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Abstract 

With the steady expansion of online commerce, e-commerce sites have become increasingly attractive targets for 
hackers. These sites serve millions of customers and often hold valuable, confidential, and sometimes financial 
information in their databases. One particularly dangerous type of attack is SQL injection, which exploits vulnerabilities 
in web applications to influence backend databases, posing significant threats to such platforms. Traditional defenses 
like desktop firewalls, input validation, and parameterized queries provide some level of protection but are often 
insufficient against newer injection variations and sophisticated attackers. The utilization of machine learning to 
enhance cybersecurity against more advanced threats has been demonstrated as a promising approach. 

This systematic review examines how various machine learning algorithms are applied to detect SQL injection attacks 
that could potentially harm e-commerce systems. By identifying and analyzing the relevant literature, this review 
highlights the effectiveness of different algorithms and their practical applications in enhancing the security of online 
commerce platforms. More specifically, five techniques were assessed on both real and synthetic datasets: Logistic 
Regression, Naive Bayes, Random Forest, Artificial Neural Network, and two combined models (Logistic Regression & 
Naive Bayes, and Artificial Neural Network & Random Forest). The findings indicate that Random Forest performed 
better than other algorithms in the decision tree family, attributed to its ability to balance precision and recall 
effectively. However, limitations such as using a single dataset and the computational complexity of some models were 
noted. 

This review provides insights for practitioners on selecting appropriate detection models and outlines approaches to 
address current limitations through future work. Addressing these limitations could involve using more diverse 
datasets, optimizing computational efficiency, and exploring advanced ensemble methods and neural network 
architectures. 
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1. Introduction 

As reliance on technology grows exponentially, the surface for cyber-attacks continues to expand. One prevalent threat 
plaguing the online landscape is SQL injection, which exploits vulnerabilities in database-driven applications. Attackers 
craft malicious SQL code to be passed through victim websites, potentially gaining access to sensitive databases 
(Muslihi, & Alghazzawi, 2020). This review comprehensively analyzes a thesis investigating machine learning as a 
solution for SQL injection detection on e-commerce platforms. The thesis aimed to systematically examine SQL injection 
vectors and methods, then evaluate selected machine learning algorithms against real and synthetic datasets 
representing such attacks. 

E-commerce platforms, storing vast amounts of sensitive customer and financial data, have become major targets for 
cyber-attacks. SQL injection is a particularly prevalent and dangerous attack technique, exploiting vulnerabilities in 
dynamic SQL queries to manipulate databases and potentially compromise entire systems. While input validation and 
parameterized queries help defend against basic SQL injection, more sophisticated methods like blind and time-based 
variations can still bypass these protections. Machine learning shows promise as an advanced detection mechanism 
capable of adapting to the evolving tactics of skilled attackers. 

Five key algorithms—Logistic Regression, Naive Bayes, Random Forest, Artificial Neural Network, and hybrid models—
were empirically analyzed based on metrics like accuracy, precision, and recall. A significant finding was Random 
Forest’s robust performance in balancing both precision and recall, highlighting its suitability for accurately identifying 
malicious queries, (Alghawazi et al., 2022). The algorithms were rigorously tested on real SQL queries obtained from 
hacker communities as well as synthetic data generated using domain knowledge of injection patterns and strategies. 
Preparing and executing comparative experiments of each model when trained on balanced and imbalanced datasets 
helped identify the advantages and drawbacks of these algorithms for the indicated threat area. 

Despite there being no single top solution, Random Forest independently proved to be the most accurate at correctly 
representing the proportion of relevant cases while having the best average recall, demonstrating its usefulness in 
complicated scenarios such as multistage attacks. However, limitations such as reliance on a single dataset and the high 
computational requirements of some methods were identified. 

This comprehensive review seeks to thoroughly analyze the thesis’ methodology, results, and conclusions to provide 
cybersecurity practitioners with guidance on using machine learning for SQL injection detection. By examining the 
work’s strengths and weaknesses, recommendations will be proposed to address gaps through future research efforts. 
The overarching aim is to improve defenses against this ongoing cyber threat.  

2. Literature Review 

2.1. Machine Learning for SQL Injection Detection: A Review of the Literature 

2.1.1. Overview of SQL Injection and Machine Learning Approaches 

In web application development, SQL injection is one of the toughest challenges because it involves server-side 
applications that communicate with database systems. Injection attacks exploit weaknesses in the application’s 
handling of user-supplied inputs to execute unauthorized SQL statements (Meng et al., 2021). Although other mitigation 
techniques for SQL injection, such as input validation, exist, they have their own demerits and are often inadequate in 
handling more complex injection approaches. The feasibility of applying machine learning for real-time identification 
of injection attempts has been highlighted by various authors (Sahu et al., 2022). 

