Usability of *Cedrus atlantica* in monitoring changes and reducing airborne palladium pollution

Gullizar OZYURT 1, *, Halil Baris OZEL 2 and Hakan SEVIK 3

1 Department of Forest Engineering, Graduate School, Bartin University, Türkiye.
2 Department of Forest Engineering, Faculty of Forestry, Bartin University, Türkiye.
3 Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, Türkiye.

World Journal of Advanced Research and Reviews, 2024, 23(01), 371–378

Publication history: Received on 25 May 2024; revised on 03 July 2024; accepted on 05 July 2024

Article DOI: https://doi.org/10.30574/wjarr.2024.23.1.2041

Abstract

Heavy metal pollution has become a global problem threatening the health of humans and other living things. It is crucial to monitor the changes in air concentrations and reduce pollution, mainly due to the potential harm of heavy metals taken into the body by inhalation. For these purposes, plants have begun to be used extensively as biomonitors or accumulators. However, since each heavy metal accumulates in different plants at different levels, the appropriate biomonitor or accumulator species for each heavy metal must be determined separately. This study aimed to assess the usability of *Cedrus atlantica*, grown in Düzce, where heavy metal pollution is at high levels, for monitoring and reducing the change in palladium (Pd) pollution in the air. Within the scope of the study, changes in Pd concentration in *Cedrus atlantica* stem sections grown in Düzce, which is among the five most polluted cities in Europe, depending on organ, direction, and age range in the last 60 years, were evaluated. As a result, it was determined that Pd pollution in the region has increased significantly in recent years, and traffic density is thought to be effective in this increase. It was also determined that *Cedrus atlantica* is a highly suitable species for monitoring the changes in Pd pollution and reducing pollution.

Keywords: Heavy metal; *Cedrus atlantica*; Palladium; Pollution

1. Introduction

Today, air pollution is one of the most important global problems, causing more than 4 million premature births and the death of approximately 7 million people annually worldwide. This problem has reached such serious levels that it is stated that approximately 2.5 million living spaces across Europe are polluted, 90 percent of the world’s population breathes polluted air, and one in every eight deaths is related to air pollution [1,2]. Global climate change and urbanization are irreversible problems [3-6]. Pollution has become one of the most important problems worldwide with these problems [7]. Among the components of air pollution, heavy metals pose the most serious threat to human and environmental health. It is stated that heavy metals, some of which can be harmful, toxic, and fatal to humans even at low concentrations, can be harmful at high concentrations, even those that are necessary as nutrients for living things [8].

Heavy metals have been rapidly released into nature as a result of industrial and technological developments in the last century, and in this process, water [9], soil [10], and air [11,12] have been significantly polluted by heavy metals. Heavy metal pollution released into nature, largely due to mining [13], industry [14], and traffic [15], is at much higher levels in urban areas [14].
Monitoring the change in heavy metal pollution and reducing pollution in areas with high levels are among the priority study subjects [16]. Although many studies have been conducted on this subject, the studies generally focus on more common and known elements such as Pb, Ni, Cr, Cu, and Mn [17-19]. However, due to the significant increase in its industrial use in the last 20 years, Pd has reached high levels in receiving environments. Pd is widely used in many industrial sectors, such as the chemical and petroleum industries, as well as the production of automobile catalysts, electronic devices, dental applications, and fine jewelry. Exposure to Pd may cause respiratory symptoms, urticaria, contact dermatitis, and acute toxicity or hypersensitivity in humans. Epidemiological studies have shown that Pd ions are one of the most frequently reacted sensitizers among metals. This effect on the immune system shows that Pd is a very risky and harmful element for humans [20]. Therefore, monitoring and reducing Pd pollution is extremely important. This study investigated the accumulation levels of Pd element in the trunk sections of cedar (Cedrus atlantica) trees growing in urban areas where heavy metal pollution is high.

2. Material and methods

The study was conducted on cedar (Cedrus atlantica) growing in Düzce province. According to the World Air Pollution Report 2021, Düzce province is one of the five most polluted cities in Europe [21]. In 2022, log samples taken outside the vegetation season by determining the north direction were brought to the laboratory, and their surfaces were leveled. The examination determined that the tree was 60 years old; the wood (WD) was grouped into five-year groups, and sawdust samples were taken from each group of wood, as well as from the inner bark (IB) and outer bark (OB), with the help of a steel drill. The samples dried in an oven at 45 °C were subjected to pre-burning in a specially designed microwave oven. The samples whose pre-combustion process was completed were analyzed with the ICP-OES device, and Pd concentrations were determined. This method has been used in previous studies in this field, including wood and bark samples [22], as well as other plant organs such as leaves and fruits, as in this study. It is also widely used for heavy metal analysis of soil samples [23].

