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Abstract 

This research introduces an autonomous network healing system for hybrid contact center infrastructures that 
combines on-premises Contact Center Unified Contact Center Enterprise (UCCE) with cloud-based Webex Contact 
Center deployments. Network failures in hybrid environments create complex cascading effects that traditional 
monitoring systems cannot predict or resolve autonomously. Our reinforcement learning-based approach uses Deep Q-
Networks (DQN) to learn optimal healing strategies from historical incident data, environmental state representations, 
and real-time network telemetry. The system achieved 89% automatic resolution rate for network incidents, reducing 
mean time to recovery (MTTR) from 23 minutes to 4.2 minutes across 15 enterprise deployments. The agent learned to 
predict failure patterns 12 minutes before occurrence with 94% accuracy, enabling proactive healing actions. 
Implementation demonstrates significant improvements in service level agreement (SLA) compliance and operational 
costs while reducing dependency on human intervention for routine network issues.  

Keywords:  Autonomous Systems; Network Healing; Reinforcement Learning; Hybrid Cloud; Contact Centers; Deep 
Q-Networks; Predictive Maintenance

1. Introduction

Modern contact center infrastructures increasingly adopt hybrid deployment models that combine on-premises Unified 
Contact Center Enterprise (UCCE) systems with cloud-based solutions such as Webex Contact Center. This hybrid 
approach enables organizations to leverage existing investments in on-premises infrastructure while benefiting from 
cloud scalability and advanced features. However, the complexity of hybrid architectures introduces significant 
challenges for network management and fault resolution. 

Network failures in hybrid contact center environments exhibit unique characteristics that distinguish them from 
traditional enterprise network issues. The interdependence between on-premises and cloud components creates 
cascading failure patterns that can propagate across architectural boundaries, affecting multiple service layers 
simultaneously. Traditional network monitoring and management systems, designed for homogeneous environments, 
struggle to provide effective incident resolution in these complex hybrid scenarios. 

Current approaches to network healing rely heavily on human expertise and manual intervention, resulting in extended 
mean time to recovery (MTTR) and inconsistent resolution quality. Rule-based automation systems, while providing 
some operational benefits, lack the adaptability required to handle the dynamic nature of hybrid contact center 
environments. The increasing volume and complexity of network incidents, combined with growing pressure to 
maintain high service level agreements (SLAs), necessitate more intelligent and autonomous approaches to network 
healing. 
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Reinforcement learning presents a promising paradigm for autonomous network management by enabling systems to 
learn optimal healing strategies through interaction with the environment. However, existing reinforcement learning 
applications in network management focus primarily on optimization problems such as routing and resource allocation, 
with limited exploration of autonomous fault resolution in production environments. 

This paper makes the following contributions: (1) A novel reinforcement learning framework specifically designed for 
autonomous network healing in hybrid contact center infrastructures, (2) Comprehensive state space modeling that 
captures the unique characteristics of hybrid deployments, (3) Multi-objective reward function design that balances 
service restoration time, resource utilization, and customer impact, and (4) Extensive evaluation demonstrating 
significant improvements in MTTR and SLA compliance across production deployments. 

2. Background and Related Work 

2.1. Hybrid Contact Center Architectures 

Hybrid contact center deployments combine on-premises infrastructure with cloud-based services to provide unified 
customer experience capabilities. Typical architectures integrate Contact Center UCCE on-premises systems with 
Webex Contact Center cloud services through secure network connections and API integrations. This hybrid approach 
enables organizations to maintain control over sensitive data and existing integrations while leveraging cloud scalability 
and innovation. 

The complexity of hybrid architectures stems from the need to coordinate multiple technology stacks, including 
traditional telephony systems, IP-based communications infrastructure, cloud APIs, and various middleware 
components. Network failures can occur at any layer and propagate through complex dependency chains, making root 
cause analysis and resolution particularly challenging. 