In this section, we briefly discuss the background on SQL injection and provide an overview of machine learning-based 
detection, which will be discussed in subsequent sections. We cover the basics of SQL injection, describe popular 
injection vectors and methods, and review various approaches (Ruiz et al., 2019). Additionally, a brief introduction to 
the machine learning concept is provided, with a review of previous studies on using machine learning approaches for 
injection identification (Dhanalakshmi et al., 2021). 

2.1.2. Common SQL Injection Vectors and Techniques  

They are usually the points of injection attacks because they can interface with backend databases. Ruiz et al. (2019) 
categorized common vectors according to forms such as login, search, or feedback/comment forms. Through these entry 
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points, an attacker can simply attach malicious SQL statements to otherwise legitimate SQL calls to disrupt the delicate 
database cycle. 

The techniques associated with injections have also become more refined. Earlier techniques such as error injection 
and union query injection still exist, but they have evolved into blind injection and time-delay injection methods, making 
them harder to detect. In error-based injections, the attacker manipulates the syntax of the database query with invalid 
statements to elicit an error response, while union queries inject credible queries to serve as a vessel for malicious 
payloads. Blind SQL injections often check query success by observing changes in the application's behavior, such as 
responses triggered by injected tautologies or variations in response times caused by time-delay techniques (Hussain 
et al., 2021). 

2.1.3. Machine Learning Techniques for Classification  

Logistic regression is stated to be one of the most popular algorithms in machine learning-based classifiers for 
classification issues (Halbouni et al., 2022). The logistic function is used to predict probabilities on binary classification 
datasets. One of the advantages of logistic regression is that its implementation is easy, and the interpretation of its 
findings is straightforward (Ruiz et al., 2019). However, it can struggle with very large or complex datasets as it is prone 
to overfitting (Dhanalakshmi et al., 2021). Additionally, feature engineering is required to transform raw data into 
parameters the model can understand. 

Table 1 Comparison of machine learning algorithms for classification table format 

Algorithm Description Strengths Limitations 

Logistic 
Regression 

Estimates probabilities using 
a logistic function to model 
binary classification problems 

Simple to implement and interpret; 
handles unbalanced classes well 

Can overfit on complex 
problems; requires feature 
engineering 

Random 
Forest 

Ensemble of decision trees 
that vote on the most popular 
class 

High accuracy; handles unbalanced 
classes and non-linear/complex 
problems well 

Requires hyperparameter 
tuning; less interpretable 
than single models 

Neural 
Networks 

Loosely mimics biological 
neural structure with 
interconnected nodes 

Automatically learns complex 
patterns; strong for natural 
language/unstructured data 

Prone to overfitting; 
requires large labelled 
datasets; hardest to 
interpret 

As shown in Table 1, algorithms like logistic regression, random forest, and neural networks have all demonstrated 
applicability to the problem. Random forest stands out for balancing interpretability with strong performance on 
complex, unbalanced problems like those seen in injection detection. 

Random forest is an ensemble learning method that operates by constructing a multitude of decision trees at training 
time and outputting the class that is the mode of the classes of the individual trees (Hussain et al., 2021). Studies have 
shown that it achieves high accuracy on complex datasets even when some variables are irrelevant (Matheickal et al., 
2021). The use of multiple decision trees helps reduce overfitting and makes the approach more robust to outliers and 
noise in the data compared to single models. A limitation is that some hyperparameter tuning may be required to 
achieve optimal performance.  

Neural networks attempt to mimic the human brain by using interconnected nodes that work together to learn from 
large amounts of data (Meng et al. 2021). When applied to classification problems, they can automatically learn 
nonlinear and complex patterns from raw features without much data pre-processing. However, training neural 
networks requires substantial computational resources and large labelled datasets which may limit its practical use 
(Sahu et al. 2022). The models also tend to be complex black boxes making interpretability challenging. 

Support vector machines (SVM) find a hypersurface in a multidimensional feature space that distinctly classifies data 
points (Ruiz et al. 2019). They work well for text classification and are effective even when the training dataset is small. 
However, SVMs do not directly provide probability estimates, which are often desired, and do not scale well with large 
datasets as training times increase rapidly with data size. 
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2.1.4. Evaluation of Machine Learning Models 

Proper evaluation of machine learning models is important both during development and after deployment to 
understand how well a model performs in practice. A variety of metrics are commonly used to assess classification 
effectiveness (Sahu et al., 2022). Precision examines a model's ability to return only relevant instances by measuring 
the number of true positives against the total number of predicted positive instances (Ruiz et al. 2019). While precision 
shows how well a model avoided false positives, it does not account for instances that were incorrectly predicted as 
negative.  

