing patterns and irregularities that might go unnoticed. AI algorithms can 
identify irregular heart rhythms, predict cardiac events, and offer personalized health insights, aiding users in making 
informed lifestyle choices. 

Continuous heart rate monitoring, unlike traditional methods that provide momentary readings, offers an extensive 
understanding of heart rate patterns throughout the day, including during sleep and physical activity. This 
comprehensive data can be integrated with electronic health records (EHRs) and health tracking platforms, offering 
healthcare providers a holistic view of an individual’s health for better diagnosis, treatment planning, and long-term 
health management. 

2.2.1. Introduction of Wearable Heart Rate Monitors 

Wearable heart rate monitors have revolutionized cardiovascular health and fitness tracking. Resembling a wristwatch 
or fitness tracker, these devices use sensors to monitor pulse. A notable development is the self-contained cuff-less 
photoplethysmography (PPG) blood pressure monitor (Shaltis, Reisner, and Asada 2006). This device employs MEMS 
accelerometers to measure hydrostatic pressure and derive mean arterial blood pressure from the PPG sensor's output. 

Wearable heart rate monitors provide continuous heart rate monitoring, alerting users to abnormalities and facilitating 
timely intervention. They are especially popular among fitness enthusiasts and athletes, offering insights into exercise 
intensity and helping optimize training regimens. Features often include sleep monitoring, stress tracking, calorie 
estimation, and even electrocardiogram measurements in advanced models. Data can be synchronized with apps or 
software for comprehensive analysis, aiding in identifying patterns, setting goals, and making informed lifestyle and 
fitness decisions. 
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Figure 3 Chest Strap Heart Rate Monitor [Holton, B. D., Mannapperuma, K., Lesniewski, P. J., & Thomas, J. C. (2013).] 

2.2.2. Optical Heart rate Sensors and Photoplethysmography (PPG) 

Optical heart rate sensors and photoplethysmography (PPG) are commonly used to measure heart rate and gain insights 
into the cardiovascular system. They are extensively found in fitness trackers, smartwatches, medical devices, and 
healthcare monitoring systems. These sensors use light-based methods to detect changes in blood volume within 
microvascular tissue, employing light-emitting diodes to emit light and photodiodes to capture reflected or transmitted 
light. By illuminating the skin and measuring the light absorbed or scattered by blood vessels, they deduce heart rate 
and other parameters. PPG, used in optical heart rate sensors, relies on the principle that blood absorbs specific 
wavelengths of light. Typically, green or infrared light is used to measure blood volume changes, converting these into 
electrical signals for heart rate calculation. PPG also provides additional information, like heart rate variability (HRV), 
which indicates autonomic nervous system function. While less accurate than ECG, optical sensors offer a non-invasive, 
convenient alternative for continuous heart rate monitoring in everyday settings, making them popular in consumer 
wearables. 

2.2.3. Chest Strap Monitors and ECG-Based Devices 

Chest strap monitors (fig 3) and ECG-based devices are wearable technologies commonly used for monitoring heart rate 
and providing ECG data. They are essential in fitness, healthcare, and sports, offering real-time insights into 
cardiovascular health, exercise intensity, and cardiac conditions. Chest strap monitors, worn around the chest, use 
sensors and Bluetooth to transmit data to smartphones or fitness trackers, ensuring accurate monitoring during 
physical activities. ECG-based devices, like wrist-worn smartwatches or patches, directly measure heart electrical 
activity, providing detailed analyses for detecting irregular rhythms and assessing heart health. Both devices offer 
features such as heart rate variability analysis, exercise tracking, and integration with fitness apps, benefiting athletes, 
fitness enthusiasts, and health-conscious individuals. 

2.2.4. Smartphone Applications and Smartwatches for Heart Rate Monitoring 

Smartphone apps and smartwatches are popular for heart rate monitoring, offering convenient ways to track health 
and fitness. They use sensors and algorithms to measure heart rate: smartphones often use optical sensors in cameras 
or flashes, while smartwatches have sensors on their backs. Apps measure heart rate by placing a finger over the sensor 
or camera lens, analyzing blood flow changes in light absorption for BPM display. They may track HRV, create exercise 
zones, and integrate with other apps. Smartwatches monitor continuously using light reflection from blood vessels, 
displaying real-time rates and offering features like ECG monitoring for detailed health insights and abnormality 
detection. 

2.3. Challenges in heart rate monitoring 

Heart rate monitoring plays a crucial role in assessing cardiovascular health and tracking physical activity levels. 
However, there are several challenges associated with heart rate monitoring that can affect its accuracy and reliability. 
Some of these challenges shall be discussed subsequently. 

2.3.1. Motion Artifacts 

Motion artifacts degrade image or signal quality across various fields such as photography, videography, and medical 
imaging. These artifacts, including blurring and ghosting, result from relative motion between the imaging system and 
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the subject. Causes include camera or subject movement during image capture, shaky hands, or insufficient shutter 
speeds. The rolling shutter effect, common in modern cameras, further contributes to distortions when motion occurs 
during exposure. Fast-moving objects can also cause motion blurring if shutter speeds are inadequate. For instance, 
Asada et al. (2003) developed a ring sensor for measuring SpO2 and heart rate, integrating motion artifact reduction 
techniques to enhance accuracy in medical applications. Techniques to mitigate motion artifacts include optical and 
digital image stabilization, adjusting shutter speeds, using stabilizing devices like tripods, and applying motion 
compensation algorithms during post-processing. 

2.3.2. Skin Contact and Sensor Placement 

Skin contact and sensor placement are critical in medical devices, wearable technology, and human-computer 
interaction. The type of sensor used depends on the application, ranging from electrodes for electrical signals to optical 
sensors for blood flow monitoring. Before placement, preparing the skin surface by cleaning ensures accurate readings 
by removing dirt, oils, and sweat. Adhesive gels or tapes may enhance sensor contact, with hypoallergenic adhesives 
used to prevent skin reactions. Sensors can be directly adhered to the skin or affixed to wearables. Proper placement 
guidelines are crucial; for example, ECG electrodes are placed on the chest, and EMG electrodes target specific muscles. 
Comfort is prioritized for long-term use, ensuring sensors do not hinder movement or cause irritation. Materials with 
flexibility and stretchability enhance user comfort. Calibration and validation post-placement ensure measurement 
accuracy and reliability. Regular sensor and skin hygiene maintenance prevents infections and preserves accuracy. 
Specific applications may necessitate additional guidelines for skin contact and sensor placement beyond these general 
considerations. 

