
 Corresponding author: Bandar Aljabri 

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Electric vehicle routing problem with time windows, battery swapping van, and 
energy consumption (EVRPTW-BSV-EC) 

Bandar Salem Aljabri * and Emad Salem Fararah 

Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi 
Arabia. 

World Journal of Advanced Research and Reviews, 2024, 22(02), 1914–1926 

Publication history: Received on 18 April 2024; revised on 25 May 2024; accepted on 28 May 2024 

Article DOI: https://doi.org/10.30574/wjarr.2024.22.2.1635 

Abstract 

This research focuses on integrating BSVs into the Electric Vehicle Routing Problem with Time Windows (EVRPTW), 
aiming to minimize travel costs and energy consumption while meeting delivery time windows. This novel approach 
combines mathematical modeling with optimization algorithms to formulate and solve the EVRPTW-BSV-EC, 
addressing a gap in existing literature. 

However, due to their limited range, they must recharge while delivering products to customers along their route. Long 
recharging times at available stations can hurt route planning, especially when considering short delivery time 
windows. Therefore, the authors used a swapping van instead of a recharge station. Swapping batteries can decrease 
recharging times by exchanging the vehicle's depleted batteries with fully charged ones. This research extends the 
traditional EVRPTW to address the integration of battery-swapping Vans (BSVs) and energy consumption 
considerations. 

The objectives of this research include minimizing the total travel cost and reducing overall energy consumption within 
the defined time windows while considering battery-swapping vans. This research provides tools for a policy planner 
to measure the effectiveness of battery swaps in the presence of traditional recharging methods for commercial logistics 
operations 

The research combines mathematical modeling techniques with optimization algorithms to formulate and solve the 
Electric Vehicle Routing Problem with Time Windows, Battery Swapping Van, and Energy Consumption (EVRPTW-BSV-
EC). The results show that the additional choice of battery swaps at a swapping van led to better delivery routes, thereby 
reducing the overall costs, particularly for cases where battery swapping time and battery swapping cost are relatively 
lower. As far as the author knows, this issue has yet to be tackled in previous literature. Here, a model and algorithm for 
addressing this problem are introduced, and computational experiments are performed. 

Keywords: Electric vehicles; Van battery swapping; Vehicle routing; Time windows; Energy consumption 

1. Introduction

The global automotive landscape is undergoing a transformative shift driven by an unprecedented surge in the demand 
for electric vehicles (E.V.s). In 2022, the momentum in adopting electric cars reached a significant milestone, with over 
26 million on the road. This staggering figure represents a remarkable 60% increase compared to 2021 and, more 
impressively, marks an exponential growth of over 500% from the stock recorded in 2018. [1]. In 2020, the worldwide 
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adoption of electric vehicles witnessed a 43% increase, with over 3 million units sold. The International Energy Agency 
(IEA) projections indicate that approximately 30% of all vehicles will be electric by 2030 [2].  