2.2. Network Fault Management Systems 

Traditional network fault management follows the ISO Telecommunications Management Network (TMN) model, 
emphasizing fault detection, isolation, and correction through hierarchical management systems. Current enterprise 
solutions, including Contact Center DNA Center and various network monitoring platforms, provide comprehensive 
visibility into network health but rely on predefined rules and human expertise for incident resolution. 

Rule-based automation systems have emerged to address routine network issues through scripted responses to specific 
fault conditions. While these systems provide some operational benefits, they lack the adaptability required to handle 
novel failure scenarios or optimize healing strategies based on environmental feedback. 

2.3. Reinforcement Learning in Network Management 

Reinforcement learning applications in network management have primarily focused on optimization problems such as 
traffic engineering, resource allocation, and quality of service (QoS) management. Notable work by Xu et al. 
demonstrated the effectiveness of deep reinforcement learning for network routing optimization, achieving significant 
improvements over traditional shortest-path algorithms. 

Recent research has explored reinforcement learning for network security applications, including intrusion detection 
and automated response systems. However, these applications typically operate at different timescales and with 
different objectives compared to network healing scenarios in production contact center environments. 

The application of reinforcement learning to autonomous network healing represents a relatively unexplored area, with 
most existing work focusing on simulated environments rather than production deployments. This gap motivates our 
research into practical reinforcement learning systems for real-world network management scenarios. 

3. Problem formulation 

3.1. Hybrid Network Environment Characteristics 

Hybrid contact center networks exhibit several characteristics that complicate traditional fault management 
approaches. The distributed nature of hybrid deployments creates multiple failure domains, including on-premises 



World Journal of Advanced Research and Reviews, 2024, 23(01), 3199-3208 

3201 

infrastructure, cloud services, and interconnecting network components. Failures in any domain can cascade across 
architectural boundaries, affecting service availability and performance. 

The dynamic nature of contact center workloads introduces additional complexity, with traffic patterns varying 
significantly based on business cycles, seasonal factors, and external events. Network healing strategies must account 
for these variations to avoid disrupting service during peak operational periods. 

3.2. Fault Taxonomy and Impact Assessment 

Network faults in hybrid contact center environments can be categorized into several classes based on their impact and 
resolution complexity. Infrastructure faults include device failures, connectivity issues, and resource exhaustion 
scenarios. Service faults encompass application-level issues, API failures, and integration problems between on-
premises and cloud components. 

Cascading faults represent the most challenging category, involving failure propagation across multiple system 
components and architectural boundaries. These faults often require coordinated remediation actions across different 
management domains, making them particularly suitable for reinforcement learning approaches. 

3.3. Autonomous Healing Objectives 

The primary objective of autonomous network healing is to minimize service disruption while maintaining system 
stability and resource efficiency. This multi-objective optimization problem requires balancing competing concerns, 
including service restoration time, resource utilization, and potential impact on ongoing operations. 

Secondary objectives include learning from historical incidents to improve future healing strategies, providing 
predictive capabilities to enable proactive intervention, and maintaining human oversight and control over critical 
healing actions. 

4. System Design and Architecture 

4.1. Reinforcement Learning Framework 

Our autonomous network healing system is formulated as a Markov Decision Process (MDP) where the reinforcement 
learning agent observes the current network state, selects healing actions, and receives rewards based on the 
effectiveness of those actions. The MDP formulation enables the agent to learn optimal policies through trial and error 
while accounting for the temporal dynamics of network healing scenarios. 

 

Figure 1 Autonomous network healing system architecture   

 



World Journal of Advanced Research and Reviews, 2024, 23(01), 3199-3208 

3202 

The state space encompasses comprehensive network health indicators, including device status, connectivity metrics, 
traffic patterns, and historical incident data. The action space includes automated remediation capabilities such as 
traffic rerouting, resource scaling, service restarts, and failover activation. The reward function incorporates multiple 
objectives to guide the agent toward effective healing strategies. 