2.3.3. Environmental Factors and Individual Variability 

Environmental conditions significantly influence heart rate monitoring accuracy. Extreme temperatures, high humidity, 
or cold weather can affect sensor performance or alter physiological responses, leading to inaccurate readings. 
Additionally, electromagnetic interference from electrical devices or wireless signals can disrupt the heart rate 
monitoring process. Individual variability in heart rate, influenced by age, fitness level, medication, and health 
conditions, complicates establishing universal standards for accurate monitoring. Accounting for these individual 
factors is crucial for interpreting heart rate data accurately. 

2.3.4. Noise Interference 

 Noise interference refers to unwanted disturbances that degrade signal or image quality, originating from electronic 
components, sensor limitations, or environmental factors. Common types include Gaussian noise, which appears as 
random brightness or color variations in images, salt-and-pepper noise that manifests as isolated high or low intensity 
pixels, and chroma noise affecting color channels with speckles or variations. Reducing noise interference involves 
various techniques tailored to specific noise characteristics. Increasing the signal-to-noise ratio (SNR) by capturing 
stronger signals or extending exposure times improves noise visibility. Noise reduction filters like median, Gaussian, or 
bilateral filters suppress noise while preserving image details. Image averaging, combining multiple frames to reduce 
random noise, and employing advanced denoising algorithms such as wavelet, non-local means, or total variation 
methods further enhance noise reduction efficacy. 

2.3.5. Accuracy During High-Intensity Exercise 

Maintaining accuracy in heart rate monitoring during high-intensity exercise poses challenges due to increased motion 
artifacts, rapid heart rate changes, and potential signal dropout. These factors can limit the reliability of heart rate 
monitors for individuals involved in intense physical activities or sports. 

2.4. Future trends in heart rate monitoring techniques 

2.4.1. Wearable Devices 

Wearable devices like smartwatches and fitness bands have revolutionized heart rate monitoring by offering 
convenience and real-time health insights. Corbishley and Rodríguez Villegas (2008) pioneered a wearable acoustic 
sensor system for respiratory rate measurement, highlighting advancements in noise-filtering techniques for enhanced 
accuracy. Future devices are expected to evolve with improved accuracy, comfort, and capabilities to measure additional 
health metrics such as heart rate variability and ECG readings. Advanced sensors and algorithms will likely play a crucial 
role in enhancing accuracy and providing comprehensive heart health assessments. 
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2.4.2. Non-Invasive Techniques 

Future trends in heart rate monitoring may shift towards non-invasive techniques that eliminate the need for direct 
skin contact or invasive procedures. Technologies like radar-based systems and optical sensors hold promise for remote 
heart rate monitoring capabilities, offering convenience and comfort. 

2.4.3. Continuous Monitoring 

Continuous heart rate monitoring is essential for detecting patterns and irregularities over extended periods. Future 
wearable devices may provide continuous monitoring capabilities, delivering real-time data and alerts for early 
detection of cardiovascular issues, particularly beneficial for individuals with chronic conditions. 

2.4.4. Artificial Intelligence and Machine Learning 

Integration of AI and ML algorithms is set to transform heart rate monitoring by analyzing large datasets to detect 
patterns and anomalies. These technologies can provide personalized insights, alerting users or healthcare 
professionals to potential health risks and enabling timely interventions. 

2.4.5. Integration with Healthcare Systems 

Future heart rate monitoring devices are expected to integrate seamlessly with electronic health records (EHRs) and 
healthcare systems. This integration will enable healthcare providers to access and analyze patients' heart rate data 
systematically, facilitating informed decision-making and personalized patient care. 

2.4.6. Contextual Analysis 

Enhancing heart rate monitoring effectiveness involves analyzing heart rate data alongside contextual information such 
as physical activity, sleep patterns, stress levels, and environmental factors. This holistic approach provides a 
comprehensive understanding of heart health and its impact on overall well-being. 

3. Methodology 

The design of an AI-driven heart rate monitoring system involves several methodologies: palpation, auscultation, 
ECG/EKG, PPG, and pulse oximetry. Palpation entails feeling the pulse at the radial artery, offering tactile assessment 
but prone to error (Brunicardi et al., 2018). Auscultation uses a stethoscope to listen to heart sounds like lub-dub 
(Hornero & Abásolo, 2018). ECG/EKG employs electrodes to record heart electrical activity (Surawicz & Knilans, 2008). 
PPG measures blood volume changes using light sensors (Allen, 2007). Pulse oximetry monitors heart rate indirectly 
via oxygen levels (Sinex, 1999). The green channel is predominant in image and video formats due to human vision 
sensitivity and compatibility with legacy systems. Bayer filter cameras allocate more pixels to green, enhancing detail 
and precision (Bayer pattern). Advanced computer vision can extract heart rate from video via subtle color changes 
from blood flow. 

This research focuses on MATLAB and AI for heart rate monitoring using green channel analysis and FFT for signal 
processing. 
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Figure 4 Green Channel Analysis [Allen, J. (2007).] 

This design shall consist of the following: 

3.1. Hardware Requirements 

The following hardware were utilized as shown in Fig 5 for the execution of the research. 

 

Figure 5 Hardware Requirement 

3.1.1. Heart Rate Sensors 

A suitable heart rate sensor for measuring the electrical activity of the heart was chosen, specifically the M70B 
fingerprint pulse oximeter. It provides accuracy of ±2% for SpO2 levels between 70% and 100%, and unspecified 
accuracy for levels 0-69%. For pulse rate (PR), the accuracy is ±1% as per the manufacturer’s manual. 

3.1.2. Webcam / Camera System 
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The webcam, or camcorder, captures dynamic visuals and sound by converting light into electrical signals through its 
image sensor. Signal processing enhances signal quality through colour correction, noise reduction, and exposure 
adjustments. 

3.1.3. Personal Computer (PC) 

The PC was equipped with MATLAB and all necessary toolboxes for data processing and analysis. 

Heart Rate Monitor for System Performance 

To assess system performance, a heart rate monitoring process was conducted: 

Data Collection: Live video data from the camera sensor was captured using MATLAB App Designer Toolbox. 

Preprocessing: Data underwent cleaning to remove noise and artifacts, including region of interest extraction, green 
channel data extraction, filtering, and signal conditioning. 

Feature Extraction: Key features were extracted from preprocessed heart rate data, including time-domain features (e.g., 
heart rate variability coefficient), frequency-domain features (e.g., Fast Fourier Transform), and statistical features (e.g., 
mean intensity data). 