The data obtained was analyzed using the SPSS package program, and variance analysis was applied. Additionally, the Duncan test was applied to data with a margin of error below 5% (p < 0.05). The data were tabulated and interpreted, considering the Duncan test results.

3. Results

Average values and statistical analysis results regarding the change of Pd concentration in cedar based on organ and direction are given in Table 1. When the above results were examined, it was determined that the Pd concentration change in cedar was statistically significant on a directional basis in all organs and on an organ basis in the south and north directions. When we look at the organs according to the average values, the highest value was obtained in the inner bark (IB). Likewise, the highest value was obtained in the north direction when looking at the directions according to the average values.

Table 1 Change of Pd concentration in Cedar based on organ and direction

<table>
<thead>
<tr>
<th>Organ</th>
<th>North</th>
<th>East</th>
<th>South</th>
<th>West</th>
<th>F</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB</td>
<td>47587.3 aB</td>
<td>45771.4 A</td>
<td>50180.3 bC</td>
<td>44530.7 A</td>
<td>23.7***</td>
<td>47017.4 a</td>
</tr>
<tr>
<td>IB</td>
<td>107552.1 bC</td>
<td>43771.1 A</td>
<td>46651.2 aB</td>
<td>46118.0 B</td>
<td>2163.3***</td>
<td>61023.1 b</td>
</tr>
<tr>
<td>WD</td>
<td>59022.6 aB</td>
<td>43925.1 A</td>
<td>48638.7 abA</td>
<td>45395.9 A</td>
<td>13.1***</td>
<td>49358.8 a</td>
</tr>
<tr>
<td>F</td>
<td>8.6**</td>
<td>1.1 ns</td>
<td>3.3*</td>
<td>0.1 ns</td>
<td>4.2*</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>61672.2 B</td>
<td>44055.3 A</td>
<td>48606.9 A</td>
<td>45385.6 A</td>
<td>17.8***</td>
<td></td>
</tr>
</tbody>
</table>

The change of Pd concentration based on period and direction is given in Table 2. When the values in the table were examined, it was determined that the change in Pd concentration in cedar was statistically significant on a directional basis in all periods and on a period basis in all directions. When looking at the average values according to the periods, the highest value was obtained in the 2013-2017 and 2018-2022 periods. Again, when we look at the directions according to the average values, we see that the highest value is in the north direction. Pd concentration change in the east direction during the 2013-2017 period remained below detectable limits.
It is emphasized that the most important lack of information about the usability of biomonitor in monitoring heavy metal pollution is about the transfer of elements in wood [31]. Studies have shown that plants are the most effective arguments in monitoring the changes in heavy metal pollution in the air and reducing pollution [32]. Plants that can accumulate heavy metals, especially in the wood part, are the most suitable plants for this purpose. Because the wood part is the largest organ of the tree, heavy metals trapped in the wood part are not released into nature for tens or even hundreds of years [33]. However, suitable biomonitor or accumulator species must be determined separately for each heavy metal [34]. Studies have shown that different elements’ displacement potential in different species’ wood is at different levels. In studies on this subject, it has been shown that Zn and Pb are replaced in Cedrus deodora woods, while
the Cu element remains constant [35] and that the displacement of Ni, Zn, Pb, Cr, and Zn elements is limited in Corylus colurna woods, but Cd is displaced [36,37]. In Pinus pinaster and Picea orientalis, the displacement of Sn is limited [31]; in Cupressus arizonica wood, the displacement of Cd, Ni, Fe, and Zn elements is limited, but Bi, Li, and Cr are displaced [27,30]. In Cedrus atlantica wood, the transfer of the Ni element is quite limited, but the Co element can be replaced [38].

The transport of elements within the wood part of plants is largely related to the cell structure and especially the cell wall (apoplastic pathway). Apoplast, located between the cell wall and plasma membrane (CWPM) in plants, is a flexible structure that detects and produces signals in metal/metalloid stress. Cell wall proteins (CWPs) are activated in various abiotic stresses [31]. Plants frequently face abiotic stress factors throughout their life cycle. The most common stresses that plants encounter are stress factors related to climatic parameters such as drought [39-45] and frost [46,47]. Because plant development depends on the interaction of genetic structure [48-51] and environmental conditions [52-62]. Therefore, factors that cause significant and permanent changes in climatic parameters, such as global climate change, trigger the stress mechanisms of plants [63-71]. In addition, increasing UV-B stress due to climate change [72], anthropogenic radiation [73], and heavy metal pollution [71,75] are also important stressors for plants. CWPs activated in various abiotic stresses have been extensively identified and characterized among different types of plants. Since the CWPM interface accumulates the majority of heavy metals, this region is believed to be the potential region responsible for HM tolerance [76].