Table 1 Hybrid Network Environment Characteristics 

Component Description 

State Space Device metrics (CPU, memory), network stats (latency, loss), topology data 

Action Space Reroute traffic, restart service, scale resources, activate failover 

Reward Function Weighted: -MTTR, +SLA compliance, -Resource Waste, -Disruption Penalty 

Policy Network Deep Q-Network (CNN + LSTM layers) 

Exploration Strategy ε-greedy with decay, confidence-based override 

Training Source Historical incidents + simulated network digital twins 

4.2. Deep Q-Network Architecture 

The core learning component utilizes a Deep Q-Network (DQN) architecture optimized for network healing scenarios. 
The network consists of convolutional layers for processing network topology representations, followed by Long Short-
Term Memory (LSTM) layers for capturing temporal patterns in network behavior. 

The convolutional layers extract spatial features from network graph representations, enabling the agent to understand 
connectivity patterns and identify potential failure propagation paths. The LSTM layers capture temporal dependencies 
in network telemetry data, allowing the agent to recognize patterns that precede network failures. 

 

Figure 2 Reinforcement learning workflow for network heading 
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4.3. State Space Representation 

Network state representation combines real-time telemetry data with topological information to provide 
comprehensive environmental awareness. Device-level metrics include CPU utilization, memory consumption, interface 
statistics, and health indicators. Network-level metrics encompass traffic flows, latency measurements, and connectivity 
status between critical components. 

Historical context is incorporated through sliding window approaches that maintain recent incident history and 
resolution outcomes. This temporal context enables the agent to recognize patterns and avoid repeated failures while 
learning from successful healing strategies. 

4.4. Multi-Objective Reward Function 

The reward function design addresses the multi-objective nature of network healing by incorporating weighted 
components for service restoration time, resource utilization efficiency, and customer impact minimization. The reward 
structure encourages rapid fault resolution while preventing resource waste and avoiding actions that could disrupt 
ongoing operations. 

Penalty mechanisms discourage harmful actions and provide negative feedback for healing strategies that fail to resolve 
incidents or create additional problems. The reward function is dynamically adjusted based on business priorities and 
SLA requirements to maintain alignment with operational objectives. 

5. Implementation Framework 

5.1. Data Collection and Preprocessing 

The system collects comprehensive telemetry data from hybrid contact center environments using a distributed 
collection architecture. Network devices provide SNMP-based metrics at 30-second intervals, while application-level 
telemetry is collected through API integrations with Contact Center DNA Center, Webex Control Hub, and UCCE 
administration interfaces. 

Preprocessing pipelines normalize and correlate data from multiple sources, creating unified state representations 
suitable for reinforcement learning. Time series data is windowed and aggregated to provide multiple temporal 
perspectives, enabling the agent to recognize both short-term anomalies and long-term trends. 

5.2. Training Environment and Simulation 

Agent training utilizes a combination of historical replay data and real-time simulation environments. Historical data 
from 18 months of production operations provides initial training scenarios, including successful and unsuccessful 
healing attempts. Network digital twins, implemented using Contact Center Modeling Labs and NS-3, enable safe 
exploration of healing strategies without affecting production systems. 

The simulation environment accurately models hybrid network characteristics, including latency between on-premises 
and cloud components, traffic patterns, and failure propagation mechanisms. This high-fidelity simulation enables 
comprehensive agent training while ensuring safety and stability of production systems. 

5.3. Safety Mechanisms and Human Override 

Safety mechanisms prevent the agent from taking actions that could cause widespread service disruption or violate 
operational policies. Rule-based guardrails establish boundaries for automated actions, requiring human approval for 
potentially high-impact interventions. Emergency override capabilities enable human operators to halt automated 
healing processes and assume manual control when necessary. 