Model Selection: Fast Fourier Transform (FFT) was utilized to enhance heart rate analysis. FFT transforms analogue 
signals into the frequency domain, providing insights into signal components and aiding in anomaly detection. 

3.2. FFT Benefits 

 Frequency Content: Identifies constituent frequencies and their amplitudes. 
 Spectral Analysis: Crucial in various applications such as audio processing and signal filtering. 
 Harmonics and Distortion: Identifies harmonics and distortion components. 
 Frequency-Based Filtering: Facilitates filtering based on specific frequency ranges. 
 Compression and Data Reduction: Useful for compressing data by representing signals with fewer frequency 

components. 
 Detection of Anomalies: Assists in identifying abnormal signal patterns. 
 Efficient Implementation: Reduces computational complexity for real-time processing. 
 Interference Analysis: Analyzes signal interference in communication systems. 
 Phase and Time-Domain Relationships: Provides insights into phase relationships between frequency 

components. 

MATLAB algorithms were employed to extract heart rate from sensor data and compared against the pulse oximeter 
standard. 

3.2.1. Model Evaluation 

Model evaluation encompasses the intricate art of scrutinizing and gauging the efficacy and prowess of a predictive or 
analytical model [Goodfellow, I., Bengio, Y., & Courville, A. (2016).]. It entails quantifying the harmonization between 
the model's prognostications and the veritable outcomes or unadulterated ground truth data. Model evaluation 
constitutes a pivotal stride in the realms of machine learning, statistics, and other data-driven domains, as it unveils the 
model's precision, resilience, and capacity for broad applicability. Evaluation of the FFT signal using appropriate 
metrics, such as accuracy, precision, was carried out. The FFT component was then further implemented in the MATLAB 
and integrated it into the heart rate monitoring system. The model's performance was then assessed on the validation 
set and fine-tuned. Several calibrations were done knowing the error margin of the chosen pulse oximeter to 
compensate for error correction. 

3.3. Visualization and User Interface 

A user-friendly interface was Developed using MATLAB's graphical user interface (GUI) tools. This was then used to 
display the real-time heart rate on the GUI. Options for recording and storing heart rate data for further analysis or 
generating reports was made. 
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3.4. Deployment and testing 

The heart rate monitoring system was thoroughly tested to ensure its accuracy and reliability. The result obtained was 
compared with a reference heart rate measurement to validate its performance. Several set of heart rate test was 
evaluated. This was done to ascertain the accuracy of the AI model, making necessary improvements if required. It was 
then deployed in a real-time heart rate monitoring system. using multiple persons and two pulse oximeters, the system 
was tested to assess its performance in a real-world scenario. 

3.5. Continuous improvement 

The performance of the heart rate monitoring system was monitored, and feedback was collected. The system was 
refined and improved iteratively by continuously incorporating additional pulse oximeters in case of multiple 
individuals, updating the model, and adjusting the system's parameters. 

4. Design 

In the pursuit of designing a heart rate monitoring system, significant milestones were achieved, including requirements 
delineation, user interface (UI) design, region of interest (ROI) extraction, green channel intensity data acquisition, 
signal preprocessing, feature extraction, real-time monitoring, heart rate calculation and visualization, data validation, 
logging, storage, testing, and optimization. To ensure excellence, MATLAB's App Designer was utilized for an exquisite 
UI. This interface featured intuitive controls—buttons for functionality, dynamic plots, informative text boxes, and 
indicators for real-time heart rate display. 

4.1. Hardware Requirements 

Essential hardware included a camera or webcam for capturing facial video, a computer or embedded system to run 
MATLAB for real-time processing, and adequate lighting for precise image analysis. 

4.2. Data Acquisition 

Video footage of subjects' faces was captured using a camera or webcam under consistent lighting conditions to ensure 
optimal image quality and luminosity. 

4.3. Preprocessing 

Preprocessing, pivotal in data analysis workflows, involved: 

 Data Cleaning/Denoising: Identifying and correcting errors to enhance data reliability. 
 Data Integration: Combining diverse data sources into a unified dataset. 
 Data Transformation: Normalizing and scaling data for uniformity and distribution compliance. 
 Feature Selection: Selecting relevant features through statistical analysis and dimensionality reduction. 

4.4. Region of Interest (ROI) Extraction 

ROI extraction focused on isolating critical areas in images or videos using methods such as thresholding and edge 
detection (e.g., Canny edge detection) to delineate boundaries effectively. 

4.5. Feature Selection/Extraction 

4.5.1. Critical to machine learning, this step involved: 

 Feature Selection: Using statistical measures to identify pertinent features. 
 Feature Extraction: Transforming features into a more compact, informative representation, suitable for 

analysis. 

Each stage—from UI design to feature extraction—was crafted to optimize performance and usability in the heart rate 
monitoring system development. These components collectively ensure robust functionality and accurate data 
processing, critical for medical applications and beyond. 
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4.6. Heart Rate Calculation 

Algorithms and mathematical techniques were used to calculate the heart rate from the processed data. This involves 
peak detection and frequency analysis. Frequency analysis was implemented which consist of: 

4.6.1. Frequency Analysis 

This is frequently employed in signal processing and data analysis to unearth remarkable points or frequencies within 
a given signal or dataset. It finds wide-ranging application in diverse domains such as audio processing, image 
processing, vibration analysis, and scientific exploration. Frequency analysis involves determining the frequency 
components present in a signal or dataset. It helps to understand the spectral characteristics and identify dominant 
frequencies. Frequency analysis is particularly important in fields such as audio processing, telecommunications, and 
vibration analysis.  

4.6.2. Fourier Transform:  

The Fourier Transform is a mathematical technique that decomposes a signal into its constituent frequency 
components. The Fast Fourier Transform (FFT) algorithm is commonly used for efficient computation of the Fourier 
Transform. FFT was implemented in analysis of this image signal. This would facilitate the faster method of measuring 
heart rate so as to make swift response. This procedure was carried out 

4.6.3. The coefficient of variability (CV):  

This is also known as the relative standard deviation (RSD), serves as a statistical gauge that appraises the relative 
fluctuation or scatter of a dataset. It takes on the form of a percentage and is computed by dividing the standard 
deviation (SD) by the mean (μ) of the dataset, then multiplying the quotient by 100%. The formula for calculating the 
coefficient of variability is as follows: 

CV = (μ / SD) × 100% 

where: 

CV represents the coefficient of variability (expressed as a percentage). 
SD denotes the standard deviation of the dataset. 
μ signifies the mean of the dataset. 

