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Abstract 

We develop generalized techniques for constructing the closed form of the generating functions of sequences of the 
form 𝑓𝑚+1 = 𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0 𝑎𝑛𝑑  𝑓𝑚+1 = 𝑘(𝑓𝑚 + (𝑚 − 1)𝑘)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 1, 𝑘 > 0 𝑎𝑛𝑑 𝑓1 =
0  using method of differencing in generating function. Also, the techniques of generating functions were applied to solve 
some important problems of recurrence relations. The findings of this study provide generalized technique and fast 
method of obtaining the closed form of the generating functions of sequences of the form 𝑓𝑚+1 = 𝑘(𝑓𝑚 +
𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0 and  𝑓𝑚+1 = 𝑘(𝑓𝑚 + (𝑚 − 1)𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 1, 𝑘 > 0 𝑎𝑛𝑑 𝑓1 = 0.

Keywords: Generating function; Recursive sequence; Closed form; Sequence of numbers and differencing in 
generating function 

1. Introduction

Generating functions transform an infinite sequence into the coefficients of power series. It enables us to approach 
problem of sequence using the methods we have for algebraic problems. Given any power series, we treat this power 
series as an algebraic object where the convergence of the series is considered a non-issue. Generating functions was 
introduced by Abraham de Moivre in 1730 where it was used to solve problems of linear recurrence [1]. Generating 
functions provide a bridge between continuous and discrete mathematics. It plays an important role in the analysis of 
discrete problems in mathematics with function. Its beauty can be appreciated because it can be used to manipulate 
many complicated mathematical problems with very little effort as question about convergence is not required. The 
major idea of a generating function is to use a single function instead of an infinite sequence of numbers. Generating 
functions have proved to be very useful tools which facilitate the solution of various classes of counting problems as 
questions about the convergence are not required. Thus, this enables the solutions of difficult varieties of counting 
problems with little effort [2]. 

There are countless types of generating functions which includes Dirichlet series, exponential generating functions, Bell 
Series, ordinary generating functions and Lambert series. Every sequence has one generating function or the other but 
the way they are handled varies except Dirichlet series and Lambert series which requires its indices to start with one 
rather than zero. Generating functions are used to find exact formula of a sequence, find recurrence formulas, find 
statistical properties of a sequence, prove identities and a lot of others [3]. Sometimes, generating functions can be 
expressed in a closed form instead of as a series [4]. 
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In this study, the generalized technique for constructing the closed form of the generating functions of the sequences of 
the form 𝑓𝑚+1 = 𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0 𝑎𝑛𝑑  𝑓𝑚+1 = 𝑘(𝑓𝑚 + (𝑚 − 1)𝑘)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 1, 𝑘 >
0 𝑎𝑛𝑑 𝑓1 = 0 𝑤𝑒𝑟𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑.  Furthermore, the techniques of generating functions were applied to solve some 
important problems of recurrence relations. 

2. Basic Definitions 

2.1. Generating Function  

It is a formal power series of form  

𝐵(𝑦) = ∑ 𝑎𝑛𝑦𝑛 = 𝑎0 + 𝑎1𝑦 + 𝑎2𝑦2 + ⋯

∞

𝑛=0

 (2.1) 

Where 𝑎𝑛 is the coefficient of the series [5], [6]. 

2.2. Differencing in Generating Function 

The technique of differencing in generating function is, when an infinite number of sequences are given, it helps to 
search for a single function which encodes the infinite number of the sequence and it also help to determine the closed 
form expressions for the generating functions. For instance; consider the sequence 1, 3, 5, 7, 9, …, we can apply the 
technique of differencing in generating function to find the closed form of the generating functions as shown below; 

 𝐿𝑒𝑡 𝑔(𝑦) = 1 + 3𝑦 + 5𝑦2 + 7𝑦3 + 9𝑦4 + ⋯  

 − 𝑦𝑔(𝑦) = 0 + 𝑦 + 3𝑦2 + 5𝑦3 + 7𝑦4 + 9𝑦5 + ⋯  

𝑔(𝑦)(1 − 𝑦) = 1 + 2𝑦 + 2𝑦2 + 2𝑦3 + 2𝑦4 + ⋯ 

𝑔(𝑦)(1 − 𝑦) = 1 + (
2𝑦

1 − 𝑦
) 

𝑔(𝑦) =
1 + 𝑦

(1 − 𝑦)2
 [7] 

2.3. Sequence and Series 

A sequence of numbers is the orderly presentation of numbers 

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛, … 

where 𝑎1 is the first term, 𝑎2 the second term, 𝑎3 the third term, … , 𝑎𝑛 the nth term, …. Occasionally, there is a recursive 
relationship between a term and the preceding or succeeding terms. Then, a series on the other hand is then the infinite 
sum of the terms of a sequence [8] 

2.4. Closed Form 

In building generating functions, it is motivating to check if the generating function has a closed form expression. That 
is an expression that represents the coefficient of the general term. For example, the expression 

𝑔(𝑦) = ∑ 𝑓𝑛𝑦𝑛

𝑛≥0

 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑓𝑜𝑟𝑚 𝑤ℎ𝑒𝑟𝑒𝑎𝑠,  

𝑔(𝑦) =
1

1−𝑓𝑦
,  a similar expression to some extent, is a closed form [9 
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2.5. Encoding 

In the context of generating functions, encoding refers to the process of representing sequence of numbers or objects 
as a single function typically a formal power series [9] 

2.6. Combinatorics 

It is a mathematical field that deals with the problems of arrangement and selection together with their operations in a 
finite set which has some constraints [10], [11] 

2.7. Fibonacci Sequence 

It is a sequence that has the recurrence relation  

𝑎𝑚+1 = 𝑎𝑚 + 𝑎𝑚−1 𝑤𝑖𝑡ℎ 𝑎−1 = 0, 𝑎0 = 1 𝑎𝑛𝑑 𝑎1 = 1 

The general Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, … [6] 

2.8. Recurrence Relation 

It is an equation which expresses each element of a sequence as a function of the preceding one. Example of recurrence 
relation is the Fibonacci sequence [6] 

2.9. Exponential Generating Function 

Exponential generating function of the sequence {𝑎𝑛}𝑛≥0 is any formal power series that is of the form 

𝐵(𝑦) = ∑ 𝑎𝑛

𝑦𝑛

𝑛!
𝑛≥0

 

Where 𝐵(𝑦) is the exponential generating function of 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, … [6] 

2.10. Convergent Series 

𝐿𝑒𝑡 𝓈 = ∑ 𝑓𝑘

𝑘≥0

 𝑏𝑒 𝑎 𝑠𝑒𝑟𝑖𝑒𝑠.  

The sequence {𝑆𝑛} 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦  

 𝑆𝑛 = ∑ 𝑓𝑛

𝑛

𝑘=0

  

is called the sequence of partial sums of the series. A series 𝓈 converges if and only if the sequence {𝑆𝑛} of partial sums 
of the series converges. In other words, a series converges if the limit of the series exists [12], [6]  

3. Important Theorems 

3.1. Taylor Series Theorem 

The Taylor series of complex or real valued function 𝑓(𝑦) which is infinitely differentiable at complex or real number 𝑎 
is the power series 

𝑓(𝑦) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑦 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑦 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑦 − 𝑎)3 + ⋯ = ∑

𝑓𝑛(𝑎)

𝑛!