Confidence-based action selection ensures that the agent only takes automated actions when it has high confidence in 
the expected outcome. Low-confidence scenarios trigger human notification and approval workflows, maintaining 
human oversight while maximizing automation benefits. 

5.4. Integration with Existing Systems 

System integration leverages existing management APIs and protocols to minimize deployment complexity and 
maintain compatibility with established operational procedures. The orchestration engine interfaces with Contact 
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Center DNA Center for network device management, Webex Control Hub for cloud service configuration, and UCCE 
administration APIs for contact center-specific actions. 

API abstraction layers ensure consistency across different management interfaces while providing extensibility for 
future platform additions. Standardized data formats and communication protocols enable seamless integration with 
existing monitoring and management workflows. 

Table 2 Integration Metrics 

Metric Baseline (Avg) Post-Deployment Improvement 

Mean Time to Recovery (MTTR) 23 min 4.2 min ↓ 81.7% 

SLA Violation Rate 9.4% 1.3% ↓ 86.2% 

Incident Resolution Automation Rate 0% 89% ↑ 89 pp 

Failure Prediction Accuracy (12 min ahead) N/A 94% New Capability 

Human Interventions per Month 72 11 ↓ 84.7% 

Network Resource Utilization Efficiency 63% 78% ↑ 15 pp 

6. Experimental Setup and Evaluation 

6.1. Production Environment Deployment 

Evaluation was conducted across 15 enterprise hybrids contact center deployments, each serving between 500 and 
5,000 agents across multiple geographic locations. The deployments represent diverse organizational profiles, including 
financial services, healthcare, retail, and government agencies, providing comprehensive evaluation across different 
operational contexts. 

Each deployment includes on-premises UCCE infrastructure with 2-4 data centers, cloud-based Webex Contact Center 
services, and hybrid connectivity through dedicated network links and VPN connections. Network complexity varies 
from 50 to 500 managed devices per deployment, representing typical enterprise contact center scale. 

6.2. Baseline Performance Metrics 

Baseline performance was established through 6-month observation periods using traditional reactive management 
approaches. Key metrics include mean time to detection (MTTD), mean time to recovery (MTTR), SLA compliance rates, 
and operational costs associated with incident resolution. 

Historical incident data reveals that 67% of network issues required human intervention for resolution, with average 
MTTR of 23 minutes for automated resolution and 45 minutes for manual intervention. SLA compliance averaged 94.2% 
across participating organizations, with network-related incidents contributing to 78% of SLA violations. 

6.3. A/B Testing Methodology 

Controlled evaluation utilized A/B testing across matched deployment pairs, with one deployment receiving 
autonomous healing capabilities while the matched deployment continued using traditional management approaches. 
Matching was based on organizational size, network complexity, traffic patterns, and historical incident rates to ensure 
statistical validity. 

The evaluation period spanned 12 months, providing sufficient data for statistical significance testing while accounting 
for seasonal variations in contact center operations. Continuous monitoring ensured that any negative impacts could be 
quickly detected and addressed. 

6.4. Performance Metrics and KPIs 

Evaluation metrics encompass both technical performance indicators and business impact measurements. Technical 
metrics include automatic resolution rate, MTTR reduction, prediction accuracy, and false positive rates. Business 
metrics include SLA compliance improvement, operational cost reduction, and customer satisfaction impact. 
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Additional metrics assess the learning effectiveness of the reinforcement learning agent, including convergence rates, 
policy stability, and adaptation to novel failure scenarios. These metrics provide insights into the system's ability to 
improve performance over time and handle previously unseen situations. 

7. Results and Analysis 

7.1. Automatic Resolution Performance 

The autonomous healing system achieved an 89% automatic resolution rate for network incidents across the evaluation 
deployments. This represents a significant improvement over the 33% automatic resolution rate achieved by traditional 
rule-based systems. The reinforcement learning agent successfully learned to handle complex failure scenarios that 
previously required human intervention. 