Despite the numerous advantages linked to electric vehicles (E.V.s), their integration into distribution logistics 
operations could have been more active, and two main factors contributed to this delay. Firstly, the cost of E.V.s is 
notably higher than that of conventional gasoline vehicles, with the primary contributor to this expense being the 
battery cost. Secondly, the distance a fully charged electric vehicle can run before the battery is out of electricity is 
defined as the driving range. Combustion engine vehicles have an average range of 400-600 km, whereas electric 
vehicles only have an average range of 350 km [3]. A traditional gasoline vehicle can be entirely refueled in 3-5 minutes. 
In contrast, for an E.V., even using fast charging technology, it takes half an hour to one hour to charge the vehicle 
entirely. [4] The average energy consumption for an electrical car battery at ground level is 195 Wh/km or 0.195 
kWh/km [5], while the average battery capacity is around 40 kWh. E.V. users are required to travel to a battery 
swapping station for the exchange of batteries. Due to the evident limitations in location and the quantity of available 
battery swapping stations, queues and waiting times may persist. Thus, there is a need for a more logical and efficient 
architecture for E.V. battery swapping. Addressing this issue, a viable solution involves transitioning from the current 
passive to active battery-swapping mode. A recent advancement in this direction is the development of a rapid E.V. 
battery-swapping device. Patents suggest that this device can be integrated into a van, effectively converting the van 
into a mobile E.V. battery swapping station—removing and installing a battery takes place simultaneously. 
Consequently, the entire battery-swapping procedure is highly efficient, completing in just a few minutes 
(approximately 3 minutes in the experimental setting) [6]. While at a battery swap van (BSS), the battery of the E.V. can 
be swapped with a new, fully recharged battery in only about 5 minutes [7]. The savings in time achieved are crucial for 
efficient route planning, particularly for customers with stricter time windows. This improves the feasibility of delivery 
routes and, in turn, the total routing costs. The energy consumption of E.V.s has a closer relationship to the uncertain 
travel speed and cargo load, which must be reflected to express E.V. performance realistically. Therefore, a formula that 
combines a computational approach is suggested for calculating the energy consumption of Electric Vehicles (E.V.s) 
based on physics and theory [4]. As far as the author knows, this issue has yet to be tackled in previous literature.  

2.  Literature Review 

The exploration of electric vehicles (E.V.s) falls within the Green Logistics field, which has garnered increased attention 
in recent years. Green Logistics is dedicated to mitigating the environmental impact of logistics operations, emphasizing 
sustainable practices in producing and distributing goods while considering environmental and social factors [8]. 
Distribution activities within the supply chain involve the transportation of products, and these challenges are often 
categorized under the Vehicle Routing Problem (VRP) in the literature. The primary goal of VRP is to optimize the 
selection of routes for a specified number of vehicles, originating and concluding at the depot, to minimize overall 
transportation costs. A notable extension of VRP is the Vehicle Routing Problem with Time Windows (VRPTW), wherein 
customers have designated time frames within which deliveries must be completed. Various optimization approaches 
have been developed from 2016 to 2023 to address different variants of the Electric Vehicle Routing Problem, including 
algorithms such as integer programming, adaptive large neighborhood search, genetic algorithms, bee colony 
optimization, iterated local search, modified clustering search-based genetic algorithm, random kernel search, 
simulated annealing, diversity-enhanced memetic algorithm, BAT algorithm optimization, and hybridizations thereof, 
aimed at improving route efficiency and addressing specific constraints such as time windows, battery swapping, and 
partial recharges [9]–[17]. [18] present the Modified Clustering Search-based Genetic Algorithm (MCSGA) to tackle the 
Electric Vehicle Routing Problem (EVRP) with time windows and travel time uncertainty. [19] focus on the time-
dependent multi-depot EVRP with battery recharging and swapping, employing a multi-objective simulated annealing 
algorithm (SAA). [20] introduce a Diversity-Enhanced Memetic Algorithm (DEMA) for EVRP with time windows and 
mixed backhauls. [21] propose the Bat Algorithm Optimization for trip time and cost reduction, considering customer 
service requests and EV charging schedules. Additionally, [22] utilize Genetic Algorithm for EVRP with time windows 
and battery swapping. Finally [23] develop an improved ant colony optimization (ACO) algorithm for EVRP with Time 
Windows and Multiple Recharging Options. The authors conducted a search and found no existing literature reviews on 
the Vehicle Routing Problem with Time Windows, Battery Swapping Vans, and Energy Consumption. 
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3. Problem Description and Model Formulation 

3.1. Problem description  

This paper proposes an Electric Vehicle Routing Problem with Time Windows, Battery Swapping Van, and Energy 
Consumption (EVRPTW-BSV-EC), an extension of EVRPTW. The EVRPTW-BSV-EC aims to minimize the overall costs of 
EVRP (including fixed vehicle costs, travel costs, and swap costs). 

