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Abstract 

Rice production is a major source of global methane and nitrous oxide emissions. Numerous studies have been 
conducted to quantify the flux rates of these gases in rice fields in many developed countries. However, in Africa and 
particularly in West Africa, where this culture is experiencing considerable growth, very few studies have focused on 
this aspect. Thus, the objective of this review was to evaluate the studies and study methodologies already carried out 
on greenhouse gases in rice cultivation. It appears that several countries have quantified greenhouse gases emitted in 
rice cultivation. Several methods have been developed such as the gas chromatograph, the spectroscopic method and 
the calculation using the IPCC guidelines for the quantification of greenhouse gases in rice cultivation. The gases 
retained are methane and nitrous oxide. And the quantities of gas emitted vary depending on the country. Emissions in 
Asia are higher than those on other continents. Several emission mitigation solutions have been proposed for rice 
cultivation with less environmental destruction. However, most of these methods have not yet been applied. 
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1. Introduction

The increase in world population coupled with changes in diets will lead to an increase of around 70% in food 
availability (FAO, 2009). Thus, greenhouse gas emissions from the agricultural sector could increase from 24% to 75% 
in 2050. To continue to feed the population and reduce the effects of climate change, we will therefore have to think 
about reducing emissions. Globally, agriculture is directly responsible for 24% of annual greenhouse gas emissions and 
induces 17% additional emissions through deforestation for additional agricultural land; mainly in developing countries 
(FAO, 2017). Developing countries currently account for about three-quarters of direct emissions and are expected to 
be the fastest-growing sources of emissions in the future (Leytem et al., 2011). 

Among the agricultural activities often stated as particularly emitting, rice cultivation holds a particular place, in 
particular due to the production of methane by flooded soils, this representing 92% of the overall warming power of 
rice (Faraco et al., 2010). According to estimates from the Institute of Research for Development (IRD), to feed the world 
population, rice production must increase by 60% over the next 30 years. This data is particularly worrying in view of 
the significant emissions methane (CH 4) and nitrous oxide (N 2 O) from rice fields Greenhouse gas (GHG) emissions 
caused by rice cultivation are significant, around 16% (IPCC, 2014). 

Rice is grown in a wide variety of climatic, soil and hydrological conditions. Lowland rice fields, whether irrigated or 
not, are considered one of the most significant sources of CH4 and N2O emissions. Thus, these practices have attracted 
considerable attention due to their contribution to global warming. climatic ( Bouwman et al ., 200 2) . According to Yao 
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et al . (2012), agricultural soils fertilized with nitrogen represent approximately 81% of anthropogenic N 2 O emissions 
into the atmosphere, even though this gas has a warming power 300 times greater than CO 2 . 

In recent years, the States of developing countries have included in their governance program the objective of reducing 
greenhouse gas emissions by 2030, although it is not possible to stop to feed. This initiative necessarily involves 
supporting research on the different levels of emissions in the rice-growing basins of these countries in order to propose 
solutions to reduce this GHG emission. Due to the complexity and variability of agricultural systems, uncertainties 
persist in the assessment of GHG emissions, making a research effort in this area necessary. Studies on GHG emissions 
from rice fields have been carried out for more than two decades in developed countries. The available database of 
published articles contains hundreds of articles describing field measurements in various rice growing regions around 
the world. These evaluation methodologies have been adapted according to the conditions and realities of each system. 
This review focuses on the different places where GHG emissions have been evaluated, the methodological approaches, 
their evolution, the constraints linked to each of them as well as the possible solutions envisaged to reduce GHGs. The 
objectives of this study are: 

 Examine the levels of GHG emissions from rice fields on different continents and the methodological 
approaches employed. 

 Identify the different mitigation solutions adopted for emissions in rice fields 

2. The different countries having carried out GHG measurements 

Most major rice producing countries have determined the level of methane (CH 4 ) and nitrous oxide (NO 2 ) emissions. 
Figure 1 below shows countries on different continents that have carried out work to quantify GHG emissions. During 
our exploratory study, we were able to count seven countries on the Asian continent, namely: China, Taiwan, Burma, 
South Korea, India, Japan and Vietnam. With regard to Europe, we selected France and Spain and only the United States 
has quantified the emissions linked to rice cultivation on the American continent. In Africa, the documents we were able 
to obtain are those from three countries such as: Kenya, Egypt, Zimbabwe and Tanzania. It should be noted that no West 
African country is among them. 