The coefficient of variability offers a means to juxtapose the variability of distinct datasets, irrespective of their scales 
or units. A diminished CV denotes lesser relative variation encircling the mean, while an augmented CV implies greater 
relative variation. 

For instance, contemplate two datasets: 

Dataset A: [10, 20, 30, 40, 50] 

Dataset B: [100, 110, 120, 130, 140] 

To calculate the coefficient of variability for each dataset: 

Dataset A: 

Mean (μ) = (10 + 20 + 30 + 40 + 50) / 5 = 30 

Standard Deviation (SD) ≈ 14.14 

Coefficient of Variability (CV) ≈ (14.14 / 30) * 100 ≈ 47.13% 

Dataset B: 

Mean (μ) = (100 + 110 + 120 + 130 + 140) / 5 = 120 

Standard Deviation (SD) ≈ 14.14 
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Coefficient of Variability (CV) ≈ (14.14 / 120) * 100 ≈ 11.78% 

In this example, Dataset B showcases a diminished coefficient of variability, signifying lesser relative variation 
surrounding the mean compared to Dataset A. 

The coefficient of variability determines the variation between the standard pulse oximeter and the heartbeat rate 
gotten from the signal. This finds extensive application in diverse fields, encompassing biology, and engineering, to 
appraise the scatter of data and assess the stability or consistency of processes or measurements. 

4.7. Real-Time Monitoring: 

Real-time monitoring involves the continuous collection and immediate analysis of data as it is generated, essential for 
timely decision-making in critical domains like industry and healthcare (Babiceanu, Li, & Guan, 2016). During this 
research, real-time monitoring was utilized to acquire live video streams and snapshots for processing. 

4.7.1. Visualization 

Visualization aids in understanding complex data through graphical representation, facilitating insights and decision-
making (Reference 19). In AI and real-time monitoring, visualization plays a crucial role by presenting data and AI model 
outputs intuitively. For instance, a predictive maintenance system can use AI to analyze sensor data in real-time, 
visualizing results on dashboards for quick action. In this research, a Graphical User Interface (GUI) was employed to 
visualize signal components. 

4.8. Validating and Testing: 

4.8.1. Validation 

Validation ensures that a model or system meets predefined criteria and performs as intended. It involves testing for 
accuracy, completeness, and reliability against specified requirements. For this research, validation included using a 
pulse oximeter and calibration to ensure accuracy. 

4.8.2. Testing 

Testing evaluates a system for defects and errors post-validation. It involves executing various scenarios to assess 
behavior and reliability, aiming to ensure compliance with specifications. Following validation, this research underwent 
testing to verify functionality. 

4.8.3. Optimization and Improvement 

Optimization enhances system performance, efficiency, and reliability by refining processes or algorithms. It includes 
reducing computational complexity and improving responsiveness. Process optimization identifies and rectifies 
inefficiencies to streamline operations and boost productivity. 

4.8.4. Deployment 

Upon meeting specified requirements, the heart rate monitoring app will be deployed for standalone use or integration 
into other software systems, ensuring usability by end-users. 

5. Implementation 

5.1. Data Acquisition 

In the initial phase of the research, parameters for data acquisition were configured, such as frame dimensions and the 
number of frames to capture. Using the 'winvideo' adaptor, a video input object ('vidobj') was instantiated with specified 
settings. An empty frame was displayed on a UI Axes using the 'imshow' function. Acquisition of live images was 
achieved through iterative calls to the start callback function within a loop, triggered by 'vidobj'. This iterative 
acquisition could be managed via a while loop or timer function. 

5.2. Image Acquisition Library Setup 

To facilitate image acquisition, requisite libraries were installed, and dependencies resolved. The image acquisition 
device (e.g., webcam) was initialized, and a continuous acquisition loop was established using a timer function. This 
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loop facilitated ongoing image capture, enabling real-time processing and display on the GUI Axes. Upon completion of 
the acquisition process, resources were properly released by stopping 'vidobj' and performing necessary cleanup 
operations. 

5.3. ROI Extraction 

Region of Interest (ROI) extraction involved defining specific areas within acquired frames for subsequent processing 
and analysis. 

Green Channel Data Extraction: Focused on extracting green channel data from the ROI, this step involved specific 
code implementation to obtain and display green channel intensities in the GUI. 

Histogram Generation: A histogram chart depicting the relationship between pixel intensity and frequency was 
plotted on the UIAxes, providing a visual representation of image characteristics (Fig. 6). 

5.4. Mean Intensity Calculation 

Integration of a timer object within the app's UI facilitated continuous webcam frame capture and calculation of mean 
intensity values over time. This functionality was implemented using code configured in the App Designer environment. 

5.5. Heart Rate Calculation 

For heart rate determination, temporal filtering was applied to enhance the signal from the green channel. Peaks in the 
processed signal were detected using dedicated algorithms, allowing computation of time intervals between 
consecutive peaks. The heart rate (in beats per minute) was subsequently derived from these intervals. 

FFT Analysis of Green Channel: The acquired green channel images underwent Fast Fourier Transformation (FFT) to 
reveal their frequency spectra. This transformation enabled identification of dominant oscillatory frequencies, often 
corresponding to the heart rate. A low-pass Butterworth filter was applied to isolate relevant power peaks indicative of 
heart rate frequencies. The FFT magnitude spectrum was continuously updated and displayed in the app's user interface 
during real-time image acquisition. This methodology aligns with previous research methodologies (Hu et al., 2009) 
employing time-frequency analysis to track changes in frequency spectra over time. The implemented approach ensures 
real-time processing and display of FFT results, crucial for dynamic monitoring applications. Reference: Hu, X., Peris, S. 
M., Echiadis, A., Zheng, L., & Shi, Y. (2009). 

5.6. Comparing the heart rate value with known standard (pulse oximeter) 

5.6.1. Step 1: Data Collection 

Pulse Oximeter Reading: a pulse oximeter was used to measure a subject's heart rate and oxygen saturation (SpO2), the 
values obtained from the pulse oximeter were Recorded. It was Ensured that the measurements were taken consistently 
and under similar conditions. 

MATLAB App Design: The MATLAB app using image processing techniques to detect the heart rate and SpO2 from a live 
video feed was Created. This involved techniques like green channel analysis to detect blood flow changes in relevant 
body part. It was Ensure that the video feed was of good quality and captures the relevant area accurately. 