Recall, also known as sensitivity, specifically probes a model's ability to detect all positive instances within a dataset 
(Dhanalakshmi et al. 2021). It compares the number of true positives to the total number of actual positive instances, 
accounting for false negatives in addition to true positives. High recall indicates fewer positive instances were missed 
but does not guarantee precision, since some negatives may have been misclassified as well.  

To satisfy both precision and recall, the F1 score computes the harmonic mean of the two offering an efficiency 
measurement for what it seeks to achieve, as noted by Hussain et al. (2021). When set at its best value of 1, this shows 
perfect accuracy of precision and recall in which every instance gets detected and correctly tagged. The F1 score takes 
into account both potential false positives and false negatives simultaneously, providing a more comprehensive 
assessment of performance. 

Table 2 a Confusion Matrix 

 Predicted Negative Predicted Positive 

Actual Negative True Negative (TN) False Positive (FP) 

Actual Positive False Negative (FN) True Positive (TP) 

 

Table 2 b Confusion Matrix for Logistic Regression Model with and without data balancing 

  Imbalanced data Balanced data  

 Positive  Negative Positive Negative 

Positive TP3900 (63.1%) FP 13 (0.2%) TP 3891 (49.8%) FP23 (0.3%) 

Negative  FN 45 (0.7%) TN 2223 (36.0%) FN 81 (0.1%) TN 3817 (48.9%) 

 Table 2 (a) above shows the precision and recall using the depiction of the confusion matrix as illustrated in Table 2 
(b) above (Matheickal et al., 2021). This 2x2 matrix of true positives, true negatives, false positives, and false negatives 
is useful for dissecting how the models separate the signal from the noise and serves as a blueprint for this work. From 
this perspective, as well as using accuracy together with other indicators such as precision, recall, and the F1 measure, 
models can be compared and tested based on their real classification capability. 

2.2. Black Box ML methods for SQL Injection Detection 

2.2.1. Support Vector Machines for SQL Injection Detection 

Support Vector Machines (SVMs) are vital classification machine learning models that map data points into an 'n'-
dimensional space through vectors and segregate classes using hyperplanes (Das et al., 2020). SVMs have been 
frequently used for classification problems like SQL injection detection. In research conducted by Jha et al., SVMs were 
used to determine whether a query is benign or malicious. The model was trained on a dataset of over 10,000 queries 
from the most famous websites and achieved an accuracy of above 97.5%. A distinct advantage of SVMs is their capacity 
to search for nonlinear relationships using kernel functions, making them well-suited for large data samples. However, 
a disadvantage of SVM models is that they do not offer probability estimates, which may be required in production 
models, as highlighted by Dash and Paul (2021). 



World Journal of Advanced Research and Reviews, 2024, 23(01), 451–465 

455 

 

Figure 1 SQL injection Life Cycle (Purushottam & Pundlik, 2014) 

Another area where SVMs have been used is ensemble modeling. It becomes clear that by integrating SVMs with other 
techniques, such as Decision Trees and Neural Networks, it is possible to further enhance the overall performance. Zhao 
et al. (2019) proposed stacking SVMs through several rounds using Gradient Boosting, with somewhat higher precision 
compared to a single SVM. These ensembles are based on the fact that while each SVM has its limitations, their 
combinations can mitigate these shortcomings. However, the creation of near-optimal ensemble models requires the 
careful tuning of many parameters, which can be time-consuming (Das et al., 2020). 

SVMs are also well-suited for imbalanced classification problems, often seen in security domains like SQL injection 
detection, where malicious instances are fewer. Sreelekha and Aravindan (2018) applied sampling techniques to 
address class imbalance before training SVMs on query logs. This preprocessing step enhanced model metrics such as 
the F1 score and geometric mean, which are good measures for skewed data. Nevertheless, algorithm selection and 
configuration significantly impact performance on non-linearly separable imbalanced problems. 

2.3. Sources of SQL Injection Attacks 

User input forms a primary source of SQL injections, as attackers can craft malicious strings targeting vulnerable web 
forms (Shachi et al., 2022). Input fields like search bars, login pages and feedback mechanisms are routinely targeted 
(Kindy, & Pathan, 2011, June). Insufficient validation of these untrusted sources enables injections to manipulate 
backend queries (Uwagbole et al., 2017, May). Cookies also pose security risks when injected strings are passed to 
servers uninspected (Vishnu et al., 2022). Manipulating server-side variables such as HTTP headers exploits validation 
vulnerabilities by altering SQL commands unnoticeably (Erdődi et al., 2021).  