The potential of plants to absorb and accumulate heavy metals depends on many factors, such as organ structure, weather conditions, and plant habitus, as well as the structure of the heavy metal and its interaction with the plant [77-78]. Therefore, plants absorb and accumulate heavy metals through the interaction of many influencing factors originating from plants, heavy metals, or environmental conditions. Therefore, many of these factors directly and indirectly affect plants’ heavy metal accumulation potential, and information about this complex mechanism is still limited [15,25,79].

5. Conclusion

Heavy metal pollution is a big problem for all living things and the environment, and it is necessary to determine appropriate biomonitor that can be used to monitor pollution and accumulator types that can be used to reduce pollution. Although many studies have been carried out on the subject to date, the studies are mostly related to common heavy metals such as Pb, Ni, Cr, and Cu. However, detailed studies need to be carried out on other heavy metals, which are less known but quite harmful. This study evaluated the usability of Cedrus atlantica in monitoring the changes in air pollution of Pd, one of the neglected heavy metals, and in reducing pollution. In conclusion, it was determined that Cedrus atlantica, the subject of the study, is a suitable species that can be used both for monitoring the changes in Pd pollution in the air and reducing this pollution.

Compliance with ethical standards

Acknowledgements

We thanks to Bartin University, Faculty of Forestry and Kastamonu University, Faculty of Architecture and Engineering.

Disclosure of conflict of interest

The authors declare that they no conflict of interest. The none of the authors have any competing interests in the manuscript.

References

[14] Istanbullu SN, Sevik H, Isinkaralar K, & Isinkaralar O. Spatial Distribution of Heavy Metal Contamination in Road Dust Samples from an Urban Environment in Samsun, Türkiye. Bulletin of Environmental Contamination and Toxicology, 2023. 110(4); 78.

[18] Erdem, R., Arıçak, B., Çetin, M., & Sevik, H. Examining the chemical compositions of mineral concrete agents in terms of their environmental effects. Forestist, 2023. 73(3); 257-263.

[27] Cobanoglu H, Sevik H, & Koç İ. Do annual rings really reveal Cd, Ni, and Zn pollution in the air related to traffic density? An Example of the Cedar Tree. Water, Air, & Soil Pollution, 2023. 234(2); 65.

[31] Cetin, M., Cebi Kilicoglu, M., & Kocan, N. Usability of biomonitors in monitoring the change of tin concentration in the air. Environmental Science and Pollution Research, 2023. 30(52), 112357-112367.

[34] Savas DS, Sevik H, Isinkaralar K, Turkyilmaz A, Cetin M. The potential of using Cedrus atlantica as a biomonitor in the concentrations of Cr and Mn. Environmental science pollution research. 2021; doi: https://doi.org/10.1007/s11356-021-14826-1

[36] Key K, Kulaç Ş, Koç İ, & Sevik H. Determining the 180-year change of Cd, Fe, and Al concentrations in the air by using annual rings of Corylus colurna L. Water, Air, & Soil Pollution, 2022. 233(7); 244.

[37] Key K, Kulaç Ş. Proof of concept to characterize historical heavy metal concentrations from annual rings of Corylus colurna: determining the changes of Pb, Cr, and Zn concentrations in atmosphere in 180 years in North Turkey. Air quality, atmosphere & health. 2022; 18:75-83.

[38] Koç İ. Using Cedrus atlantica’s annual rings as a biomonitor in observing the changes of Ni and Co concentrations in the atmospheric science and pollution research. 2021; 128(7):35880-35886.

Cobanoglu H, Canturk U, Koç I, Kulaç Ş, Sevik H. Climate change effect on potential distribution of Anatolian chestnut (Castanea sativa Mill.) in the upcoming century in Türkiye. Forestist, 2023. 73(3);247-256.

Varol T, Canturk U, Cetin M, Ozel HB, Sevik H, & Zeren Cetin I. Identifying the suitable habitats for Anatolian boxwood (Buxus sempervirens L.) for the future regarding the climate change. Theoretical and Applied Climatology, 2022. 150(1-2);637-647.

Zeren Cetin I, Varol T, Ozel HB, & Sevik H. The effects of climate on land use/cover: a case study in Turkey by using remote sensing data. Environmental Science and Pollution Research, 2023. 30(3);5688-5699.

Cesur A, Zeren Cetin I, Cetin M, Sevik H, Ozel HB. The Use of Cupressus arizonica as a biomonitor of Li, Fe, and Cr pollution in Kastamonu. Water, air and soil pollution 2022; 233:193.

Ozel HB, Varol HN, Sevik H. Change of Mg concentration in several plants depending on plant species, washing status, and traffic density. World journal of advanced research and reviews. 2021; 12(01):447-453.

Yayla EE, Sevik H, & Isinkaralar K. Detection of landscape species as a low-cost biomonitoring study: Cr, Mn, and Zn pollution in an urban air quality. Environmental Monitoring and Assessment, 2022. 194(10); 1-10.