Given a homogeneous fleet of E.V.s, EVRPTW-FC aims to determine a set of routes involving customers with known 
demands, delivery time windows, and service durations Vehicles with battery swap vans. The Routing Problem consists 
of determining a set of K vehicle trips of the minimum total cost, such that each vehicle starts and ends at the depot, and 
each of the C customers with service times 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒, i ∈ [1, C] and demands 𝑓 or, i ∈ [1, C] is visited exactly once. 
The total weight capacity of each vehicle is 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 . The Vehicle Routing Problem with Time Windows is a variant 

of VRP with predefined customer time windows. The customer's service can begin within a time window [Ei, Li] 
specified by the customer. The E.V. energy consumption formula and the constant parameter values in the energy 
consumption formula are taken from [4]. 

3.2. Mathematical model formulation 

In this section, we propose a mathematical model of this problem. Concerns are customers with known demands, 
delivery time windows, and service durations. A homogeneous fleet of E.V.s with fixed loading capacities and limited 
driving ranges is used for the package delivery. ECVs and BSVs have specific roles that cannot be switched. ECVs deliver 
customer requests, while BSVs are only for swapping batteries when needed by an ECV and cannot be used for 
deliveries. 

Battery swapping must happen at a customer's location and cannot be done while the ECV serves the customer. It can 
only be done before (if possible while waiting for customer service to start) or after the ECV finishes serving the 
customer. For this study, battery swapping will be done after the ECV serves the customer. It will be seen from the plan 
of the accompanying model that there are three limitations (customer time service limitation, route limitation, and load 
limitation). By looking at the limitless number of vehicles utilized (the number of vehicles utilized is additionally one of 
the improvement objectives), we can serve every client under load limitations. Moreover, Electric vehicles can be re-
energized and require charging by battery swapping van a few times during the visit, so it has sufficient battery ability 
to finish the outing. Hence, the arrangement can be ensured. To clarify the model, the notations that will be used in this 
study are listed as follows: 

Table 1 Notations used in this study 

Indices and Input Parameters 

K Number of vehicles k = 1… K 𝛈 Efficiency parameter to consider all 
complexities of any power losses in 
the transmission and motor drive 

C Number of customer nodes c =1… C  Gc Gravitational constant (m/s2)  

F Number of batteries swapping 
vans f =1… F  

Rr Rolling resistance coefficient 

S Start depot node α Angle of the road (- (
𝜋

2
) ≤ 𝛼 ≤ (

𝜋

2
)) 

D End depot node β The percentage of the total braking 
energy can be applied to the electric 
motor ( 0 ≤ 𝛽 ≤ 1).  

N Set of all types of nodes in the 
graph (including start node, 
customer, swapping vans, and end 
depot) 

ρa Air density (kg/m3) 

UCf Per unit fixed cost/vehicle  ACD Aerodynamic drag coefficient 

UCtr Per unit travel cost/vehicle  Area f vehicle frontal area (m2) 
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U.C.s Per unit swap cost/vehicle  DVT/ dt Acceleration (m/s2) 

vt Vehicle travel speed (m/s)  fwj The freight weight of node j will be 
greater than zero for customer 
nodes and equal zero for other 
nodes.  

δ Mass factor Vehicle capacity Vehicle load capacity (kg) 

V. M. Vehicle mass (kg) QBmax Battery energy capacity (kWh) 

E j Earliest start time to service node j tijk Travel time of vehicle k traveling 
from nodes i to j (min)  

L j Latest start time to service node j SWt Swapping time (min) 

zj = 1 if node j consists a battery 
swapping van nodes (F); 0 
otherwise  

service_time j Service time of node j 

𝑡𝑖𝑗
𝑉𝑎𝑛 Travel time of battery swap van 

traveling from nodes i to j (min) 
𝑉𝑎𝑛 𝑏 Battery capacity of battery swapping 

van (kWh) 

𝐵 𝑚𝑎𝑥  Maximum number of batteries 
carried by battery swapping van 

𝑉𝑎𝑛 𝑒  Energy consumption rate per unit of 
time of battery swapping van (kWh/ 
min) 

Decision Variables 

xijk = 1 if vehicle k travels from node i to node j; 