 
    Countries having quantified GHGs in rice growing 

Figure 1 World map representing the countries having estimated GHGs in rice cultivation (Google; 2024) 
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3. The different methodological approaches used for GHG quantification 

3.1. Gas chromatography (GC) 

The measurement technique involves an enclosure called a manual or automated chamber. Chambers are usually placed 
on "bases" permanently fixed into the ground. The rooms are constructed from polyvinyl chloride (PVC) to avoid 
oxidation (Rochette and Ericksen -Hamel, 2008; Parkin And Venterea , 2010 ). Sampling is carried out by inserting a 
polypropylene syringe into the septa of the chamber and slowly drawing a sample of gases which are transferred to 
glass vials previously evacuated and sealed with a butyl rubber septum for storage (Christiansen, 2011 Butterbach -
Bahl et al., 2013). Various studies have identified that exetainers with pre-evacuated butyl rubber septa as a gas storage 
tool are the most suitable ( Glatzel & Well , 2008 ; Spötl , 2004 ). Rochette and Bertrand ( 2003 ) found that storage in 
polypropylene syringes led to a loss of 16% of N2O over 24 hours. The gas chromatography (GC) is equipped with an 
electron capture detector (ECD) for N 2 O, an ionizing flame detector (FID) for methane and carbon dioxide and a thermal 
conductivity detector (TCD) for oxygen and high carbon dioxide concentrations (Rochette and Bertrand, 2005; Leytem 
et al 2011 ). 

3.2. Spectroscopic methods (PAS) 

Spectroscopic instruments are also substitutes for the chromatographic technique. This is due to their portability, low 
maintenance and ease of use ( Iqbal et al ., 2012 ). These devices are suitable for direct use in the field by allowing direct 
measurements of the fluxes emitted in the rooms ( Leytem et al ., 2011 ) . 

3.3. The calculation method according to the IPCC guideline 

This method is based on calculations defined by the guidelines of the Intergovernmental Panel on Climate Change (IPCC) 
in 2006. These calculations are based on software or GHG calculators such as SECTOR, EXACT and Cool Farm Tool ( 
Hillier et al ., 2011 , 2013 ; Grewer et al ., 2018 ; Vetter et al ., 2018 ; Wassmann et al ., 2019 ; Lai et al ., 2021 ). The 
SECTOR tool is one of the greenhouse gas (GHG) calculators for croplands. This calculation is based on the values 
obtained from the methodology approved by the Tier 2 approach of the Intergovernmental Panel on Climate Change in 
2006 and refined in 2019 (IPO, 2006 ; IPCC, 2019 ; Wassmann et al ., 2019 ). This calculator was developed by the GHG 
mitigation platform in the rice sector of the International Rice Research Institute (IRRI). This tool is available in Excel 
and its use requires information on the cultivated area, yield and management practices ( Primitiva et al ., 2022). 

4. Results obtained for greenhouse gas emissions in rice growing 

Using different evaluation methods, several authors were able to determine the quantities of CH4, NO 2 and CO 2 emitted 
in rice fields. It appears that N 2 O and CH 4 emissions depended more on fertilization and the level of irrigation for rice 
fields subject to normal water management and a nitrogen fertilizer application rate (Wang and al., 1999, Hou et al ., 
2000 and Sun et al ., 2016). Studies carried out in an irrigated rice field have shown that the use of urea and ammonium 
sulfate as fertilizers is an important factor in greenhouse gas emissions (Sabyasachi et al ., 2002). Table 1 below shows 
the quantities of greenhouse gases determined by country. Gas emissions vary from one continent to another. Methane 
emissions in Asia range from 13 to 4370 kg CO2 CO2eq. ha –1 and those of nitrous oxide is 0.10 to 473.0 kg CO2 eq . ha 
−1. Rice cultivation for the European countries selected emits between 0.38 kg to 0.11 Mt CO2eq for methane and 6.03 
kg/ha to 46.74 Mt CO2eq for nitrous oxide. In Africa, methane emissions vary by 0.35 kg∙ha −1 to 630.70 kg CO2-eq ha-1 
and 0.2 kg∙ha −1 to 53.64 kg CO2-eq ha-1 for nitrous oxide There is a chronic lack of data on rice cultivation in relation 
to GHG emissions in Côte d'Ivoire. 