∞

𝑛=0

(𝑦 − 𝑎)𝑛 

Where 𝑓𝑛(𝑎) is the 𝑛𝑡ℎ derivative of 𝑓 𝑎𝑡 𝑦 = 𝑎. When 𝑎 = 0 in the Taylor series, the series can also be called Maclaurin 
series [6] 

 



World Journal of Advanced Research and Reviews, 2024, 23(01), 1046–1064 

1049 

3.2. Newton’s Binomial Theorem 

The binomial theorem deals with the expansion of any expression of this kind (𝑚 + 𝑛)𝑝 . It states that for any non-
negative integer 𝑝, we have 

(𝑚 + 𝑛)𝑝 = ∑ (
𝑝

𝑟
) 𝑚𝑟𝑛𝑝−𝑟

𝑝

𝑟=0

 

Where 

(
𝑝

𝑟
) =

𝑝!

(𝑝 − 𝑟)! 𝑟!
 

is the coefficient of the binomials [13], [6], [10].  

3.3. Proposition 

Let {𝑓𝑛} be a Fibonacci sequence and let 𝐹 be a generating function given by 

𝐹(𝑥) = ∑ 𝑓𝑛

𝑦𝑛

𝑛!
𝑛≥0

= ∑
𝑓𝑛

𝑛!
𝑦𝑛

𝑛≥0

 

Then 𝐹 satisfies the second order ordinary differential equation given by  

𝐹′′ − 𝐹′ = 𝐹 

Proof 

𝐹′(𝑦) =
𝑑

𝑑𝑦
∑ 𝑓𝑛

𝑦𝑛

𝑛!
𝑛≥0

= ∑
𝑓𝑛

𝑛!

𝑑

𝑑𝑦
(𝑦𝑛) = ∑

𝑛𝑓𝑛

𝑛!
𝑛≥0𝑛≥0

𝑦𝑛−1 

= ∑
𝑓𝑛

(𝑛 − 1)!
𝑛≥1

𝑦𝑛−1 = ∑
𝑓𝑛+1

𝑛!
𝑦𝑛 = ∑ 𝑓𝑛+1

𝑦𝑛

𝑛!
𝑛≥0𝑛≥0

 

𝐹′′(𝑦) =
𝑑2

𝑑𝑦2
(∑ 𝑓𝑛

𝑦𝑛

𝑛!
𝑛≥0

) = ∑ 𝑓𝑛

𝑑2

𝑑𝑦2
(

𝑦𝑛

𝑛!
)

𝑛≥0

 

= ∑ 𝑓𝑛

𝑛(𝑛 − 1)

𝑛!
𝑦𝑛−2 = ∑ 𝑓𝑛

𝑦𝑛−2

(𝑛 − 2)!
𝑛≥0𝑛≥0

 

= ∑ 𝑓𝑛+2

𝑦𝑛

𝑛!
= ∑(𝑓𝑛+1 + 𝑓𝑛)

𝑦𝑛

𝑛!
= ∑ 𝑓𝑛+1

𝑦𝑛

𝑛!
+ ∑ 𝑦𝑛

𝑦𝑛

𝑛!
𝑛≥0𝑛≥0𝑛≥0𝑛≥0

 

𝐹′′(𝑦) = 𝐹′(𝑦) + 𝐹(𝑦) 

So that 𝐹′′ − 𝐹′ = 𝐹 𝑝𝑟𝑜𝑣𝑒𝑑. 

3.4. Euler’s Number Triangle 

In 1755, Leonhard Euler developed numbers called the Euler’s numbers. When the Euler’s numbers are arranged in 
triangular form, it is called the Eulerian triangle numbers. It is the coefficient of the Euler’s polynomials and its formula 
is  

𝐶(𝑘, 𝑛) = ⟨
𝑘

𝑛
⟩ = ∑(−1)𝑖 (

𝑘 + 1

𝑖
) (𝑛 + 1 − 𝑖)𝑘 (3.1)

𝑛

𝑖=0
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For instance, 

𝐶(4,3) = ∑(−1)𝑖 (
4 + 1

𝑖
)

3

𝑖=0

(3 + 1 − 𝑖)4 

= (−1)0 (
5

0
) (3 + 1 − 0)4 + (−1)1 (

5

1
) (3 + 1 − 1)4 + (−1)2 (

5

2
) (3 + 1 − 2)4 + (−1)3 (

5

3
) (3 + 1 − 3)4 

= (1)(1)(4)4 + (−1)(5)(3)4 + (1)(10)(2)4 + (−1)(10)(1)4 

= 256 − 405 + 160 − 10 = 416 − 415 = 1 

∴ 𝐶(4,3) = 1 

The polynomials of Euler popularly called Eulerian polynomials can be presented in the form of generating function of 
powers 

𝑔(𝑦) =
𝑦𝐶𝑑(𝑦)

(1 − 𝑦)𝑑+1
 

𝑊ℎ𝑒𝑟𝑒 𝐶𝑑(𝑦) = ∑ 𝐶(𝑑, 𝑘)𝑦𝑘 𝑓𝑜𝑟 𝑑 ≥ 0 

𝑑

𝑘=0

 

Thus, the Euler’s number triangle is shown in the table below 

𝑘 ∖ 𝑛 0 1 2 3 4 5 6 7 8 

0 1         

1 1         

2 1 1        

3 1 4 1       

4 1 11 11 1      

5 1 26 66 26 1     

6 1 57 302 302 57 1    

7 1 120 1191 2416 1191 120 1   

8 1 247 4293 15619 15619 4293 247 1  

9 1 502 14608 88234 156190 88234 14608 502 1 

The recursion rule is stated in (3.1) above and 𝐶(0,0) = 1. The cells that are empty outside the triangle are taken to be 
zero value [9]. 

4. Research Results 

4.1. Closed form of the generating functions of sequences of the form 𝒇𝒎+𝟏 = 𝒌(𝒇𝒎 + 𝒎𝒌) 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒎 ≥ 𝟎, 𝒌 >
𝟎 𝒂𝒏𝒅 𝒇𝟎 = 𝟎 

To develop the generalized technique for constructing the closed form of the generating functions of sequences of the 
form  

𝑓𝑚+1 = 𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0, 
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we consider the following step by step approach;  

1. 𝑾𝒉𝒆𝒏 𝒌 = 𝟏, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑓𝑚+1 =  1(𝑓𝑚 + 𝑚1) = (𝑓𝑚 + 𝑚) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0 

𝑇ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑓𝑚+1 =  (𝑓𝑚 + 𝑚) = (0,1, 3, 6, 10, 15, … )  

Thus, the generating function of the sequence  

𝑓𝑚+1 =  (𝑓𝑚 + 𝑚) = (0,1, 3, 6, 10, 15, … ) 𝑖𝑠 

𝑔1(𝑦) = ∑ 𝑓𝑚+1𝑦𝑚 = ∑ (0,1, 3, 6, 10, 15, … )𝑦𝑚

∞

𝑚=0

∞

𝑚=0

 