Usage of outdated software with known vulnerabilities invites attacks, as patches often resolve flaws (Purushottam & 
Pundlik, 2014). Regular updates addressing weaknesses are necessary to close avenues of exploitation (Purushottam & 
Pundlik, 2014). Secondary interactions like file uploads can inject SQL through interfaces beyond the main application 
(Srivastava et al., 2023). Automated scanning exposes innumerable Internet-facing services to vulnerability 
identification, allowing opportunistic assaults requiring minimal technical skill (Srivastava et al., 2023). Mitigations 
must account for both immediate and ancillary SQL entry points. 

2.4. Impact of SQL Injection Attacks  

SQL injections often result in the exposure of sensitive customer and organizational records. Data breaches that release 
identities, finances, and private communications damage individual privacy (Zhu, et a., 2023 October). The 2017 Equifax 
leak of 147 million users' private and financial data demonstrates the far-reaching implications of coding vulnerabilities 
(Alkhathami & Alzahrani, 2022). Organizations experience reputational effects through diminished customer loyalty 
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and stock depreciation post-breach (Zhang, 2019). Monetary costs also burden victim companies through litigation, 
compliance, forensic auditing, customer turnover, and lost business (Alkhathami & Alzahrani, 2022). 

Manipulation of databases enables adversaries to inflict financial harm by modifying transaction histories and account 
balances (Falor et al., 2022). Disruption to key services denies availability by overloading database resources with 
intensive queries (Ramasubramanian, & Kannan, 2006). Complete server takeover grants control to delete sensitive 
records or introduce malware, infecting connected infrastructure (Abdulhamza, & Al-Janab, 2022). Service downtime 
strains operational continuity and incurs recovery fees (Alkhathami & Alzahrani, 2022). Losses significantly impact 
smaller businesses without robust security budgets. Overall, SQL attacks threaten the confidentiality, integrity, and 
accessibility of critical networked data. 

2.5. Web Application Architecture and Security  

The architecture of web applications directly affects their security and vulnerability to SQL injections (KRISHNA, & 
Gopinath, 2022). A multilayer architecture segregates components into discrete user interface, application logic, and 
data tiers for optimal performance (Uwagbole et al., 2017). The front end, utilizing HTML, CSS, and JavaScript, delivers 
content, while a backend tier implements domain logic independently using Object Relational Mapping (ORM) or stored 
procedures (Tang et al., 2020). The main principle of separation is that it takes the logic layer out of the user layer so 
that it cannot be affected by any manipulation (Luo et al., 2019). 

 

Figure 2 Machine Learning Algorithm  

Database conversion is accomplished by an abstraction layer and does not directly use SQL queries (Luo et al., 2019). 
ORM abstracts the interactions by providing a higher-level object persistence interface in the form of object relational 
mapping, thus minimizing the direct use of database operations (Uwagbole et al., 2017). Stored procedures help by 
allowing parameterized, strongly typed queries, which prevent SQL commands from being written in the application 
code (Tang et al., 2020). Whitelist techniques ensure that input validation only allows characters that have been 
whitelisted at the entry points (Tang et al., 2020). Escaping enables output encoding, ensuring special symbols displayed 
do not result in broken markup execution (Srivastava et al., 2023). Proper integration of defensive tactics, such as the 
principles of least privilege and fail-safe defaults, enhances security. 

Sharpening user identity and attribute access controls involves determining user identities and their subsequent access 
rights through proper authentication, authorization, and session management (Srivastava et al., 2023). Effective use of 
web-based applications should be modular, loosely coupled, involve information hiding, and maintain low trust 
boundaries to build up resilience against failures while remaining highly resistant to attacks (Purushottam & Pundlik, 
2014). Future-proofing requires continual review and updating as threats evolve over time (Kamtuo & Soomlek, 2017). 
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A holistic strategic process addresses the root causes and consequences of vulnerabilities. Gradient Boosted Decision 
Trees (GBDTs) work by incrementally building trees to minimize loss. Rathore et al. (2019) leveraged GBDTs' sequential 
training process, achieving 99.2% accuracy through adaptive learning. However, these complex tree ensembles cannot 
be visualized intuitively as single trees. 

Isolation Forest, an anomaly detection technique, builds trees using randomly selected features and data splits (Liu et 
al., 2008). It has a lower computational cost than comparable algorithms. In a real-time intrusion detection system 
developed by Agrawal et al. (2021), Isolation Forest detected over 90% of injection attempts with negligible false 
alarms. However, like other tree algorithms, it requires careful hyperparameter tuning for optimal performance. 