Table 1 Quantities of greenhouse gases determined by country 

Country Greenhouse 
gas 

Quantities Authors 

France CH 4 0.11 Mt CO2e CITEPA, 2012 

N 2 O 46.74 Mt CO2e 

India CH 4  24.5 to 37.2 kg ha -1 day -1  Sabyasachi et al .,2002; 

N 2 O 0.037 to 0.186 kg ha−1 day -1  

China CH 4  1633.8 kg CO2eq. ha−1 
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N 2 O 473.0 kg CO2 eq . ha−1 Yan et al ., 2009; Yan et al ., 2003; Chen et al ., 2013; Zhang 
et al ., 2023; Feng et al ., 2013 

Japan CH 4  2185 to 4370 kg CO2 ha–1 Harada et al ., 2007; Minamikawa et al ., 2006 

N 2 O 47 to 83 kg CO2 ha–1 

Burma CH 4  13 to 55 kg CH4 ha -1 Win and Kyaw Win, 2020 

N 2 O 0.10 to 0.27 kg NO2 ha -1 

Vietnam CH 4  34.6 to 749.1 Kg/ha Tariq et al ., 2017 

N 2 O 0.1 to 2 Kg/ha 

Etats-Unis CH 4  308 to 6126 kg CO2 eq ha-1 Advent-Borbe et al ., 2013 ; Pittelkow et al ., 2013 

N 2 O 490 à 1 915 kg CO2 eq ha-1 

Kenya CH 4  630.70 kg CO2-eq ha-1 Jane, 2020 

N 2 O 53.64 kg CO2-eq ha-1 

Egypte CH 4  390 kg CO2-eq ha-1 Farag et al ., 2013 

N 2 O 3.56 kg CO2-eq ha-1 

Zimbabwe CH 4  0.35 to 1.4 kg∙ha −1  George et al ., 2013 

N 2 O 0.2 to 0.6 kg∙ha −1  

Tanzania CH 4 88.7 and 220.6 kg ha −1  Primitive et al ., 2022 

No. 2 O Not detected 

Taiwan CH 4  163 to 728 t Shang- Shyng , 2009 

Yang and Chang, 2001 No. 2 O 29493 to 61471 t 

Spain CH 4  0.38 to 125 Kg/ha Swamp et al ., 2017 

N 2 O 6.03 to 14.24 Kg/ha 

South 
Korea 

CH 4  706 to 2328 kg CO2-eq ha-1 Ahn et al ., 2014; Berger et al ., 2013 

N 2 O 0.02 to 0.88 kg CO2-eq ha-1 

5. Possible solutions considered 

The literature reveals several proposals made for the mitigation of different gases emitted in rice cultivation. Indeed, 
the promotion of the use of organic manure and urea by micro dose of N 2 O is approximately 30% ( Kuikman et al ., 
2003). Also, intermittent irrigation and application of fertilizers deep in the soil would reduce greenhouse gas emissions 
in irrigated rice cultivation ( Uprety et al ., 2012). Thus, adequate fertilizer management practices can sequester 0.3 
tonnes C ha -1 year -1 and irrigation would sequester approximately 0.2 tonnes C ha -1 year -1 (Conant et al ., 2001). Organic 
fertilizers based on cattle manure further reduce N 2 O emissions from the field. Applying fertilizer in small doses 
reduces N 2 O emissions from the field. Fractional application of fertilizers reduces N 2 O and CH 4 emissions and promotes 
the promotion of organic farming ( Uprety et al ., 2012). Studies have shown that the application of nitrification 
inhibitors will significantly delay methane emissions ( Keerthisinghe et al ., 1993). Likewise, straw burning and the 
incorporation of rice straw before cultivation leads to a significant reduction in greenhouse gas emissions. This 
significantly reduces methane emissions ( Wassmann and Pathak , 2007).  

Furthermore, the association of mycorrhizas with rice cultivation facilitates access to nutrients by the plant by 
improving yield. Mycorrhizae lead to an improvement in carbon storage in the soil and thus reduce CO 2 emissions ( Lal 
et al ., 1998; Smith et al ., 2008). 
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6. Conclusion 

There is no data on rice cultivation in relation to GHG emissions in Côte d'Ivoire. In most countries in the sub-Saharan 
region, and even other African countries, the net effects of emissions are not known. Due to the lack of information on 
the level of GHG emissions in Africa, and the diversity of lowland rice farming systems, the quantification of GHG 
emissions is necessary to identify and propose sustainable management practices that offer opportunities to reduce 
GHG emissions. This makes it difficult to design mitigation measures adapted to local conditions. In the current state of 
cultivation practices such as the use of mineral fertilizers, water management practices, the variety of types of 
development, and the type of fertilizer would be interdependent to explain the factors influencing the level of 
greenhouse gas emissions in the rice-growing lowlands of the Ivory Coast. Research into sustainable agriculture 
specifically in rice cultivation must be on the agenda as we fight climate change in our countries. And research would 
benefit from focusing on this area which remains little known to farmers. This will provide knowledge on the level of 
emissions of these gases from our rice fields in order to develop potential methods that could help to intensify rice 
cultivation and reduce greenhouse gas emissions. 
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