𝑔1(𝑦) = 𝑦 + 3𝑦2 + 6𝑦3 + 10𝑦4 + 15𝑦5 + ⋯ 

Applying the technique of differencing in generating function to get its closed form, we have 

𝑔1(𝑦) = 𝑦 + 3𝑦2 + 6𝑦3 + 10𝑦4 + 15𝑦5 + ⋯ 

 − 𝑦𝑔1(𝑦) = 𝑦2 + 3𝑦3 + 6𝑦4 + 10𝑦5 + ⋯ 

𝑔1(𝑦)[1 − 𝑦] = 𝑦 + 2𝑦2 + 3𝑦3 + 4𝑦4 + 5𝑦5 + ⋯ (4.1) 

𝐿𝑒𝑡 𝐴 = 𝑦 + 2𝑦2 + 3𝑦3 + 4𝑦4 + 5𝑦5 + ⋯ 

− 𝑦𝐴 = 𝑦2 + 2𝑦3 + 3𝑦4 + 4𝑦5 + ⋯ 

𝐴[1 − 𝑦] = 𝑦 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + ⋯ 

𝐴[1 − 𝑦] =
𝑦

(1 − 𝑦)
 

∴ 𝐴 =
𝑦

(1 − 𝑦)2
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐴 =
𝑦

(1 − 𝑦)2
 𝑖𝑛 (4.1), 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝑔1(𝑦)[1 − 𝑦] = 𝐴 =
𝑦

(1 − 𝑦)2
 

∴ 𝑔1(𝑦) =
𝑦

(1 − 𝑦)3
 

Therefore, the closed form of the generating function for 

𝑓𝑚+1 = 1(𝑓𝑚 + 𝑚1) =  (𝑓𝑚 + 𝑚) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0 𝑖𝑠 

𝑔1(𝑦) =
𝑦

(1 − 𝑦)2
=

𝑦𝑐1(𝑦)

(1 − 𝑦)(1 − 𝑦)2
 

2. 𝑾𝒉𝒆𝒏 𝒌 = 𝟐, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑓𝑚+1 =  2(𝑓𝑚 + 𝑚2) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0 

𝑇ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑓𝑚+1 =  2(𝑓𝑚 + 𝑚2) = (0, 2,12,42,116, … )  

Thus, the generating function of the sequence  

𝑓𝑚+1 =  2(𝑓𝑚 + 𝑚2) = (0, 2,12,42,116, … ) 𝑖𝑠 
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𝑔2(𝑦) = ∑ 𝑓𝑚+1𝑦𝑚 = ∑ (0,2,12,42,116, … )𝑦𝑚

∞

𝑚=0

∞

𝑚=0

 

𝑔2(𝑦) = 2𝑦 + 12𝑦2 + 42𝑦3 + 116𝑦4 + ⋯ 

Applying the technique of differencing in generating function to get its closed form, we have 

𝑔2(𝑦) = 2𝑦 + 12𝑦2 + 42𝑦3 + 116𝑦4 + ⋯ 

− 𝑦𝑔2(𝑦) = 2𝑦2 + 12𝑦3 + 42𝑦4 + ⋯ 

𝑔2(𝑦)[1 − 𝑦] = 2𝑦 + 10𝑦2 + 30𝑦3 + 74𝑦4 + ⋯ 

𝑔2(𝑦)[1 − 𝑦] = 2(𝑦 + 5𝑦2 + 15𝑦3 + 37𝑦4 + ⋯ ) (4.2) 

𝐿𝑒𝑡 𝐴 = 𝑦 + 5𝑦2 + 15𝑦3 + 37𝑦4 + ⋯ 

− 𝑦𝐴 = 𝑦2 + 5𝑦3 + 15𝑦4 + ⋯ 

𝐴[1 − 𝑦] = 𝑦 + 4𝑦2 + 10𝑦3 + 22𝑦4 + ⋯ (4.3) 

𝐿𝑒𝑡 𝐵 = 𝑦 + 4𝑦2 + 10𝑦3 + 22𝑦4 + ⋯ 

− 𝑦𝐵 = 𝑦2 + 4𝑦3 + 10𝑦4 + ⋯ 

𝐵[1 − 𝑦] = 𝑦 + 3𝑦2 + 6𝑦3 + 12𝑦4 + ⋯ 

𝐵[1 − 𝑦] = 𝑦 +
3𝑦2

(1 − 2𝑦)
=

𝑦(1 − 2𝑦) + 3𝑦2

(1 − 2𝑦)
=

𝑦 − 2𝑦2 + 3𝑦2

(1 − 2𝑦)
=

𝑦2 + 𝑦

(1 − 2𝑦)
 

∴ 𝐵 =
𝑦2 + 𝑦

(1 − 2𝑦)(1 − 𝑦)
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐵 =
𝑦2 + 𝑦

(1 − 2𝑦)(1 − 𝑦)
 𝑖𝑛 (4.3), 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝐴[1 − 𝑦] =
𝑦2 + 𝑦

(1 − 2𝑦)(1 − 𝑦)
 

∴ 𝐴 =
𝑦2 + 𝑦

(1 − 2𝑦)(1 − 𝑦)2
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑒 𝐴 =
𝑦2 + 𝑦

(1 − 2𝑦)(1 − 𝑦)2
 𝑖𝑛 (4.2), 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝑔2(𝑦)[1 − 𝑦] = 2 (
𝑦2 + 𝑦

(1 − 2𝑦)(1 − 𝑦)2
) =

2(𝑦2 + 𝑦)

(1 − 2𝑦)(1 − 𝑦)2
=

2𝑦(𝑦 + 1)

(1 − 2𝑦)(1 − 𝑦)2
 

∴ 𝑔2(𝑦) =
2𝑦(𝑦 + 1)

(1 − 2𝑦)(1 − 𝑦)3
 

Therefore, the closed form of the generating function for  

𝑓𝑚+1 =  2(𝑓𝑚 + 𝑚2) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0 𝑖𝑠 
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𝑔2(𝑦) =
2𝑦(𝑦 + 1)

(1 − 2𝑦)(1 − 𝑦)3
=

2𝑦𝑐2(𝑦)

(1 − 2𝑦)(1 − 𝑦)3
 

3. 𝑾𝒉𝒆𝒏 𝒌 = 𝟑, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑓𝑚+1 =  3(𝑓𝑚 + 𝑚3) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0 

𝑇ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑓𝑚+1 =  3(𝑓𝑚 + 𝑚3) = (0, 3,33,180,732,2571, … )  

Therefore, the generating function of the sequence  

𝑓𝑚+1 =  2(𝑓𝑚 + 𝑚3) = (0, 3,33,180,732,2571, … ) 𝑖𝑠 

𝑔3(𝑦) = ∑ 𝑓𝑚+1𝑦𝑚 = ∑ (0, 3,33,180,732,2571, … )𝑦𝑚

∞

𝑚=0

∞

𝑚=0

 

𝑔3(𝑦) = 3𝑦 + 33𝑦2 + 180𝑦3 + 732𝑦4 + 2571𝑦5 + ⋯ 

Applying the technique of differencing in generating function to get its closed form, we have 