5.6.2. Step 2: Analysis and Comparison 

Data Preprocessing: The data from both sources were synchronized in terms of time stamps and sequence. Thereafter, 
normalized to ensure a fair comparison. 

Data Visualization:   The pulse rate and SpO2 values obtained from both sources were Plotted over time for each 
measurement session. using line graphs and scatter plots for clear visualization. 

Statistical Analysis: Statistical metrics such as mean, median, standard deviation, and correlation coefficient for both 
datasets was computed. the percentage difference between corresponding measurements from the two sources was 
Calculated. 

Error Analysis:   The absolute differences between the measurements from the pulse oximeter and the MATLAB app was 
compared.  Analysis of cases where the differences are significant was done and any patterns or trends was identified. 



World Journal of Advanced Research and Reviews, 2024, 23(01), 1385–1414 

1399 

Bland-Altman PlotA Bland-Altman plot was generated to assess the agreement between heart rate measurements 
obtained from a MATLAB-based Fast Fourier Transform (FFT) analysis application and a Pulse Oximeter. This plot 
illustrates the difference in measurements on the y-axis against their average on the x-axis. In non-invasive health 
monitoring, heart rate serves as a critical indicator of physiological well-being. The FFT analysis in MATLAB is utilized 
to extract heart rate from imaging device signals, necessitating validation against established methods like Pulse 
Oximeters, which are widely accepted for their accuracy in heart rate measurement. 

Comparative analysis serves dual purposes: firstly, validating the accuracy of the MATLAB-based FFT method against 
the Pulse Oximeter, ensuring reliability in heart rate assessment. Secondly, it highlights the potential strengths and 
limitations of image-based heart rate monitoring, influenced by factors such as lighting, camera quality, and signal 
processing techniques. Alignment between FFT-derived results and Pulse Oximeter readings underscores the viability 
of image-based heart rate monitoring. Nonetheless, discrepancies prompt further investigation into potential errors 
within the image processing pipeline. This validation study not only evaluates the efficacy of emerging technologies but 
also supports the advancement of non-invasive healthcare solutions. Data handling specifics, including variables 
`pulseOximeterData` and `matlabAppData`, and adjustments in data loading and processing parameters, are crucial for 
accurate comparisons and implementation in practical settings. 

6. Result and testing 

Image processing techniques have shown promise in non-contact heart rate monitoring. These techniques involve 
capturing video footage of a subject's face and analysing subtle colour changes, primarily in the region around the eyes, 
to estimate heart rate. MATLAB, with its powerful image processing toolbox, provides a versatile platform for 
implementing such methods. In this study, we implement a non-contact heart rate monitoring system using MATLAB 
image processing and compare its results with a pulse oximeter for both single and multiple individuals. This 
comparison aims to evaluate the accuracy and reliability of the image processing approach and its potential for use in 
various practical scenarios. 

6.1. Data collection 

 

Figure 6 Image Acquired [Joseph’s Library (2023)]. 

Pulse Oximeter Data: For the reference data, a pulse oximeter was used to measure the heart rate and blood oxygen 
levels of the participants. This data was collected in a controlled environment with participants in a resting state. 
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Video Data: Live video footage of the participants' faces was obtained simultaneously with the pulse oximeter 
measurements. Adequate lighting conditions was ensured to capture clear facial features. Participants were instructed 
to remain as still as possible during the capturing. 

6.2. Image processing pipeline 

The MATLAB image processing pipeline consists of the following steps: 

Face Detection: Facial landmarks are detected using a pre-cropped region with the individual manually fitting his face 
to the red cropped area to ensure accurate tracking of the region around the eyes. 

Region of Interest (ROI) Selection: A region of interest encompassing the eyes was defined. This region was used for 
further analysis. 

Colour Channel Extraction: The green colour channel was extracted from each frame of the video. Changes in the channel 
was an indicative of variations in blood flow and oxygenation. 

Signal Extraction: Time-domain signals was extracted by averaging the pixel values within the ROI over each frame of 
the live video. This signal represents the subtle colour changes associated with the cardiac cycle. 

Frequency Domain Analysis: Fast Fourier Transform (FFT) was applied to the extracted signal to identify the dominant 
frequency component, which corresponds to the heart rate. 

 

Figure 7 Image Processing Pipeline. [Joseph’s Library (2023)]. 
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Figure 8 Green Channel Intensity. [Joseph’s Library (2023)]. 

 

 

Figure 9 Scatterplots that depict the correlations between the average heart rate measurements in beats per minute 
(bpm) obtained through webcam-based remote Photoplethysmography (PPG) and pulse oximetry-based PPG. 

[Joseph’s Library (2023)]. 

These correlations were presented with respect to the body parts (forehead) and analysis methods (columns). The most 
effective approach involved a combination of procedures, including green channel analysis, low-pass frequency filtering 
(LFF) of the power spectra, and the removal of respiration signals (Resp). This combined method consistently yielded 
the highest correlations for the recordings. It is noteworthy that video recordings captured by the webcam from the 
face demonstrated stronger correlations with pulse oximetry recordings.  
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6.3. Comparison and statistical analysis 

In the context of heart rate monitoring using MATLAB image processing and comparing the results with a pulse 
oximeter, a robust statistical analysis is crucial to assess the accuracy and reliability of the non-contact method. This 
section will elaborate on the statistical metrics used for comparison, provide detailed formulas, and outline the 
approach to achieving the results. 

6.3.1. Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is a measure of the average absolute differences between two sets of data. In this case, it 
quantifies the average discrepancy between the heart rate measurements obtained from the pulse oximeter (reference) 
and the image processing technique. 

 Formula 

MAE = (1 / n) * Σ |Reference - Image Processing| 

where: 

- n is the number of data points (samples). 
- Reference represents the heart rate measurements from the pulse oximeter. 
- Image Processing represents the heart rate measurements obtained through image processing. 

 Approach 
o I calculated the heart rate from both the pulse oximeter and image processing for each time point in the dataset. 
o I computed the absolute difference between the two sets of heart rate measurements. 
o Thereafter, sum up these absolute differences across all data points. 
o Then divide the sum by the total number of data points to obtain the MAE. 

A lower MAE indicated a smaller average difference between the two measurement methods, signifying higher accuracy. 

6.3.2. Root Mean Square Error (RMSE): 

Root Mean Square Error (RMSE) provides a comprehensive measure of the overall accuracy and deviation between two 
sets of data. Like MAE, it assesses the discrepancy between the heart rate measurements from the pulse oximeter and 
the image processing method. 