Resolution performance varied by incident type, with infrastructure failures achieving 94% automatic resolution while 
cascading failures achieved 78% automatic resolution. This variation reflects the increased complexity of cascading 
failures and the need for coordinated actions across multiple system components. 

7.2. Mean Time to Recovery Improvements 

MTTR showed dramatic improvement, decreasing from an average of 23 minutes to 4.2 minutes for incidents resolved 
by the autonomous system. This 82% reduction in MTTR directly translates to improved service availability and 
reduced customer impact during network incidents. 

The improvement was most pronounced for routine infrastructure failures, where MTTR decreased from 15 minutes to 
2.8 minutes. Complex cascading failures showed more modest improvement, with MTTR reducing from 35 minutes to 
12 minutes, but still representing significant operational benefits. 

7.3. Predictive Capabilities 

The system demonstrated strong predictive capabilities, identifying potential failures an average of 12 minutes before 
occurrence with 94% accuracy. This predictive capability enabled proactive healing actions that prevented 67% of 
predicted failures from causing service disruption. 

False positive rates remained low at 8%, ensuring that proactive actions did not unnecessarily disrupt stable operations. 
The system learned to distinguish between benign anomalies and genuine failure precursors through continuous 
feedback from resolution outcomes. 

7.4. SLA Compliance and Business Impact 

SLA compliance improved from 94.2% to 98.7% across participating organizations, with network-related violations 
decreasing by 85%. This improvement translates to significant business value, including reduced penalty costs, 
improved customer satisfaction, and enhanced operational reputation. 

Operational cost analysis reveals 43% reduction in incident response costs, primarily due to reduced reliance on human 
intervention and faster resolution times. The system paid for itself within 8 months of deployment through operational 
savings and improved SLA performance. 

7.5. Learning Convergence and Adaptation 

The reinforcement learning agent demonstrated stable convergence within 6 weeks of deployment, with policy 
performance plateauing at near-optimal levels. Continued learning capability was evidenced by successful adaptation 
to novel failure scenarios introduced through infrastructure changes and new service deployments. 

Policy stability analysis shows consistent performance over the evaluation period, with no degradation in resolution 
capabilities despite changing network conditions and traffic patterns. This stability indicates robust learning that 
generalizes effectively across diverse operational scenarios. 
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8. Advanced Analysis and Insights 

8.1. Failure Pattern Recognition 

Deep analysis of the learned policies reveals interesting insights into network failure patterns in hybrid contact center 
environments. The agent discovered subtle correlations between seemingly unrelated metrics that proved predictive 
of future failures. For example, minor increases in API response times from cloud services often preceded cascading 
failures in on-premises systems. 

The reinforcement learning approach identified optimal healing sequences that differed significantly from traditional 
troubleshooting procedures. In many cases, addressing downstream effects before upstream causes proved more 
effective for rapid service restoration, contradicting conventional wisdom but demonstrating superior outcomes. 

8.2. Resource Optimization Strategies 

The multi-objective reward function successfully guided the agent toward healing strategies that balanced service 
restoration with resource efficiency. The learned policies demonstrate sophisticated resource management, including 
dynamic load balancing during healing operations and resource pre-positioning based on predicted failure scenarios. 

Analysis of action selection patterns reveals that the agent learned to optimize healing strategies based on time-of-day 
and seasonal factors. Different approaches were automatically selected for incidents occurring during peak business 
hours versus off-peak periods, maximizing service availability during critical operational windows. 

8.3. Cross-Deployment Learning Transfer 

Evaluation of learning transfer between deployments shows promising results for knowledge generalization. Agents 
trained on one deployment demonstrated 73% effectiveness when deployed to similar environments without additional 
training. This transferability suggests potential for centralized model development and distributed deployment 
strategies. 

Fine-tuning experiments demonstrate that pre-trained models can be rapidly adapted to new environments with 
minimal local training data. This capability significantly reduces deployment time and initial learning periods for new 
installations. 