𝑔3(𝑦) = 3𝑦 + 33𝑦2 + 180𝑦3 + 732𝑦4 + 2571𝑦5 + ⋯ 

− 𝑦𝑔3(𝑦) = 3𝑦2 + 33𝑦3 + 180𝑦4 + 732𝑦5 + ⋯ 

𝑔3(𝑦)[1 − 𝑦] = 3𝑦 + 30𝑦2 + 147𝑦3 + 552𝑦4 + 1839𝑦5 + ⋯ 

𝑔3(𝑦)[1 − 𝑦] = 3(𝑦 + 10𝑦2 + 49𝑦3 + 184𝑦4 + 613𝑦5 + ⋯ ) (4.4) 

𝐿𝑒𝑡 𝐴 = 𝑦 + 10𝑦2 + 49𝑦3 + 184𝑦4 + 613𝑦5 + ⋯ 

− 𝑦𝐴 = 𝑦2 + 10𝑦3 + 49𝑦4 + 184𝑦5 + ⋯ 

𝐴[1 − 𝑦] = 𝑦 + 9𝑦2 + 39𝑦3 + 135𝑦4 + 429𝑦5 + ⋯ (4.5) 

𝐿𝑒𝑡 𝐵 = 𝑦 + 9𝑦2 + 39𝑦3 + 135𝑦4 + 429𝑦5 + ⋯ 

− 𝑦𝐵 = 𝑦2 + 9𝑦3 + 39𝑦4 + 135𝑦5 + ⋯ 

𝐵[1 − 𝑦] = 𝑦 + 8𝑦2 + 30𝑦3 + 96𝑦4 + 294𝑦5 + ⋯ (4.6) 

𝐿𝑒𝑡 𝐶 = 𝑦 + 8𝑦2 + 30𝑦3 + 96𝑦4 + 294𝑦5 + ⋯ 

− 𝑦𝐶 = 𝑦2 + 8𝑦3 + 30𝑦4 + 96𝑦5 + ⋯ 

𝐶[1 − 𝑦] = 𝑦 + 7𝑦2 + 22𝑦3 + 66𝑦4 + 198𝑦5 + ⋯ 

𝐶[1 − 𝑦] = 𝑦 + 7𝑦2 +
22𝑦3

(1 − 3𝑦)
=

(𝑦 + 7𝑦2)(1 − 3𝑦) + 22𝑦3

(1 − 3𝑦)
 

𝐶[1 − 𝑦] =
𝑦 − 3𝑦2 + 7𝑦2 − 21𝑦3 + 22𝑦3

(1 − 3𝑦)
=

𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)
 

∴ 𝐶 =
𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)(1 − 𝑦)
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐶 =
𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)(1 − 𝑦)
 𝑖𝑛 (4.6), 𝑤𝑒 ℎ𝑎𝑣𝑒  
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𝐵[1 − 𝑦] =
𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)(1 − 𝑦)
 

∴ 𝐵 =
𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)(1 − 𝑦)2
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐵 =
𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)(1 − 𝑦)2
 𝑖𝑛 (4.5), 𝑤𝑒 ℎ𝑎𝑣𝑒  

𝐴[1 − 𝑦] =
𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)(1 − 𝑦)2
 

∴ 𝐴 =
𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)(1 − 𝑦)3
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐴 =
𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)(1 − 𝑦)3
 𝑖𝑛 (4.4), 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝑔3(𝑦)[1 − 𝑦] = 3 (
𝑦3 + 4𝑦2 + 𝑦

(1 − 3𝑦)(1 − 𝑦)3
) =

3(𝑦3 + 4𝑦2 + 𝑦)

(1 − 3𝑦)(1 − 𝑦)3
=

3𝑦(𝑦2 + 4𝑦 + 1)

(1 − 3𝑦)(1 − 𝑦)3
 

∴ 𝑔3(𝑦) =
3𝑦(𝑦2 + 4𝑦 + 1)

(1 − 3𝑦)(1 − 𝑦)4
 

Therefore, the closed form of the generating function for 

𝑓𝑚+1 =  3(𝑓𝑚 + 𝑚3) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0 𝑖𝑠 

𝑔3(𝑦) =
3𝑦(𝑦2 + 4𝑦 + 1)

(1 − 3𝑦)(1 − 𝑦)4
=

3𝑦𝑐3(𝑦)

(1 − 3𝑦)(1 − 𝑦)4
 

4. 𝑾𝒉𝒆𝒏 𝒌 = 𝟒, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑓𝑚+1 =  4(𝑓𝑚 + 𝑚4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0 

The sequence of  

 𝑓𝑚+1 =  4(𝑓𝑚 + 𝑚4) = (0, 4,80,644,3600,16900,72784, … )  

Thus, the generating function of the sequence  

 𝑓𝑚+1 =  4(𝑓𝑚 + 𝑚4) = (0, 4,80,644,3600,16900,72784, … ) 𝑖𝑠 

𝑔4(𝑦) = ∑ 𝑓𝑚+1𝑦𝑚 = ∑ (0, 4,80,644,3600,16900,72784, … )𝑦𝑚

∞

𝑚=0

∞

𝑚=0

 

𝑔4(𝑦) = 4𝑦 + 80𝑦2 + 644𝑦3 + 3600𝑦4 + 16900𝑦5 + 72784𝑦6 + ⋯ 

Applying technique of differencing in generating function to get its closed form, we have 

𝑔4(𝑦) = 4𝑦 + 80𝑦2 + 644𝑦3 + 3600𝑦4 + 16900𝑦5 + 72784𝑦6 + ⋯ 

− 𝑦𝑔4(𝑦) = 4𝑦2 + 80𝑦3 + 644𝑦4 + 3600𝑦5 + 16900𝑦6 + ⋯ 

𝑔4(𝑦)[1 − 𝑦] = 4𝑦 + 76𝑦2 + 564𝑦3 + 2956𝑦4 + 13300𝑦5 + 55884𝑦6 + ⋯ 

𝑔4(𝑦)[1 − 𝑦] = 4(𝑦 + 19𝑦2 + 141𝑦3 + 739𝑦4 + 3325𝑦5 + 13971𝑦6 + ⋯ ) (4.7) 
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𝐿𝑒𝑡 𝐴 = 𝑦 + 19𝑦2 + 141𝑦3 + 739𝑦4 + 3325𝑦5 + 13971𝑦6 + ⋯ 

− 𝑦𝐴 = 𝑦2 + 19𝑦3 + 141𝑦4 + 739𝑦5 + 3325𝑦6 + ⋯ 

𝐴[1 − 𝑦] = 𝑦 + 18𝑦2 + 122𝑦3 + 598𝑦4 + 2586𝑦5 + 10646𝑦6 + ⋯ (4.8) 

𝐿𝑒𝑡 𝐵 = 𝑦 + 18𝑦2 + 122𝑦3 + 598𝑦4 + 2586𝑦5 + 10646𝑦6 + ⋯  

− 𝑦𝐵 = 𝑦2 + 18𝑦3 + 122𝑦4 + 598𝑦5 + 2586𝑦6 + ⋯ 

𝐵[1 − 𝑦] = 𝑦 + 17𝑦2 + 104𝑦3 + 476𝑦4 + 1988𝑦5 + 8060𝑦6 + ⋯ (4.9) 