Machine learning in cybersecurity can be categorized into four main types: Supervised Learning, Unsupervised 
Learning, Semi-supervised Learning, and Reinforcement Learning. Each type uses distinct processes for data learning 
and decision-making, offering a solid framework for combating SQL injection threats as well as other cybersecurity 
concerns. Decision trees provide a good balance of accuracy without compromising the explanatory advantages 
compared to other “black-box” methodologies. Future applications may consider enhancing structure visualization to 
explain the decision-making process of ensemble and high-dimensional tree models (Shahzad et al., 2020). This will 
improve accountability and increase transparency when using decision tree algorithms in security fields. 

2.6. Input Validation Techniques 

Whitelisting means that the set of allowable characters is defined for each field, rejecting any unauthorized characters, 
as specified by Tang et al. (2020). This approach minimizes the attack surface of the program but might limit valid user 
data input since it identifies specific bad patterns (Srivastava et al., 2023). Conversely, more flexible blacklisting 
removes all forbidden characters, such as SQL keywords, while allowing all other characters. However, it is vital to note 
that some vulnerable exploits may be excluded from the blacklist (Srivastava et al., 2023). Both approaches require 
highly refined validation rules and continuous updating to address new threats (Kamtuo & Soomlek, 2017). 

Positive validation checks the input against the definition of the data type, such as permitting only integer values in 
numerical fields (Erdődi et al., 2021). Despite its effectiveness, it adds substantial overhead to validation routines and 
reduces user flexibility compared to whitelisting (Erdődi et al., 2021). Sanitizing removes or encodes content by 
identifying all dangerous patterns; however, it depends on accurately identifying such patterns (Srivastava et al., 2023). 
Parameterization helps protect against SQL injection by binding content to distinct parameters at runtime. When used 
consistently with prepared statements or stored procedures, it ensures content is treated as safe parameters, effectively 
preventing the alteration of SQL (Purushottam & Pundlik, 2014). Parameterization is effective because it safeguards 
against injection attacks by binding parameters at runtime. 

No single validation technique fully eradicates all shortcomings; therefore, the concept of defense in depth is employed, 
where input is validated at several levels to enhance security (Alghawazi et al., 2022). Checkbox controls collaborate 
with back-end checks, hashing, and sanitization to eliminate front-end bypasses (Alaoui, & Nfaoui, 2022). In addition to 
output encoding, contextual output modeling prevents the rendered output from containing unsanitized values (Luo et 
al., 2019). Moreover, early testing assesses the effectiveness of methods based on analyzed attack vectors, enhancing 
coverage prior to release (Tang et al., 2020). 

2.7. Escaping Techniques 

Some characters are recoded from special meanings, including but not limited to replacing single quotes in 
HTML/JavaScript (Erdődi et al., 2021). This makes the syntax appear dormant regardless of injection attempts. 
However, special escaping rules exist depending on the context, such as cookies, HTML, or JavaScript (Kamtuo & 
Soomlek, 2017). Issues such as correct or inconsistent escaping can revert vulnerabilities (Kamtuo & Soomlek, 2017). 
The first approach is context-sensitive escaping, where the interpreter is identified to select the best character 
replacement (Srivastava et al., 2023). 

Output encoding helps to minimize the exposure of data in the output and avoids the execution of special characters 
(Tang et al., 2020). For instance, HTML entity encoding replaces the left angle bracket `<` with `&lt;`, and URL encoding 
replaces spaces with `+` (Tang et al., 2020). Alghawazi et al. (2022) explain that while encoding helps prevent execution 
issues, encoded values can still be vulnerable to stored XSS or open redirection. Additional decoding during interaction 
reintroduces risk, which is why comprehensive validation is preferable (Alghawazi et al., 2022).  

Validating contextual output modeling specifies how unvalidated sources should not be misunderstood (Luo et al., 
2019). For example, Markdown has been cited to either not display HTML or strip native activity from the editor (Luo 



World Journal of Advanced Research and Reviews, 2024, 23(01), 451–465 

458 

et al., 2019). This approach is grounded in the sign theory literature, which emphasizes accuracy of depiction over issues 
of syntax duality (Purushottam & Pundlik, 2014). While the surrounding environment changes, the presented content 
should not pose any potential hazards to adults, minors, or users (Purushottam & Pundlik, 2014). 

2.8. User Authentication and Control 

Fine-grained authorization controls in role-based access limit the operations possible for an individual based on their 
role (Hosam et al., December). In the case of individual departments or functions, restricting impact is reasonable since 
it entails access limitations. However, creating differentiated privilege levels poses threats of inadequate separation 
(Erdődi et al., 2021). Permissions targeting specific research resources enhance protection comprehensiveness, and 
person-level access controls augment protection detail (Kamtuo & Soomlek, 2017). Overall, access control rules need 
maintenance since business transformation necessitates constant improvements and adjustments. 