0 otherwise  

Yjk = 1 if the battery of vehicle k is replaced at node j; 

0 otherwise  

Output Parameters 

PowerB
out The power out at the battery 

terminals 
swap_cost k The swap cost for vehicle k 

PowerB
in The regenerative braking at the 

battery terminals 
QBjk Battery power level of vehicle k at 

node j (kWh) 

Energy_Consumption The energy consumption from 
batteries (kWh) 

VWjk The loading weight of vehicle k 
departing from node j (kg) 

Energy_Consumptionij
k  The energy consumption of vehicle 

k from nodes i to j (kWh) 
DTjk The departure time of vehicle k at 

node j 

fixed_cost k The fixed vehicle cost for vehicle k 𝑁𝐵𝑗  Number of remaining fully-charge 
batteries on the battery swap van 
upon arrival at node j 

travel costs
 The travel cost for vehicle k 𝑉𝑎𝑛𝑗

𝑏  A battery charge level of the battery 
swap van when arrival at node j 

3.2.1. Objective Function 

This research is intended to develop an integrated model for the electric vehicle routing problem while considering the 
energy consumption under time windows battery swapping van. The objective of this model is to minimize the overall 
costs of EVRP (including fixed vehicle cost, travel cost, and swap cost), as shown in Equation 1. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ 𝑓𝑖𝑥𝑒𝑑_𝑐𝑜𝑠𝑡 𝑘 + 𝐾
𝑘=1 𝑡𝑟𝑎𝑣𝑒𝑙_𝑐𝑜𝑠𝑡 𝑘 + 𝑠𝑤𝑎𝑝_𝑐𝑜𝑠𝑡 𝑘  ……………… (1) 

Where, 
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𝑓𝑖𝑥𝑒𝑑_𝑐𝑜𝑠𝑡 𝑘 =  𝑈𝐶𝑓 (1 −  ∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝐷𝑖∈ 𝑆 ); ∀ 𝑘 = 1 … 𝐾 ………….. (2) 

𝑡𝑟𝑎𝑣𝑒𝑙_𝑐𝑜𝑠𝑡 𝑘 =  𝑈𝐶𝑡𝑟 ( ∑ 𝐷𝑇𝑗𝑘  −  𝑆𝑊𝑡 ∑ 𝑌𝑗𝑘𝑗 ∈ 𝐹𝑖 ∈𝐷 ); ∀ 𝑘 = 1 … 𝐾 …………. (3) 

𝑠𝑤𝑎𝑝_𝑐𝑜𝑠𝑡 𝑘 =  𝑈𝐶𝑠  ∑ 𝑌𝑗𝑘𝑗 ∈ 𝐹  ;  ∀ 𝑘 = 1 … 𝐾 ……….. (4) 

3.2.2. Constraints 

Equation 5 expresses the battery power out, equal to the resistance power and any power losses in the transmission 
and motor drive. (The first term is for the rolling resistance of tires on a hard surface, the second term describes the 
grading resistance, the third term defines the aerodynamic drag, and the last term is for acceleration force) [4] 

𝑃𝑜𝑤𝑒𝑟𝐵
𝑜𝑢𝑡 =  

𝛽𝑣𝑡

𝜂 
 ( 𝑉𝑀 ∗  𝐺𝑐 ∗  𝑅𝑟 ∗ cos 𝛼  + 𝑉𝑀 ∗ 𝐺𝑐 ∗ sin 𝛼  + 

1

2
 𝜌𝑎 ∗ 𝐴𝐶𝐷 ∗  𝐴𝑟𝑒𝑎 𝑓 ∗  𝑣𝑡2

 + 𝑉𝑀 ∗  𝛿 ∗
𝑑𝑣𝑡

𝑑𝑡
) …  

        ……..(5)   

The regenerative braking power at the battery terminals can be expressed in Equation 6, which equals the battery 
power out multiplied by the percentage of the total braking energy. [4] 