𝐿𝑒𝑡 𝐶 = 𝑦 + 17𝑦2 + 104𝑦3 + 476𝑦4 + 1988𝑦5 + 8060𝑦6 + ⋯ 

− 𝑦𝐶 = 𝑦2 + 17𝑦3 + 104𝑦4 + 476𝑦5 + 1988𝑦6 + ⋯ 

𝐶[1 − 𝑦] = 𝑦 + 16𝑦2 + 87𝑦3 + 372𝑦4 + 1512𝑦5 + 6072𝑦6 + ⋯ (4.10) 

𝐿𝑒𝑡 𝐷 = 𝑦 + 16𝑦2 + 87𝑦3 + 372𝑦4 + 1512𝑦5 + 6072𝑦6 + ⋯  

− 𝑦𝐷 = 𝑦2 + 16𝑦3 + 87𝑦4 + 372𝑦5 + 1512𝑦6 + ⋯ 

𝐷[1 − 𝑦] = 𝑦 + 15𝑦2 + 71𝑦3 + 285𝑦4 + 1140𝑦5 + 4560𝑦6 + ⋯ 

𝐷[1 − 𝑦] = 𝑦 + 15𝑦2 + 71𝑦3 +
285𝑦4

(1 − 4𝑦)
=

(𝑦 + 15𝑦2 + 71𝑦3)(1 − 4𝑦) + 285𝑦4

(1 − 4𝑦)
 

𝐷[1 − 𝑦] =
𝑦 − 4𝑦2 + 15𝑦2 − 60𝑦3 + 71𝑦3 − 284𝑦4 + 285𝑦4

(1 − 4𝑦)
=

𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)
 

∴ 𝐷 =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐷 =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)
 𝑖𝑛 (4.10), 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝐶[1 − 𝑦] =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)
 

∴ 𝐶 =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)2
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐶 =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)2
 𝑖𝑛 (4.9), 𝑤𝑒 ℎ𝑎𝑣𝑒  

𝐵[1 − 𝑦] =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)2
 

∴ 𝐵 =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)3
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐵 =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)3
 𝑖𝑛 (4.8), 𝑤𝑒 ℎ𝑎𝑣𝑒  

𝐴[1 − 𝑦] =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)3
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∴ 𝐴 =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)4
 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐴 =
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)4
 𝑖𝑛 (4.7), 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝑔4(𝑦)[1 − 𝑦] = 4 (
𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦

(1 − 4𝑦)(1 − 𝑦)4
) =

4(𝑦4 + 11𝑦3 + 11𝑦2 + 𝑦)

(1 − 4𝑦)(1 − 𝑦)4
 

𝑔4(𝑦)[1 − 𝑦] =
4𝑦(𝑦3 + 11𝑦2 + 11𝑦 + 1)

(1 − 4𝑦)(1 − 𝑦)4
 

∴ 𝑔4(𝑦) =
4𝑦(𝑦3 + 11𝑦2 + 11𝑦 + 1)

(1 − 4𝑦)(1 − 𝑦)5
 

Therefore, the closed form of the generating function for 

𝑓𝑚+1 =  4(𝑓𝑚 + 𝑚4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0 𝑖𝑠 

𝑔4(𝑦) =
4𝑦(𝑦3 + 11𝑦2 + 11𝑦 + 1)

(1 − 4𝑦)(1 − 𝑦)5
=

4𝑦𝑐4(𝑦)

(1 − 4𝑦)(1 − 𝑦)5
 

⋮ 

𝑓𝑚+1 = 𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0 
 

The sequence of 

𝑓𝑚+1 = 𝑘(𝑓𝑚 + 𝑚𝑘)
= {𝑘 ∙ 0𝑘, 𝑘 ∙ 1𝑘, (𝑘2 ∙ 1𝑘 + 𝑘 ∙ 2𝑘), (𝑘3 ∙ 1𝑘 + 𝑘2 ∙ 2𝑘 + 𝑘 ∙ 3𝑘), (𝑘4 ∙ 1𝑘 + 𝑘3 ∙ 2𝑘 + 𝑘2 ∙ 3𝑘 + 𝑘 ∙ 4𝑘)
+ ⋯ } 

𝑓𝑚+1 = ∑ 𝑘𝑚−𝑗𝑗𝑘

𝑚−1

𝑗=1

 

Applying the technique of differencing in generating function to get its closed form, we have  

 𝑔𝑘(𝑦) =  
𝑘𝑦[𝑐𝑘(𝑦)]

(1 − 𝑘𝑦)(1 − 𝑦)𝑘+1
  

∴ 𝑇ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟  

𝑓𝑚+1 = 𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0 𝑖𝑠  

𝑔𝑘(𝑦) =  
𝑘𝑦[𝑐𝑘(𝑦)]

(1 − 𝑘𝑦)(1 − 𝑦)𝑘+1
 

where (𝑘 − 1) degree polynomial is 𝑐𝑘(𝑦). Now, let us discuss the nature of this polynomials as shown below.  

4.1.1. Discussion of the result  

The polynomials of the numerators from number 4.1 (1) to number 4.1 (4)) since the denominator has a clear pattern, 
can be explained using the pyramid below  

𝑦(1) 
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2𝑦(𝑦 + 1) 

3𝑦(𝑦2 + 4𝑦 + 1) 

4𝑦(𝑦3 + 11𝑦2 + 11𝑦 + 1) 

The polynomials inside the brackets resemble Euler’s polynomials which were obtained from Euler’s number as shown 
in table 3.1 above. The only difference is, we have 𝑦 in front of the brackets in the first line, 2𝑦 in front of the brackets in 
the second line, 3𝑦 in front of the brackets in the third line, 4𝑦 in front of the brackets in the fourth line and so on. Thus, 
we shall now apply the formula of Euler’s number to generalize the technique for constructing the closed form of the 
generating functions of sequences of the form 𝑓𝑚+1 = 𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0  since these 
polynomials resemble Eulerian polynomials.  

Therefore, the generalized technique for constructing the closed form of the generating functions of sequences of the 
form 

𝑓𝑚+1 = 𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0  

is  

𝑔𝑘(𝑦) =  
𝑘𝑦[𝑐𝑘(𝑦)]

(1 − 𝑘𝑦)(1 − 𝑦)𝑘+1
=

𝑘𝑦 ∑ 𝐶(𝑘, 𝑛)𝑦𝑛𝑘−1
𝑛=0

(1 − 𝑘𝑦)(1 − 𝑦)𝑘+1
 

where 𝐶(𝑘, 𝑛) can be gotten from Euler’s numbers and its formula is 

𝐶(𝑘, 𝑛) = ∑(−1)𝑖 (
𝑘 + 1

𝑖
) (𝑛 + 1 − 𝑖)𝑘 𝑎𝑠 𝑤𝑒 𝑖𝑙𝑙𝑢𝑠𝑡𝑟𝑎𝑡𝑒𝑑 𝑖𝑛 (3.1).