Multifactor authentication uses several independent identification factors, such as passwords and one-time codes, to 
validate users, offering higher security against attacks than single-factor authentication (Jemal et al., 2020). Similar to 
how technical controls align with organizational processes, creating a chain of trust from the user to the database 
(Purushottam & Pundlik, 2014). Restriction of unsuccessful attempts helps prevent brute force attacks and contributes 
to identifying more failed access attempts (Srivastava et al., 2023). Collectively, these controls reduce the possibility of 
havoc through compromised credential abuse, as noted by Srivastava et al. (2023). 

RBAC (Role-Based Access Control) controls operations with greater precision by focusing on an individual’s working 
role and including only the activities that a person can perform based on their assigned role (Inuwa, & Das, 2024). For 
isolated administrative functions, excluding constructs can contain the impact, but when distinguishing different levels 
of privilege, they may not sufficiently isolate each other (Erdődi et al., 2021). Precise controls that address specific user-
based access profiles enhance protection detail, particularly where resource authorization is concerned (Kamtuo & 
Soomlek, 2017). Maintenance of access control rules is crucial due to shifts in business requirements necessitating 
prompt and versatile modifications (Alghawazi et al., 2022). 

Session management can implement timeout, regeneration, and fixation protection (Purushottam & Pundlik, 2014). 
Short session lifetimes linked to specific devices, along with the ability to force logouts after inactivity, prevent further 
connections from terminated or missing terminals (Purushottam & Pundlik, 2014). These guidelines are effective in 
conjunction with access controls; in cases of authenticated interaction schemes, they define user privilege controls 
(Srivastava et al., 2023). 

3. Methodology 

This paper utilize a structured literature review approach to present and integrate knowledge about machine learning 
algorithms for detecting SQL injection in the comprehensive literature. This approach ensure that the selection of papers 
is grounded, objective, and replicable. Specifically, the review involves exploring the most comprehensive abstract 
databases using keywords such as 'SQL injection', 'machine learning algorithms', 'cybersecurity', and 'anomaly 
detection'. The initial search yielded over 500 papers. After reviewing the titles and abstracts, a final sample of 50 papers 
was selected. These papers were jointly reviewed, and the text was analyzed to classify the papers based on the 
techniques, models, frameworks, and evaluation metrics explored. 

Additional purification involved setting a limit to research papers published in the last five years to ensure the inclusion 
of the most current works. Ultimately, 25 papers were included in this review to identify the important machine learning 
algorithms explored in the studies. The paper provided information on the most commonly examined machine learning 
algorithms, which included: Logistic Regression, Random Forest, Naive Bayes, Artificial Neural Networks, and Ensemble 
Models. Metrics such as precision, recall, F1 score, and ROC Area Under Curve were also meta-synthesized to compare 
model efficiency. Newly developed approaches and papers on datasets formed the basis for discussing the development 
process of SQL injection threats. The structured approach allowed for both a global and critical analysis of the discussed 
algorithms, their applications, and their weaknesses in the context of SQL injection. 

4. Discussion  

4.1. Machine learning for micro-architectural analysis of SQL injection origins 

Logistic Regression is highlighted in the study by Shahzad et al. (2021) as an effective machine learning algorithm for 
SQL injection detection. It offers impressive precision but median recall, implying that it is more conservative in its 
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predictions compared to other algorithms. This suggests that Logistic Regression is relatively rigid in identifying 
instances as SQL injections (Varaja et al., 2022). In contrast, the most significant model in terms of efficiency is Random 
Forest, as it demonstrates both high accuracy and the best F1 score in its group. Random Forest's superior performance 
is notable in how the algorithm handles dataset complexity and accurately identifies malicious queries (Cano et al., 
2021). 

Naive Bayes works very fast but does not achieve high results compared to other algorithms such as Random Forest, 
Logistic Regression, or ANN. This is because it assumes that the analyzed components are independent, which may not 
be the case for the complex SQL injection scenarios one is likely to encounter (Ramteke et al., 2022). On the other hand, 
ANNs (Artificial Neural Networks) demonstrate flexibility and learning potential, performing almost comparably to the 
Random Forest model. However, they require significant computation and have complex fine-tuning procedures, which 
is a disadvantage (Shahzad et al., 2021). 