𝑃𝑜𝑤𝑒𝑟𝐵
𝑖𝑛 =  

𝑣𝑡

𝜂 
 ( 𝑉𝑀 ∗  𝐺𝑐 ∗  𝑅𝑟 ∗ cos 𝛼  + 𝑉𝑀 ∗ 𝐺𝑐 ∗ sin 𝛼  +  

1

2
 𝜌𝑎 ∗  𝐴𝐶𝐷 ∗  𝐴𝑟𝑒𝑎 𝑓 ∗  𝑣𝑡 2

 + 𝑉𝑀 ∗  𝛿 ∗
𝑑𝑣𝑡

𝑑𝑡
) …….(6) 

 Motivated by equations 5 and 6, the energy consumption from batteries can be calculated by equation 7. [4] 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  ∫ 𝑃𝑜𝑤𝑒𝑟𝐵
𝑜𝑢𝑡

𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒
𝑑𝑡 + ∫ 𝑃𝑜𝑤𝑒𝑟𝐵

𝑖𝑛
𝐵𝑟𝑎𝑘𝑖𝑛𝑔𝑡𝑖𝑚𝑒 

 𝑑𝑡 …………. (7) 

 Where the traction time is the time period when the acceleration is positive, whereas the braking time is the time period 
when the acceleration is negative.  

Equations 8 and 9 ensure that each customer is visited by only one electric vehicle.  

∑ 𝑥𝑖𝑗𝑘  𝑖 ∈ 𝐶 ⋃ 𝐹 ⋃ 𝑆 = 1 ; ∀ 𝑘 = 1 … 𝐾, ∀ 𝑘𝑗 = 1 … 𝐶 …………. (8) 

∑ 𝑥𝑖𝑗𝑘  𝑗 ∈ 𝐶 ⋃ 𝐹 ⋃ 𝐷 = 1 ; ∀ 𝑘 = 1 … 𝐾, ∀ 𝑘𝑖 = 1 … 𝐶 ……………….. (9) 

To satisfy the flow conservation, in which the number of arrivals at a node must equal the number of departures for all 
types of nodes, Equation 10 is performed.  

∑ 𝑥𝑖𝑗𝑘 =  ∑ 𝑥𝑗𝑚𝑘∀ 𝑚 ∈ 𝐶 ⋃ 𝐹 ⋃ 𝐷∀ 𝑖 ∈ 𝐶 ⋃ 𝐹 ⋃ 𝑆  ;  ∀ 𝑘 = 1 … 𝐾, , ∀ 𝑗 ∈  𝐶 ⋃ 𝐹  ……… (10) 

Where m is an index for the remaining nodes that the electric vehicle had not yet visited. 

Equations 11 and 12 ensure that all vehicles leave from the start depot and return to the end depot (the start depot and 
end depot have the exact location).  

∑ 𝑥𝑆𝑗𝑘  𝑗 ∈ 𝐶 ⋃ 𝐹 ⋃ 𝐷 = 1 ; ∀ 𝑘 = 1 … 𝐾 …………. (11) 

∑ 𝑥𝑗𝐷𝑘  𝑗 ∈ 𝐶 ⋃ 𝐹 ⋃ 𝑆 = 1 ;  ∀ 𝑘 = 1 … 𝐾 …………….(12) 

Moreover, two vehicles consume different amounts of energy from the same path because of variations in the load 
weights of the two vehicles, which indicates the residual battery power as expressed in Equation 13. In contrast, 
Equation 14 states that the residual battery power at any node must be more significant than zero. In addition, Equation 
15 indicates that each vehicle at the starting point has an entire batter.  