 Formula 

RMSE = sqrt ((1 / n) * Σ (Reference - Image Processing)^2) 

where: 

- n is the number of data points (samples). 
- Reference represents the heart rate measurements from the pulse oximeter. 
- Image Processing represents the heart rate measurements obtained through image processing. 

 Approach 
 I calculated the heart rate from both the pulse oximeter and image processing for each time point in the dataset. 
 I then computed the squared differences between the two sets of heart rate measurements. 
 Thereafter, sum up these squared differences across all data points. 
 Lastly, divide the sum by the total number of data points and take the square root to obtain RMSE. 

RMSE provides a more comprehensive view of the differences between the two methods, with higher weights given to 
larger discrepancies. 
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Figure 10 Error Plot [Joseph’s Library (2023)]. 

6.3.3.  Correlation Coefficient (R) 

The Correlation Coefficient (R) measures the strength and direction of the linear relationship between two sets of data. 
In this context, it evaluates how closely the heart rate measurements from the pulse oximeter and image processing 
method are related. 

 Formula: 

R = Σ ((Reference - μReference) * (Image Processing - μImage Processing)) / (σReference * σImage Processing) 

where: 

- μReference and μImage Processing are the means of the respective datasets. 

- σReference and σImage Processing are the standard deviations of the respective datasets. 

 Approach: 
o I calculated the mean and standard deviation of both the pulse oximeter and image processing heart rate 

measurements. 
o I computed the cross-product of the deviations from the mean for each pair of data points. 
o Sum up these cross-products for all data points. 
o Then divided the sum by the product of the standard deviations to obtain the correlation coefficient R. 

The correlation coefficient R ranges from -1 to 1. A positive value indicates a positive linear relationship, while a 
negative value indicates a negative relationship. Values closer to 1 or -1 represent stronger correlations, while values 
closer to 0 suggest a weaker or no linear relationship. 
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Figure 11 MATLAB Readings [Joseph’s Library (2023)]. 

 

 

Figure 12 Heart Rate Comparison Plot [Joseph’s Library (2023)]. 

6.4. Approach to Achieving the Results 

 Data Collection 

Heart rate data was simultaneously collected using a pulse oximeter and an image processing method for each 
participant, ensuring synchronization. 

 Preprocessing 

Data underwent preprocessing to eliminate outliers, interpolate missing values, and align timestamps. 



World Journal of Advanced Research and Reviews, 2024, 23(01), 1385–1414 

1405 

 Calculation of MAE and RMSE 

 MAE and RMSE were computed using MATLAB to assess accuracy per participant, with overall metrics used to gauge 
dataset accuracy. 

 Calculation of Correlation Coefficient (R) 

R values between pulse oximeter and image processing measurements were computed per participant to evaluate 
correlation strength, with an overall mean R indicating overall relationship strength. 

 Interpretation 

Results were analyzed by comparing MAE, RMSE, and R values; lower MAE/RMSE indicated higher accuracy, while 
higher R values showed stronger method correlation. 

 Reporting 

Findings were presented via tables, graphs, and figures, with comprehensive discussion emphasizing image processing 
method reliability over pulse oximeter. 

In conclusion, rigorous statistical analysis including MAE, RMSE, and R is crucial for comparing heart rate measurements 
from image processing and pulse oximeter methods, providing insights into accuracy and reliability of the non-contact 
approach. 

7. Conclusion 

In recent years, heart rate monitoring has evolved significantly, transitioning from traditional methods to advanced 
techniques utilizing image processing, prominently supported by MATLAB. This platform has become essential for 
researchers and practitioners in non-invasive monitoring. However, challenges persist despite its benefits. Key issues 
include accurately capturing multiple persons' images, leading to overlapping and erroneous readings, particularly in 
dynamic environments like sports events or medical facilities. 

Capturing multiple persons' images presents unique challenges due to complexities in isolating individual heart rate 
signals from crowded scenes. Factors such as lighting variations, camera angles, and subject movements exacerbate 
these challenges, making traditional methods reliant on skin color extraction and motion analysis less reliable. 

To address these challenges, researchers leverage MATLAB's capabilities with innovative solutions. Advanced face 
detection algorithms and depth-sensing cameras like Microsoft's Kinect are utilized to isolate subjects and enhance 
tracking accuracy. Additionally, machine learning techniques, particularly convolutional neural networks (CNNs), are 
employed to differentiate individuals and extract heart rate information robustly, even amidst occlusions or overlaps. 

Moreover, integrating image data with biometric sensors such as accelerometers and thermal cameras offers a 
comprehensive approach to improve accuracy and reliability in heart rate monitoring systems. 

While challenges in capturing multiple persons' images persist in heart rate monitoring with MATLAB, ongoing 
advancements in algorithms, sensor technology, and interdisciplinary collaborations promise increasingly accurate and 
accessible health assessment tools. Future breakthroughs are expected to further enhance the precision and usability 
of these systems across diverse and demanding scenarios. 
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Appendix 

Matlab Code 

properties (Access = public) 

 % Camera properties 
 period; 
 vid; 
 camTimer; 
 frame; 
 r; 
 rmse; 
 % ROI properties 
 cropX = 722; 
 cropY = 312; 
 pixelX = 253; 
 pixelY = 171; 

https://doi.org/10.1088/0967-3334/34/11/1499%203
https://doi.org/10.1088/0967-3334/34/11/1499%203
https://doi.org/10.3389/fpubh.2017.00258
https://uk.mathworks.com/solutions/deep-learning/ai-signal-processing/_jcr_content/mainParsys/band_copy_1227855798/mainParsys/image.adapt.full.medium.svg/1684872168142.svg
https://uk.mathworks.com/solutions/deep-learning/ai-signal-processing/_jcr_content/mainParsys/band_copy_1227855798/mainParsys/image.adapt.full.medium.svg/1684872168142.svg
https://uk.mathworks.com/solutions/deep-learning/ai-signal-processing/_jcr_content/mainParsys/band_copy_1227855798/mainParsys/image.adapt.full.medium.svg/1684872168142.svg
https://uk.mathworks.com/solutions/deep-learning/ai-signal-processing/_jcr_content/mainParsys/band_copy_1227855798/mainParsys/image.adapt.full.medium.svg/1684872168142.svg
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 croppedImage; 
 % Green channel data 
 greenChannel; 
 greenIntensity; 
 histogramData; 
 greenIntensityArray = []; 
 timeArray = []; 
 sampleNo = 1; 
 value; 
 matlabAppData 
 mae; 

 

 % FFT data 
 fftData; 
 Fs; 
 N; 
 f; 
 fftMagnitude; 
 peakIndex; 
 peakFrequency; 
 HeartRate; 
 effectiveFrameRate; 
 groundTruthHeartRate; 
 absoluteErrors 
 errors; 
 squaredErrors; 
 greenIntensityStdDev; 
 end 

 

 methods (Access = public) 
 % Constructor and other methods... 