The random generation of decision trees in the Random Forest technique decreases the effect of overfitting, where 
decision tree results might be overly tailored to the training data rather than the overall dataset (Ali et al., 2021). 
Although the goal of data balancing is to address the class imbalance problem, it can paradoxically lead to a slight decline 
in accuracy for some models. This occurs because balancing does not replicate patterns perfectly, and queries may be 
overfitted to synthetic examples of the minority class (Chen et al., 2022). This highlights the need for careful 
consideration when selecting suitable machine learning models, taking into account factors such as data characteristics 
and specific threats associated with each model. Therefore, it is essential to further develop and implement Random 
Forest and ANN in the context of security due to their high performance and adaptability (Saleem et al., 2022). 

4.2. Detection Model Development 

It is also crucial to conduct more extensive research on the selected individual algorithms as well as ensemble 
approaches. For instance, experimenting with more intricate and deeper neural network models such as Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks or other advanced architectures could 
provide further insights into the efficiency of classifying sequential SQL queries (Nguyen et al., 2021). Since different 
architectures of neural networks can solve the same problem in different ways, specific optimizations of the parameters 
and subsequent comparisons with other architectures are necessary to determine the most effective one. 

Besides, hyperparameter tuning involves testing new values within the configurations of a given model to estimate the 
best performance. Automated methodologies such as Bayesian optimization, described in the work of D. E. 
Eggensperger et al. (2013), can help manage large hyperparameter spaces. However, overfitting remains a significant 
drawback when using unbalanced or overly diverse categories of data. Therefore, it is crucial to be cautious with such 
structures, and techniques like dropout for regularization purposes should be employed to mitigate overfitting 
(Srivastava et al., 2014).  

This underscores the importance of continually updating detection models as cyber threats advance with new software 
and attacks. Machine learning-based detection models must be trained frequently to remain effective in the long run 
(Lee et al., 2012). Frequent retraining of these models should be supported by automated and agile retraining pipelines 
that can utilize cloud computing resources. Additionally, using online learning algorithms to stream data allows models 
to update from fresh queries in real time (Shachi et al., 2021). 

The explanation of the chosen selection model remains critical for regulatory compliance, trading, auditing, and overall 
security improvement. For interpretability, techniques like LIME (Local Interpretable Model-agnostic Explanations) 
and SHAP (SHapley Additive exPlanations) can provide insights into learned feature importance weights and decision 
boundaries. These techniques are useful for debugging and governing complex ensemble models, which naturally have 
lower interpretability but offer better performance (Ribeiro et al., 2016; Lundberg & Lee, 2017). However, it is essential 
to balance these aspects to ensure robust and interpretable security measures. 

4.3. Implementation in Web Applications  

One of the main challenges when training machine learning models and incorporating them into a web application 
system is integrating the learned models into highly layered application architectures and deployment environments. 
For example, applying models for real-time low-latency prediction tasks requires proper architectural design 
considerations to optimize for fast predictions within tight latency budgets in production settings. Models trained using 
large-scale datasets may have high response latencies if deployed directly into web application servers. Therefore, it is 
important to design the system architecture and ecosystem to minimize latency overhead at prediction serving time by 
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leveraging optimized model formats, dedicated prediction services, and efficient data engineering pipelines and 
infrastructure (Falor et al., 2022). 

Other variables, such as the use of containers, also facilitate the prompt updating and redeployment of models across 
self-adjusting cloud-based systems for elastic scaling (Januzaj et al., 2022). Containers allow for consistent and portable 
environments, making it easier to manage dependencies and streamline the deployment process. This approach helps 
maintain model performance and reliability while accommodating changes and scaling demands in real-time 
application environments. 

At the front-end user interfaces and APIs, it is necessary to follow secure design patterns to safely generate queries for 
further pre-processing and evaluation by models. For instance, input sanitization against SQL syntax and escaping 
characters are indispensable, as they help prevent attacks from evading detection (Halfond et al., 2006). Permission 
controls should also have restrictive features for the fields in the database tables that are allowed to be queried, to 
prevent the exposure of sensitive information (OWASP, 2013). When a machine learning model returns a positive 
prediction for an SQL injection, the application needs to take necessary measures, such as shutting down the query or 
logging it for further examination. Additionally, it is crucial to monitor and evaluate false positive cases to prevent 
reasonable users from being adversely affected, especially during testing purposes (Ghadermazi et al., 2024). 

4.4. Model Evaluation and Comparison 

Searching for the right machine learning model, even for small datasets, is not a simple task, as described in previous 
literature (Nguyen et al., 2021). This is why it is crucial to use standard quantitative measures for comparison and 
evaluation of the models. This approach enables researchers to systematically identify the suitable algorithm for the 
learning task at hand. 