𝑛

𝑖=0

 

Remark: We can comfortably test the efficiency of this generalized technique we developed for obtaining the closed 
form of the generating function for the sequence of the form 𝑓𝑚+1 =  𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0, by 
using it to solve some mathematical problem. 

Example 4.1 Obtain the closed form of the generating function for the sequence 𝑓𝑚+1 =  4(𝑓𝑚 + 𝑚4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥
0 𝑎𝑛𝑑 𝑓0 = 0 

Solution 

To obtain the closed form of the generating function for the sequence 𝑓𝑚+1 =  4(𝑓𝑚 + 𝑚4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0, we 
shall use the generalized technique we developed above. Thus, the generalized technique is 

𝑔𝑘(𝑦) =
𝑘𝑦 ∑ 𝐶(𝑘, 𝑛)𝑦𝑛𝑘−1

𝑛=0

(1 − 𝑘𝑦)(1 − 𝑦)𝑘+1
 

Here, 𝑘 = 4. Thus, we consider only the numerator since the denominator has a clear pattern. We have 

4𝑦 ∑ 𝐶(4, 𝑛)𝑦𝑛 = 4𝑦 ∑ 𝐶(4, 𝑛)𝑦𝑛 = 4𝑦[𝐶(4,0)𝑦0 + 𝐶(4,1)𝑦1 + 𝐶(4,2)𝑦2 + 𝐶(4,3)𝑦3]

3

𝑛=0

4−1

𝑛=0

 

𝑤ℎ𝑒𝑟𝑒 𝐶(4,0) = ∑(−1)𝑖 (
4 + 1

𝑖
)

0

𝑖=0

(0 + 1 − 𝑖)4 = (−1)0 (
5

0
) (0 + 1 − 0)4 = 1(1)(1) = 1 

𝐶(4,1) = ∑(−1)𝑖 (
4 + 1

𝑖
)

1

𝑖=0

(1 + 1 − 𝑖)4 
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= (−1)0 (
5

0
) (1 + 1 − 0)4 + (−1)1 (

5

1
) (1 + 1 − 1)4 

= 1(1)(2)4 + (−1)(5)(1)4 = 16 + (−5) = 16 − 5 = 11 

∴ 𝐶(4,1) = 11 

𝐶(4,2) = ∑(−1)𝑖 (
4 + 1

𝑖
)

2

𝑖=0

(2 + 1 − 𝑖)4 

= (−1)0 (
5

0
) (2 + 1 − 0)4 + (−1)1 (

5

1
) (2 + 1 − 1)4 + (−1)2 (

5

2
) (2 + 1 − 2)4 

= (1)(1)(3)4 + (−1)(5)(2)4 + (1)(10)(1)4 

= 81 − 80 + 10 = 11 

∴ 𝐶(4,2) = 11 

𝐶(4,3) = ∑(−1)𝑖 (
4 + 1

𝑖
)

3

𝑖=0

(3 + 1 − 𝑖)4 

= (−1)0 (
5

0
) (3 + 1 − 0)4 + (−1)1 (

5

1
) (3 + 1 − 1)4 + (−1)2 (

5

2
) (3 + 1 − 2)4 + (−1)3 (

5

3
) (3 + 1 − 3)4 

= (1)(1)(4)4 + (−1)(5)(3)4 + (1)(10)(2)4 + (−1)(10)(1)4 

= 256 − 405 + 160 − 10 = 416 − 415 = 1 

∴ 𝐶(4,3) = 1 

∴ 4𝑦 ∑ 𝐶(4, 𝑛)𝑦𝑛 = 4𝑦 ∑ 𝐶(4, 𝑛)𝑦𝑛 = 4𝑦[𝐶(4,0)𝑦0 + 𝐶(4,1)𝑦1 + 𝐶(4,2)𝑦2 + 𝐶(4,3)𝑦3]

3

𝑛=0

4−1

𝑛=0

 

= 4𝑦[1𝑦0 + 11𝑦1 + 11𝑦2 + 1𝑦3] 

= 4𝑦[1 + 11𝑦 + 11𝑦2 + 𝑦3] 

Thus, the closed form of the generating function for the sequence 

𝑓𝑚+1 =  4(𝑓𝑚 + 𝑚4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 𝑎𝑛𝑑 𝑓0 = 0 is 

𝑔4(𝑦) =
𝑘𝑦 ∑ 𝐶(𝑘, 𝑛)𝑦𝑛𝑘−1

𝑛=0

(1 − 𝑘𝑦)(1 − 𝑦)𝑘+1
=

4𝑦(1 + 11𝑦 + 11𝑦2 + 𝑦3)

(1 − 4𝑦)(1 − 𝑦)4+1
=

4𝑦(1 + 11𝑦 + 11𝑦2 + 𝑦3)

(1 − 4𝑦)(1 − 𝑦)5
  

𝐻𝑒𝑛𝑐𝑒, 𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  

 𝑓𝑚+1 =  4(𝑓𝑚 + 𝑚4) 𝑖𝑠  

𝑔4(𝑦) =
4𝑦(1 + 11𝑦 + 11𝑦2 + 𝑦3)

(1 − 4𝑦)(1 − 𝑦)5
=

4𝑦(𝑦3 + 11𝑦2 + 11𝑦 + 1)

(1 − 4𝑦)(1 − 𝑦)5
 

This result is the same with the result we have in number 4.1.1 (4). 



World Journal of Advanced Research and Reviews, 2024, 23(01), 1046–1064 

1059 

4.2 Similarly, the generalized technique for constructing the closed form of the generating functions of 
sequences of the form 

 𝒇𝒎+𝟏 = 𝒌(𝒇𝒎 + (𝒎 − 𝟏)𝒌)𝒇𝒐𝒓 𝒂𝒍𝒍 𝒎 ≥ 𝟏, 𝒌 > 𝟎 𝒂𝒏𝒅 𝒇𝟏 = 𝟎 𝒊𝒔 

𝒈𝒌(𝒚) =
𝒌𝒚𝟐 ∑ 𝑪(𝒌, 𝒏)𝒚𝒏𝒌−𝟏

𝒏=𝟎

(𝟏 − 𝒌𝒚)(𝟏 − 𝒚)𝒌+𝟏
 

where 𝑪(𝒌, 𝒏) is Euler’s numbers and its formula is 

𝑪(𝒌, 𝒏) = ∑(−𝟏)𝒊 (
𝒌 + 𝟏

𝒊
) (𝒏 + 𝟏 − 𝒊)𝒌 𝒂𝒔 𝒘𝒆 𝒊𝒍𝒍𝒖𝒔𝒕𝒓𝒂𝒕𝒆𝒅 𝒊𝒏 (𝟑. 𝟐).