 

 % Timer callback function 
 function Timer(app, ~, ~) 
 if app.value == 1 
 try 
 % Set the status lamp color to green 
 app.MeasurementstatusLamp.Color = 'green'; 

 

 % Initialize arrays for green intensity and time 
 app.greenIntensityArray = []; 
 app.timeArray = []; 
 app.sampleNo = 1; 

 

 % Initialize variables for error analysis 
 app.absoluteErrors = []; 
 app.squaredErrors = []; 
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 % Manual triggering of the video object for 20 frames 
 for frameIdx = 1:50 
 trigger(app.vid); 
 app.frame = getdata(app.vid); 

 

 % Update the cameraAxes with the captured frame 
 imshow(app.frame, 'Parent', app.cameraAxes); 

 

 % Draw a red rectangle on the cameraAxes 
 rectangle(app.cameraAxes, 'Position', [app.cropX, app.cropY, app.pixelX, app.pixelY], 'EdgeColor', 'red', 

'LineWidth', 2); 

 

 % Calculate and plot ROI 
 app.croppedImage = app.frame(app.cropY : app.cropY + app.pixelY, app.cropX : app.cropX + app.pixelX, :); 
 imshow(app.croppedImage, 'Parent', app.roiAxes); 

 

 % Calculate the green channel 
 app.greenChannel = app.croppedImage(:,:,2); 
 app.greenIntensity = mean2(app.greenChannel); 

 

 app.GreenintensityEditField.Value = app.greenIntensity; 

 

 % Calculate histogram data 
 app.histogramData = imhist(app.greenChannel); 

 

 % Plot the histogram 
 histogram(app.histogramAxes, app.greenChannel, 'FaceColor', [0 1 0]); 

 

 % Calculate green intensity and update arrays 
 app.greenIntensityArray = [app.greenIntensityArray, app.greenIntensity]; 

 

 app.timeArray = [app.timeArray, app.sampleNo]; 
 app.sampleNo = app.sampleNo + 1; 

 

 % Plot green intensity over time 
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 plot(app.greenIntensityAxes, app.timeArray, app.greenIntensityArray); 
 xlabel(app.greenIntensityAxes, 'Time'); 
 ylabel(app.greenIntensityAxes, 'Green Intensity'); 
 title(app.greenIntensityAxes, 'Green Intensity Over Time'); 
 grid(app.greenIntensityAxes, 'on'); 
 drawnow; 

 

 % Perform further analysis (FFT, plotting, etc.) as needed 

 

 % Calculate FFT only after collecting enough data 
 % Check if enough data has been collected for FFT analysis 
 if app.sampleNo > 20 
 % Calculate and plot FFT on green intensity data 
 app.fftData = fft(app.greenIntensityArray); 
 disp(['fftData: ', num2str(app.fftData)]); 

 

 % Calculate the corresponding frequencies 
 app.Fs = 10 / (app.timeArray(2) - app.timeArray(1)); % Sampling frequency 
 disp(['Fs: ', num2str(app.Fs)]); 

 

 app.N = length(app.fftData); % Number of samples 
 disp(['N: ', num2str(app.N)]); 

 

 app.f = app.Fs * (0:(app.N/2)) / app.N; % Frequencies 
 disp(['f: ', num2str(app.f)]); 

 

 % Calculate the magnitude of the FFT 
 app.fftMagnitude = abs(app.fftData); 
 app.fftMagnitude = app.fftMagnitude(1:app.N/2+1); 

 

 % Dynamically set MinPeakHeight based on the maximum FFT magnitude value 
 minPeakHeightFactor = 0.02; % Adjust as needed 
 minPeakHeight = max(app.fftMagnitude) * minPeakHeightFactor; 

 

 % Use findpeaks to detect the peak in FFT magnitude 
 [peaks, peakIdx] = findpeaks(app.fftMagnitude, 'MinPeakHeight', minPeakHeight); 

 

 if ~isempty(peaks) 
 % Find the index of the highest peak 
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 [~, maxPeakIdx] = max(peaks); 
 app.peakIndex = peakIdx(maxPeakIdx); 
 app.peakFrequency = app.f(app.peakIndex); 
 app.HeartRate = app.peakFrequency * 60; % Convert to BPM 
 disp(['Peak Frequency (Hz): ', num2str(app.peakFrequency)]); 
 disp(['Heart Rate: ', num2str(app.HeartRate)]); 
 else 
 disp('No significant peak detected.'); 
 end 
 % Convert peak frequency to heart rate 
 app.HeartRate = app.peakFrequency * 60; % Convert to beats per minute (bpm) 

 

 % Display the heart rate calculated from FFT data 
 app.HeartRateEditField.Value = app.HeartRate; 

 

 % Plot the FFT magnitude on the designated axes (assuming you have an fftAxes) 
 plot(app.fftAxes, app.f, app.fftMagnitude); 
 xlabel(app.fftAxes, 'Frequency (Hz)'); 
 ylabel(app.fftAxes, 'Magnitude'); 
 title(app.fftAxes, 'FFT of Green Intensity'); 
 grid(app.fftAxes, 'on'); 
 drawnow; 

 

 % Create sample data for MATLAB app data based on heart rate 
 timestamps = 1:50; % Timestamps (For 50 data points) 
 app.matlabAppData = app.HeartRate * ones(size(timestamps)); % Simulated MATLAB app data (Heart Rate) 
 disp(['MATLAB Heart Rate Data:', num2str(app.matlabAppData)]); 

 

 % Ensure both arrays have the same size for error calculations 
 minSize = min(length(app.greenIntensityArray), length(app.matlabAppData)); 
 app.greenIntensityArray = app.greenIntensityArray(1:minSize); 
 app.matlabAppData = app.matlabAppData(1:minSize); 

 

 if ~isempty(app.greenIntensityArray) 
 % Calculate the standard deviation of green intensity 
 app.greenIntensityStdDev = std(app.greenIntensityArray); 
 disp(['Green Intensity Standard Deviation:', num2str(app.greenIntensityStdDev)]); 

 

 % Calculate the mean absolute error (MAE) 
 app.absoluteErrors = abs(app.matlabAppData(1:minSize) - app.greenIntensityArray); 
 app.mae = mean(app.absoluteErrors); 