Table 3 Model Comparison Result 

Model Trained with Imbalanced Dataset (%) Trained with Balanced Dataset (%) 

Accuracy Precision Recall F1 
Score 

Accuracy Precision Recall F1 
Score 

Logistic Regression 99.06 99.42 98.02 98.71 98.67 99.40 97.92 98.66 

Naïve bayes 96.78 98.14 92.99 95.49 81.13 73.99 95.90 83.53 

Random Forest 99.63 99.82 99.16 99.49 99.40 99.74 99.05 99.40 

Artificial Neural 
Network 

99.19 99.20 98.59 98.89 98.98 99.79 98.15 98.97 

Table 3 above presents a performance evaluation of four typical machine learning classification methods for the 
identification of SQL injections: Logistic Regression, Naive Bayes, Random Forest, and Artificial Neural Networks (ANN). 
The evaluation metrics included in the table are Accuracy, Precision, Recall, and F1-Score. These metrics offer a 
comprehensive perspective on the most relevant characteristics of model performance, such as prediction error, the 
ability to minimize false positives, and the ability to identify true positives (Sethi et al., 2021). 

Such a strategy aimed at assessing the performance of each model for the original unbalanced dataset and a balanced 
version of the data (obtained from the resampling process) should, in principle, provide some level of understanding of 
their behavior when operating under different distribution settings of the data (Hashim et al., 2021, February). 

The results presented in Table 3 indicate that the performance of Logistic Regression remained very high when trained 
with the imbalanced data, and these results only slightly dropped when tested on the balanced data, proving the model’s 
balance-sensitive capability (Hagar, & Gawali, 2022). In contrast, when the SVM was used, it predicted fewer balanced 
samples correctly, with much less accuracy and precision compared to the detailed data. This highlights Naive Bayes' 
liabilities in balanced problems due to its class-conditional independence assumption (Zhang et al., 2020). The Random 
Forest algorithm showed the best performance for both datasets, as it has low volatility in terms of accuracy and AUC-
ROC due to its ensemble nature, which prevents overfitting (Mathalli et al., 2022). Furthermore, ANNs also 
demonstrated high learning ability, with proven fluctuations in precision independent of the type, size, or distribution 
of data (Chuang, & Ye, 2023). 
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It is quite important to provide a clear comparison of various machine learning algorithms that are frequently used 
today in order to select appropriate models that will result in high accuracy and dependability for the task at hand. The 
methodology and findings discussed in this paper can provide useful guidelines for better understanding the behavior 
of various models and their handling of class imbalance, which is also relevant to security concerns such as SQL injection 
identification (Singh et al., 2022). 

Table 4 Not only shows a comparison of model performance on imbalanced and balanced datasets, but also highlights 
how different algorithms manage class imbalance and their overall effectiveness in identifying SQL injections. 

Model Dataset Accuracy Precision Recall F1 Score 

Logistic Regression Imbalanced 0.95 0.97 0.93 0.95 

 Balanced 0.93 0.96 0.91 0.93 

Naive Bayes Imbalanced 0.88 0.89 0.87 0.88 

 Balanced 0.78 0.79 0.83 0.81 

Random Forest Imbalanced 0.98 0.99 0.97 0.98 

 Balanced 0.97 0.98 0.96 0.97 

ANN Imbalanced 0.96 0.97 0.95 0.96 

 Balanced 0.95 0.98 0.92 0.95 

Based on the results presented in Table 3, Random Forest’s performance barely fluctuates, showing low standard 
deviations across models trained on both imbalanced and balanced datasets. This consistency is crucial in identifying 
SQL injections, as this ensemble learning approach is resistant to class shifts (Hassan et al., 2021). Moreover, Random 
Forest has demonstrated sharp mitigating capabilities against traditional machine learning issues, including overfitting 
and class imbalance. This is due to its feature of combining multiple decision trees, where the weaknesses of one tree 
can be compensated by the strengths of another, achieving better overall results (Mendonça et al., 2022). The strength 
of Random Forest lies in its consistently authoritative performance, even within security domains with complex and 
skewed data structures. 

5. Conclusion 

In conclusion, this review aimed to investigate the practical uses of decision-making algorithms for detecting SQL 
injection attacks on e-commerce sites. Based on a fixed criterion of assessing these models on both real and synthesized 
datasets, Random Forest emerged as the most efficient model, exhibiting consistently high levels of precision and recall. 
Its feature set also makes it more flexible than its competitors and capable of handling more complex, unbalanced 
datasets, which is crucial in the ongoing battle between attackers and defenders. However, issues such as the reliance 
on a single dataset sample and the high computational time required for some models were noted as concerns that could 
hinder the practical application of the study. 

Further research is recommended in areas such as ensemble approaches, novel neural network structures, automated 
hyperparameter tuning, and increasing the detectability of models. These steps will contribute to better performance 
and understandability of detection systems, enhancing their effectiveness in real-world applications.  
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