𝑄𝐵𝑗𝑘 =  𝑥𝑖𝑗𝑘  [𝑄𝐵𝑗𝑘  (1 − 𝑌𝑗𝑘  ) +  𝑌𝑗𝑘 ∗  𝑄𝐵𝑚𝑎𝑥 −  𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖𝑗

𝑘 ] ; 

∀ 𝑘 = 1 … 𝐾, ∀ 𝑖 ∈  𝐶 ⋃ 𝐹 ⋃ 𝑆 , ∀ 𝑗 ∈  𝐶 ⋃ 𝐹 ⋃ 𝑆 …….. (13) 
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𝑄𝐵𝑗𝑘  <  𝑄𝐵𝑚𝑎𝑥  ;  ∀ 𝑘 = 1 … 𝐾, ∀ 𝑗 ∈  𝐶 ⋃ 𝐹 ⋃ 𝐷 ……… (14) 

𝑄𝐵𝑆𝑘 =  𝑄𝐵𝑚𝑎𝑥  ;  ∀ 𝑘 = 1 … 𝐾 ……………(15) 

On the other hand, the load weight of the vehicle departing from a node is calculated by Equation 16. Furthermore, 
Equation 17 specifies that the vehicle must pick up the loads from the customers, while Equation 18 ensures that the 
collected load of each vehicle does not exceed its load capacity.  

𝑉𝑊𝑗𝑘  =  (𝑓𝑤𝑗 +  𝑉𝑊𝑖𝑘  ) 𝑥𝑖𝑗𝑘;  ∀ 𝑘 = 1 … 𝐾, ∀ 𝑖 ∈  𝐶 ⋃ 𝐹 ⋃ 𝑆 , ∀ 𝑗 ∈  𝐶 ⋃ 𝐹 ⋃ 𝐷 ……….(16) 

𝑉𝑊𝑗𝑘  =  0 ;  ∀ 𝑘 = 1 … 𝐾, ∀𝑗 ∈  𝑆 …….. (17) 

𝑉𝑊𝑗𝑘  ≤  𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ;  ∀ 𝑘 = 1 … 𝐾, ∀ 𝑗 ∈ 𝑆 ⋃ 𝐶 ⋃ 𝐹 ⋃ 𝐷 ……….(18) 

 The time when the vehicle departs from one node equals the sum of the departure time at the last node, travel time 
between the last node, service time of the current customer and the current node, swapping time and queue time as 
shown in Equation 19 (It is important to highlight that the Electric Vehicle (E.V.) has issued a request to the Battery 
Service Vehicle (BSV) for an early battery replacement and has specifically requested the swapping to take place at the 
subsequent node immediately after customer service. This implies that the waiting time for the swapping process is 
equivalent to the time taken for the service itself). Meanwhile, the initial operation time is assumed to be zero, as 
indicated in Equation 20. On the other hand, Equation 21 ensures that every customer is visited within the time 
windows.  

𝐷𝑇𝑗𝑘  =  (𝐷𝑇𝑖𝑘 +  𝑡𝑖𝑗𝑘 + service_time j + 𝑆𝑊𝑡 ∗  𝑌𝑗𝑘  ) 𝑥𝑖𝑗𝑘  ; 

∀ 𝑘 = 1 … 𝐾, ∀𝑖 ∈  𝐶 ⋃ 𝐹 ⋃ 𝑆 , ∀𝑗 ∈  𝐶 ⋃ 𝐹 ⋃ 𝐷  … … .. (19) 

𝐷𝑇𝑖𝑘  =  0 ;  ∀ 𝑘 = 1 … 𝐾, ∀ 𝑖 ∈  𝑆 ………….(20) 

𝐸 𝑗  ≤ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒𝑗
≤  𝐿 𝑗  ;  ∀ 𝑗 ∈  𝐶 ⋃ 𝐹 ⋃ 𝐷 ………..(21) 

Equation 22 involves only vehicles with the battery swapping van visited to replace its battery when needed.  

0 ≤ 𝑌𝑗𝑘  ≤  𝑧𝑗  ;  ∀ 𝑘 = 1 … 𝐾, ∀𝑗 ∈ 𝑆 ⋃ 𝐶 ⋃ 𝐹 ⋃ 𝐷 ………… (22) 

Moreover, Equations 23 and 24 ensure meeting the demand while not exceeding the capacity of the battery swap van.  