 

 % Calculate the root mean square error (RMSE) 
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 app.squaredErrors = (app.matlabAppData(1:minSize) - app.greenIntensityArray).^2; 
 app.rmse = sqrt(mean(app.squaredErrors)); 

 

 % Calculate the correlation coefficient (Pearson's correlation coefficient) 
 correlationCoeff = corrcoef(app.matlabAppData(1:minSize), app.greenIntensityArray); 
 app.r = correlationCoeff(1, 2); 

 

 % Display the results 
 fprintf('Mean Absolute Error (MAE): %.2f\n', app.mae); 
 fprintf('Root Mean Square Error (RMSE): %.2f\n', app.rmse); 
 fprintf('Correlation Coefficient (r): %.2f\n', app.r); % Display the correlation coefficient 

 

 else 
 disp('No data in app.greenIntensityArray.'); % Handle the case when there's no data 
 end 

 

 % Optionally, update GUI elements or store these results in app properties 
 end 
 end 
 catch ME 
 % Handle errors during video acquisition 
 app.MeasurementstatusLamp.Color = 'red'; 
 disp(['Error: ' ME.message]); 
 end 
 else 
 % Set the status lamp color to red 
 app.MeasurementstatusLamp.Color = 'red'; 
 end 
 end 
 end 

TIMER CODE 

 

 imaqmex('feature','-limitPhysicalMemoryUsage',false); 
 app.vid = videoinput('winvideo',1, "MJPG_1280x720", "FramesPerTrigger",1); 
 %preview(app.vid); 
 app.period = 0.04; 
 app.camTimer = timer( 'ExecutionMode', 'fixedRate', 'Period', app.period); 
 app.camTimer.TimerFcn = @(~,~) app.Timer; 
 app.PeriodEditField.Value = app.period; 
 start(app.camTimer); 

 

 % Assuming you have a ground truth heart rate value (e.g., from a reference source) 
 app.groundTruthHeartRate = 75; % Replace with the actual ground truth value 
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 % Initialize arrays for error analysis 
 app.errors = []; % To store absolute errors 
 app.squaredErrors = []; % To store squared errors 

 

BUTTON PUSHED FUNCTION CODE 

 function UpdatesettingsButtonPushed(app, event) 
 app.period = app.PeriodEditField.Value; 
 end 

 

VALUE CHANGED FUNCTION (START MEASUREMENT) CODE 

 

 function StartMeasurementButtonValueChanged(app, event) 
 app.value = 1; 
 app.sampleNo = 1; 
 app.timeArray = []; 
 app.greenIntensityArray = []; 

 

 triggerconfig(app.vid, 'manual'); 
 app.vid.TriggerRepeat = inf; 
 if ~isrunning(app.vid) 
 start(app.vid); 
 end 
 8.5 DATA CREATION FOR CORRELATION AND BLAND-ALTMAN PLOT 

 

 function automaticDataProcessing() 

 

 % STEP 1: Automatic Data Creation 
 % Create sample data for pulse oximeter readings and MATLAB app data 
 timestamps = 1:100; % Timestamps (assuming 100 data points) 
 pulseOximeterData = readings recorded; % pulse oximeter data (Heart Rate) 
 matlabAppData = app.Heartrate  % Simulated MATLAB app data (Heart Rate) 

 

 % Optional: Add noise to the data to make it more realistic 
 noiseLevel = 1; % Adjust the noise level as needed 
 pulseOximeterData=[]; %values recorded 
 matlabAppData = matlabAppData + noiseLevel * app.Heartrate; 

 

 % STEP 2: Data Preprocessing 
 % Synchronize data based on timestamps 
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 synchronizedTime = intersect(timestamps, timestamps); 
 pulseOximeterData = pulseOximeterData(ismember(timestamps, synchronizedTime)); 
 matlabAppData = matlabAppData(ismember(timestamps, synchronizedTime)); 

 

 % Normalize data 
 minPulseOximeter = min(pulseOximeterData); 
 maxPulseOximeter = max(pulseOximeterData); 
 normalizedPulseOximeterData = (pulseOximeterData - minPulseOximeter) / (maxPulseOximeter - 

minPulseOximeter); 

 

 minMatlabApp = min(matlabAppData); 
 maxMatlabApp = max(matlabAppData); 
 normalizedMatlabAppData = (matlabAppData - minMatlabApp) / (maxMatlabApp - minMatlabApp); 

 

 % STEP 3: Data Visualization 
 time = timestamps; % Assuming timestamps are known 
 figure; 

 

 subplot(2, 1, 1); 
 plot(time, normalizedPulseOximeterData, 'b', time, normalizedMatlabAppData, 'r'); 
 xlabel('Time'); 
 ylabel('Normalized Heart Rate'); 
 legend('Pulse Oximeter', 'MATLAB App'); 
 title('Heart Rate Comparison'); 

 

 % STEP 4: Calculate Correlation Coefficient 
 correlationCoefficient = corr(normalizedPulseOximeterData', normalizedMatlabAppData'); 

 

 % Display the correlation coefficient 
 fprintf('Correlation Coefficient: %.4f\n', correlationCoefficient); 

 

 % STEP 5: Bland-Altman Plot 
 averageValues = (normalizedPulseOximeterData + normalizedMatlabAppData) / 2; 
 differences = normalizedPulseOximeterData - normalizedMatlabAppData; 

 

 % Plot the Bland-Altman plot 
 figure; 
 scatter(averageValues, differences); 
 xlabel('Average of Measurements'); 
 ylabel('Difference between Measurements'); 
 title('Bland-Altman Plot'); 
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 % Optional: Customize the Bland-Altman plot for better visualization 
 meanDifference = mean(differences); 
 stdDifference = std(differences); 
 upperLoA = meanDifference + 1.96 * stdDifference; % 95% confidence interval 
 lowerLoA = meanDifference - 1.96 * stdDifference; % 95% confidence interval 
 hold on; 
 plot([min(averageValues), max(averageValues)], [meanDifference, meanDifference], 'k--', 'LineWidth', 2); 
 plot([min(averageValues), max(averageValues)], [upperLoA, upperLoA], 'r--', 'LineWidth', 2); 
 plot([min(averageValues), max(averageValues)], [lowerLoA, lowerLoA], 'r--', 'LineWidth', 2); 
 hold off; 
 legend('Data Points', 'Mean Difference', 'Upper LoA', 'Lower LoA'); 
 end 

 