𝒏

𝒊=𝟎

 

Example 4.2 Obtain the closed form of the generating function for the sequence 𝑓𝑚+1 =  4(𝑓𝑚 + (𝑚 − 1)4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥
1 𝑎𝑛𝑑 𝑓1 = 0 

Solution 

Now, we can use the above generalized technique to obtain the closed form of the generating function of 𝑓𝑚+1 =
 4(𝑓𝑚 + (𝑚 − 1)4). Here, we observe that 𝑘 = 4. Thus, we obtain the closed form of the generating function for the 
sequence 𝑓𝑚+1 =  4(𝑓𝑚 + (𝑚 − 1)4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 1 𝑎𝑛𝑑 𝑓1 = 0 using our generalized technique 

𝑔𝑘(𝑦) =
𝑘𝑦2 ∑ 𝐶(𝑘, 𝑛)𝑦𝑛𝑘−1

𝑛=0

(1 − 𝑘𝑦)(1 − 𝑦)𝑘+1
 

Now, we consider only the numerator since the denominator has a clear pattern. We have 

4𝑦2 ∑ 𝐶(4, 𝑛)𝑦𝑛 = 4𝑦2 ∑ 𝐶(4, 𝑛)𝑦𝑛 = 4𝑦2[𝐶(4,0)𝑦0 + 𝐶(4,1)𝑦1 + 𝐶(4,2)𝑦2 + 𝐶(4,3)𝑦3]

3

𝑛=0

4−1

𝑛=0

 

𝑤ℎ𝑒𝑟𝑒 𝐶(4,0) = ∑(−1)𝑖 (
4 + 1

𝑖
)

0

𝑖=0

(0 + 1 − 𝑖)4 = (−1)0 (
5

0
) (0 + 1 − 0)4 = 1(1)(1) = 1 

𝐶(4,1) = ∑(−1)𝑖 (
4 + 1

𝑖
)

1

𝑖=0

(1 + 1 − 𝑖)4 

= (−1)0 (
5

0
) (1 + 1 − 0)4 + (−1)1 (

5

1
) (1 + 1 − 1)4 

= 1(1)(2)4 + (−1)(5)(1)4 = 16 + (−5) = 16 − 5 = 11 

∴ 𝐶(4,1) = 11 

𝐶(4,2) = ∑(−1)𝑖 (
4 + 1

𝑖
)

2

𝑖=0

(2 + 1 − 𝑖)4 

= (−1)0 (
5

0
) (2 + 1 − 0)4 + (−1)1 (

5

1
) (2 + 1 − 1)4 + (−1)2 (

5

2
) (2 + 1 − 2)4 

= (1)(1)(3)4 + (−1)(5)(2)4 + (1)(10)(1)4 

= 81 − 80 + 10 = 11 

∴ 𝐶(4,2) = 11 
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𝐶(4,3) = ∑(−1)𝑖 (
4 + 1

𝑖
)

3

𝑖=0

(3 + 1 − 𝑖)4 

= (−1)0 (
5

0
) (3 + 1 − 0)4 + (−1)1 (

5

1
) (3 + 1 − 1)4 + (−1)2 (

5

2
) (3 + 1 − 2)4 + (−1)3 (

5

3
) (3 + 1 − 3)4 

= (1)(1)(4)4 + (−1)(5)(3)4 + (1)(10)(2)4 + (−1)(10)(1)4 

= 256 − 405 + 160 − 10 = 416 − 415 = 1 

∴ 𝐶(4,3) = 1 

∴ 4𝑦2 ∑ 𝐶(4, 𝑛)𝑦𝑛 = 4𝑦2 ∑ 𝐶(4, 𝑛)𝑦𝑛 = 4𝑦2[𝐶(4,0)𝑦0 + 𝐶(4,1)𝑦1 + 𝐶(4,2)𝑦2 + 𝐶(4,3)𝑦3]

3

𝑛=0

4−1

𝑛=0

 

= 4𝑦2[1𝑦0 + 11𝑦1 + 11𝑦2 + 1𝑦3] 

= 4𝑦2[1 + 11𝑦 + 11𝑦2 + 𝑦3] 

Thus, the closed form of the generating function for the sequence  

𝑓𝑚+1 =  4(𝑓𝑚 + (𝑚 − 1)4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 1 𝑎𝑛𝑑 𝑓1 = 0  

is 

𝑔4(𝑦) =
𝑘𝑦2 ∑ 𝐶(𝑘, 𝑛)𝑦𝑛𝑘−1

𝑛=0

(1 − 𝑘𝑦)(1 − 𝑦)𝑘+1
=

4𝑦2(1 + 11𝑦 + 11𝑦2 + 𝑦3)

(1 − 4𝑦)(1 − 𝑦)4+1
=

4𝑦2(1 + 11𝑦 + 11𝑦2 + 𝑦3)

(1 − 4𝑦)(1 − 𝑦)5
  

𝐻𝑒𝑛𝑐𝑒, 𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  

𝑓𝑚+1 =  4(𝑓𝑚 + (𝑚 − 1)4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 1 𝑎𝑛𝑑 𝑓1 = 0  

is 

𝑔4(𝑦) =
4𝑦2(1 + 11𝑦 + 11𝑦2 + 𝑦3)

(1 − 4𝑦)(1 − 𝑦)5
 

Note: The difference between the closed form of the generating functions of sequences of the form 𝒇𝒎+𝟏 =
𝒌(𝒇𝒎 + 𝒎𝒌) 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒎 ≥ 𝟎, 𝒌 > 𝟎 𝒂𝒏𝒅 𝒇𝟎 = 𝟎" and closed form of the generating functions of sequences of the 
form 

 𝒇𝒎+𝟏 = 𝒌(𝒇𝒎 + (𝒎 − 𝟏)𝒌) 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒎 ≥ 𝟏, 𝒌 > 𝟎 𝒂𝒏𝒅 𝒇𝟏 = 𝟎" 𝒊𝒔; 

The closed form of the generating functions of sequences of the form  

𝑓𝑚+1 = 𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0 

 is one step method while the closed form of the generating functions of sequences of the form 

 𝑓𝑚+1 = 𝑘(𝑓𝑚 + (𝑚 − 1)𝑘)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 1, 𝑘 > 0 𝑎𝑛𝑑 𝑓1 = 0 

is two steps method. 

 



World Journal of Advanced Research and Reviews, 2024, 23(01), 1046–1064 

1061 

4.3 Applications of the technique of generating functions in solving some important problems of recurrence 
relations  

Example 4.3 Prove that the generating function  

𝑥 = ∑ 𝑎𝑛𝑦𝑛

𝑛≥0

 

based on Fibonacci sequence satisfies the ordinary differential equation 

𝑥′′ + 𝑏𝑥′ + 𝑐𝑥 = 𝑜 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑏 = −(𝑛 + 2) 𝑎𝑛𝑑 𝑐 = −(𝑛 + 1)(𝑛 + 2).  