0 ≤ 𝑁𝐵𝑗  ≤  𝑁𝐵𝑖  −  𝑌𝑗𝑘 + 𝐵𝑚𝑎𝑥  (1 −   𝑌𝑗𝑘) ;  ∀ 𝑘 = 1 … 𝐾, ∀𝑖 ∈ 𝑆 ⋃ 𝐶 ⋃ 𝐹, ∀𝑗 𝐶 ⋃ 𝐹 ⋃ 𝐷  ………. (23) 

0 ≤  𝑁𝐵𝑖  ≤  𝐵𝑚𝑎𝑥  ;  ∀𝑖 ∈ 𝑆 ……….. (24) 

Equations 25 and 26 to make sure that the battery charge level of the battery swap van never falls below zero.  

0 ≤  𝑉𝑎𝑛𝑗
𝑏  ≤  𝑉𝑎𝑛𝑖

𝑏  −  𝑉𝑎𝑛 𝑒 ∗ 𝑡𝑖𝑗
𝑉𝑎𝑛 ∗ 𝑌𝑗𝑘 +  𝑉𝑎𝑛 𝑏 (1 −   𝑌𝑗𝑘) ;  

∀ 𝑘 = 1 … 𝐾, ∀𝑖 ∈ 𝑆 ⋃ 𝐶 ⋃ 𝐹, ∀𝑗 𝐶 ⋃ 𝐹 ⋃ 𝐷  ……… (25) 

0 ≤  𝑉𝑎𝑛𝑖
𝑏  ≤  𝑉𝑎𝑛 𝑏 ;  ∀𝑖 ∈ 𝑆 ⋃ 𝐶 ∪ 𝐹 ………….(26) 

Equations 27 and 28 ensure that the decision variables representing the swapping plans and vehicle routes are binary.  

 𝑥𝑖𝑗𝑘  =  {0, 1} ; ∀ 𝑘 = 1 … 𝐾, ∀𝑖 ∈  𝐶 ⋃ 𝐹 ⋃ 𝑆 , ∀𝑗 ∈  𝐶 ⋃ 𝐹 ⋃ 𝐷 ………..(27) 

𝑌𝑗𝑘  =  {0, 1} ;  ∀ 𝑘 = 1 … 𝐾, ∀𝑗 ∈  𝑆 ⋃ 𝐶 ⋃ 𝐹 ⋃ 𝐷 ………..(28) 
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4. Solution Methodology 

We constructed a heuristic to solve the new problem. The hybrid G.A. (HGA) is a combination method of G.A. and local 
search strategy to strengthen the ability of a local search based on the advantages of G.A. In the case of Hybrid Genetic 
Algorithms (HGA), a local search strategy is executed for each individual following both crossover and mutation phases. 
The objective of the local search strategy is to uncover additional opportunities. For the solution technique, the 
proposed program in Section 4.1 is viewed to determine the routing costs of the routing plan for the required number 
of vehicles while preserving the vehicle load capacity and battery charge level of Evs restrictions. We will permit 
deviations from the time window restrictions for each customer. G.A. is followed by local search improvement heuristics 
that search the neighborhood for better solutions. 

Our solution method is outlined in Algorithm 1. The order of the different heuristics is set after computation 
experiments to achieve the best solution quality in a limited runtime. As seen in Algorithm 1, we will iterate for different 
generation values until a predetermined number of iterations is completed within a specified time limit until we find 
the routing plan with the lowest costs. We employ local search to transition between solutions within the search space 
of potential solutions. This involves making local changes until a set number of iterations is reached. We used (i) 2-
interchange, (ii) 2-opt, and (iii) Cross-exchange as improvement heuristics in the local search method. Overall, our 
algorithm will determine the best sequence of visits to the customers (delivery plan) and the schedule of the required 
number of electric vehicles, along with the type of service (BSV) used at each arc between nodes while minimizing the 
overall delivery costs. 

Next, we will describe the routing algorithm in the second step. Details about the local search in the first step can be 
found in Section 4.2. 