8.4. Human-AI Collaboration Patterns 

Analysis of human override patterns provides insights into effective human-AI collaboration in network management 
scenarios. Human interventions were most common during the initial deployment phase, decreasing from 23% in the 
first month to 3% after six months as operators gained confidence in autonomous capabilities. 

The most effective collaboration patterns emerged when human operators focused on strategic decision-making and 
policy refinement while leaving tactical healing actions to the autonomous system. This division of responsibilities 
maximized the strengths of both human expertise and artificial intelligence capabilities. 

9. Limitations and Future Directions 

9.1. Current System Limitations 

The current implementation focuses on network-layer failures and has limited capability for handling application-
specific issues that require deep domain knowledge. Integration with application performance monitoring systems 
could extend healing capabilities to higher-level service issues. 

The system's effectiveness is constrained by the quality and completeness of available telemetry data. Deployments 
with limited monitoring infrastructure may not achieve the same performance levels as those with comprehensive 
telemetry coverage. 
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9.2. Scalability Considerations 

While the system demonstrates excellent performance across the evaluated deployments, scalability to much larger 
environments (10,000+ devices) remains to be validated. The state space complexity and computational requirements 
may require architectural modifications for extreme-scale deployments. 

Real-time processing requirements may challenge the current implementation in environments with very high event 
rates. Distributed processing architectures could address these scalability concerns while maintaining real-time 
response capabilities. 

9.3. Future Research Directions 

Future work should explore hierarchical reinforcement learning approaches that could better handle the multi-scale 
nature of network healing problems. Different agents could specialize in specific failure domains while coordinating 
through higher-level policies. 

Integration with network intent-based systems could provide richer context for healing decisions and enable more 
sophisticated optimization strategies. Intent-aware healing could better align automated actions with business 
objectives and operational policies. 

The development of explainable AI techniques for network healing could improve operator trust and enable better 
human-AI collaboration. Understanding why specific healing actions were selected would facilitate knowledge transfer 
and policy refinement. 

9.4. Broader Applications 

The reinforcement learning framework developed for network healing could potentially be adapted for other 
autonomous operations scenarios, including security incident response, capacity management, and service 
orchestration. The core principles of state representation, action selection, and reward optimization are broadly 
applicable to operational automation challenges.  

10. Conclusion 

This research demonstrates the significant potential of reinforcement learning for autonomous network healing in 
hybrid contact center infrastructures. The developed system achieved 89% automatic resolution rate while reducing 
MTTR from 23 minutes to 4.2 minutes, representing substantial improvements in operational efficiency and service 
quality. 

The comprehensive evaluation across 15 production deployments validates the practical viability of reinforcement 
learning approaches for network management in complex enterprise environments. The system's ability to learn from 
historical data, adapt to changing conditions, and provide predictive capabilities addresses critical gaps in traditional 
network management approaches. 

The multi-objective reward function design successfully balanced competing operational concerns, resulting in healing 
strategies that optimize service restoration while maintaining resource efficiency and operational stability. The 
integration of safety mechanisms and human override capabilities demonstrates a practical approach to autonomous 
systems deployment in mission-critical environments. 

Key contributions include the novel application of Deep Q-Networks to network healing scenarios, comprehensive state 
space modeling for hybrid infrastructures, and extensive evaluation demonstrating superior performance compared to 
traditional approaches. The system's predictive capabilities and proactive healing actions represent significant 
advances in network management automation. 

The results have important implications for the broader adoption of AI-driven automation in network operations. The 
demonstrated improvements in SLA compliance, operational costs, and incident resolution effectiveness provide 
compelling business justification for autonomous network management investments. 

Future research should focus on extending the approach to broader operational scenarios, improving scalability for 
larger deployments, and developing more sophisticated human-AI collaboration models. The foundation established by 
this work provides a roadmap for continued advancement in autonomous network operations.  
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