Proof 

𝐿𝑒𝑡 𝑥 = ∑ 𝑎𝑛𝑦𝑛

𝑛≥0

 

𝑇ℎ𝑒𝑛, 𝑥′ = ∑ 𝑛𝑎𝑛𝑦𝑛−1 = ∑ 𝑛𝑎𝑛𝑦𝑛−1 =

𝑛≥1

∑(𝑛 + 1)𝑎𝑛+1𝑦𝑛

𝑛≥0𝑛≥0

 

𝑥′′ = ∑ 𝑛(𝑛 − 1)𝑎𝑛𝑦𝑛−2

𝑛≥2

= ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑦𝑛

𝑛≥0

 

 (⟹) 𝒊𝒇: 

𝑖𝑓 𝑏 = −(𝑛 + 2)𝑎𝑛𝑑 𝑐 = −(𝑛 + 1)(𝑛 + 2), 𝑡ℎ𝑒𝑛 

𝑥′′ + 𝑏𝑥′ + 𝑐𝑥 = 𝑥′′ − (𝑛 + 2)𝑥′ − (𝑛 + 1)(𝑛 + 2)𝑥 

= ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑦𝑛 − ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+1𝑦𝑛 − ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛𝑦𝑛

𝑛≥0𝑛≥0𝑛≥0

 

∑{(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − (𝑛 + 1)(𝑛 + 2)𝑎𝑛+1 − (𝑛 + 1)(𝑛 + 2)𝑎𝑛}𝑦𝑛

𝑛≥0

 

∑{(𝑛 + 1)(𝑛 + 2)[𝑎𝑛+2 − (𝑎𝑛+1 + 𝑎𝑛)]}

𝑛≥0

𝑦𝑛 

∑(𝑛 + 1)(𝑛 + 2) ∙ 0 ∙ 𝑦𝑛 𝑠𝑖𝑛𝑐𝑒 𝑎𝑛+2 = 𝑎𝑛+1 + 𝑎𝑛 = 0

𝑛≥0

 

So that  

𝑥 = ∑ 𝑎𝑛𝑦𝑛

𝑛≥0

 

Satisfies the ordinary differential equation 𝑥′′ + 𝑏𝑥′ + 𝑐𝑥 = 𝑜  

 (⟸) 𝒐𝒏𝒍𝒚 𝒊𝒇: 

𝐼𝑓 𝑥 = ∑ 𝑎𝑛𝑦𝑛

𝑛≥0

 

satisfies the ordinary differential equation 𝑥′′ + 𝑏𝑥′ + 𝑐𝑥 = 𝑜  

 



World Journal of Advanced Research and Reviews, 2024, 23(01), 1046–1064 

1062 

 𝑡ℎ𝑒𝑛 𝑥′′ + 𝑏𝑥′ + 𝑐𝑥 = 𝑜 ⟹ ∑[(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑏(𝑛 + 1)𝑎𝑛+1 + 𝑐𝑎𝑛]

𝑛≥0

𝑦𝑛 = 0 

So that 

 (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑏(𝑛 + 1)𝑎𝑛+1 + 𝑐𝑎𝑛 = 0. 

But  

𝑎𝑛+2 = 𝑎𝑛+1 + 𝑎𝑛 

so,  

(𝑛 + 1)(𝑛 + 2)(𝑎𝑛+1 + 𝑎𝑛) + 𝑏(𝑛 + 1)𝑎𝑛+1 + 𝑐𝑎𝑛 = 0 

[(𝑛 + 1)(𝑛 + 2) + 𝑏(𝑛 + 1)]𝑎𝑛+1 + [(𝑛 + 1)(𝑛 + 2) + 𝑐]𝑎𝑛 = 0 

𝑆𝑜, (𝑛 + 1)(𝑛 + 2) + 𝑏(𝑛 + 1) = 0 𝑎𝑛𝑑 (𝑛 + 1)(𝑛 + 2) + 𝑐 = 0 

𝑇ℎ𝑢𝑠, 𝑏 = −(𝑛 + 2) 𝑎𝑛𝑑 𝑐 = −(𝑛 + 1)(𝑛 + 2) 

Hence, 

𝑥 = ∑ 𝑎𝑛𝑦𝑛

𝑛≥0

 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑥′′ + 𝑏𝑥′ + 𝑐𝑥 = 0 

Only if 𝑏 = −(𝑛 + 2) 𝑎𝑛𝑑 𝑐 = −(𝑛 + 1)(𝑛 + 2). 

Example 4.4 Show that the generating function 𝐺(𝑦) of the (generating) function 

𝑔(𝑦) = ∑ 𝑛𝑦𝑛

𝑛≥0

 

is the original (generating) function 

𝑔(𝑦) = ∑ 𝑛𝑦𝑛

𝑛≥0

 

Proof 

𝑔(𝑦) = ∑ 𝑛𝑦𝑛 = ∑ 𝑛𝑦𝑛 = ∑(𝑛 + 1)𝑦𝑛+1

𝑛≥0𝑛≥1𝑛≥0

 

𝑔′(𝑦) = ∑ 𝑛2𝑦𝑛−1 = ∑(𝑛 + 1)2𝑦𝑛

𝑛≥0𝑛≥0

 

𝑔′′(𝑦) = ∑(𝑛 + 1)2𝑛𝑦𝑛−1 = ∑ 𝑛(𝑛 + 1)2𝑦𝑛−1

𝑛≥1

= ∑(𝑛 + 1)(𝑛 + 2)2𝑦𝑛

𝑛≥0𝑛≥0

 

𝑔′′′(𝑦) = ∑ 𝑛(𝑛 + 1)(𝑛 + 2)2𝑦𝑛−1 = ∑(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)2𝑦𝑛

𝑛≥0𝑛≥0

 

𝑔𝑖𝑣(𝑦) = ∑(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)2𝑦𝑛

𝑛≥0

 

⋮ 
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𝑔(𝑟)(𝑦) = ∑ ∏(𝑛 + 𝑗)(𝑛 + 𝑟)2𝑦𝑛

𝑟−1

𝑗=1𝑛≥0

 

𝑔(𝑟)(0) = 𝑟 ∙ 𝑟! 

𝐺(𝑦) = ∑
𝑔(𝑟)(0)

𝑛!𝑛≥0 𝑦𝑛 = ∑
𝑛∙𝑛!

𝑛!𝑛≥0 𝑦𝑛 = ∑ 𝑛𝑦𝑛 = 𝑔(𝑦)𝑛≥0   

5. Conclusion 

Generating function technique provides a way of using a single function to encode an infinite sequence of numbers by 
treating them as the coefficients of a formal power series. It has proved to be very useful tools which facilitate the 
solution of various classes of counting problems as questions about the convergence are not required. The major idea 
of a generating function is to use a single function instead of an infinite sequence of numbers. In this study, the 
generalized techniques for constructing the closed form of the generating functions of the sequences of the form 𝑓𝑚+1 =
𝑘(𝑓𝑚 + 𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0, 𝑘 > 0 𝑎𝑛𝑑 𝑓0 = 0 𝑎𝑛𝑑  𝑓𝑚+1 = 𝑘(𝑓𝑚 + (𝑚 − 1)𝑘)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 1, 𝑘 > 0 𝑎𝑛𝑑 𝑓1 = 0  were 
developed. Lastly, the techniques of generating functions were applied to solve some important problems of recurrence 
relations. 

Recommendation/Suggestion 

Further research should be done on generating function of zeta and polylogarithmic function. Also, it would be of 
interest to obtain the closed form of the generating function for a sequence of the form 𝑓𝑚+1 = 𝑎(𝑏𝑓𝑚 +
𝑐𝑚𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0; 𝑘 > 0; 𝑓0 = 0;  𝑎, 𝑏, 𝑐 constants which is more general than the one studied in this research.  
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