4.1. Routing algorithm 

The genetic algorithm is a well-known heuristic applied to complex VRPs with realistic constraints. The algorithm's 
fitness function is determined by the total cost of EVRPTW-BSV-EC presented in Equation 1 of the mathematical model 
formulations section. The detailed steps of the algorithm for solving the underlying routing problem are presented in 
Algorithm 1. In the EVRPTW-BSV-EC, the following three attributes can lead to infeasibility: overload, time windows, 
and battery charge level. The proposed G.A. allows infeasible solutions regarding time windows during the search process. 
To ensure solution validity, each individual must be tested against all constraints before steps 12-14; this step is rerun 
if invalid. The total cost of any solution is evaluated using the total cost function described in Equation 1. This is 
facilitated by efficiently encoding decision variables into chromosomes describing an individual in the current 
population. The chromosome representing an individual in the population should be defined such that we are easily 
able to decode both the delivery plan (schedule of the customers in the route visited by different vehicles) and the 
swapping plan (sequence of BSV visits to the customer nodes to replace the E.V.s' battery). The individual chromosome 
should represent all visited nodes comprising n customers. The n customers are represented by index numbers 1, ..., n.  

Started with a random permutation of n customers to build a chromosome. This starting configuration represents the 
sequence of customers visited by vehicles. Hence, we guarantee that each customer is visited exactly once and that the 
number of electric vehicles is established. This process yields the final sequence of the required vehicles to the 
customers from the start depot. To determine the vehicle assignments to the customers, we start with the first node in 
the sequence and assign it to the first available vehicle. We move to the next node in the sequence and determine 
whether the combined load of the first two nodes exceeds the vehicle load capacity. If not, we assign the second 
node to the first vehicle; otherwise, we assign the second node to a new vehicle. The new vehicle becomes the current 
available vehicle,  and the process is repeated until all nodes have been assigned to a vehicle. In this way, we split the 
sequence of nodes into multiple routes. 

4.1.1. Algorithm 1 Pseudocode Genetic Algorithm for EVR Problem 

 procedure 
 Parameter Initialization 

o Total number of chromosomes in the population, N.  
o The maximum number of generations, T. 
o The maximum number of elite individuals, Ne. 
o Crossover rate, pc.  
o Mutation rate, pm. 

 Initial Population 
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o Randomly generate a chromosome. 
o Check if the load capacity is satisfied; go to step 12; If not, go back to step 9. 
o If the number of chromosomes is N, go to Step 10; otherwise, go back to Step 9. 

 Fitness Evaluation 
o For each chromosome in the population, solve its corresponding routing problem and obtain its fitness 

value (objective cost as described in Equation 1 in Section 4.2). 
 Identify Elite Individuals 

o Select Ne individuals from the population with the lowest fitness values. The elite individuals are not 
processed for crossover and mutation. These elite individuals will be part of the next generation. 

o Find the lowest fitness value, F ∗ , of all chromosomes in the current generation. 
o Find all generations' lowest fitness value, F ∗∗ , so far. 

 Stopping Criteria 
o If the total number of generations equals T, stop and return F; otherwise, go to Step  
o Generate the Next Generation of Chromosome 

 Reproduction of children. 
 Crossover: 

o Randomly pick chromosomes from the current population with a probability pc. 
o Apply the two-point crossover on the picked chromosomes. 
Mutation: 
o Randomly pick chromosomes from the current population with a probability pm. 
o Apply the mutation on the picked chromosomes 

 Check that the load capacity and battery charge level constraints are satisfied for each chromosome in the 
new generation. If not, then discard it. 

 Improvement heuristics: 
o 2-interchange  
o 2-opt  
o Cross exchange  
o close  
o Return F  

The individual can quickly obtain the values of the decision variables related to the delivery plan (xijk) and the swapping 
plan (zj and yjk). In addition, the variables related to the departure time of the vehicle at each node can be deduced from 
the sequence of BSVs, assuming that we start from the depot at the earliest departure time. Also, we can update the 
battery level (𝑄𝐵𝑗𝑘) at each visited node using the residual driving range at the preceding node (𝑄𝐵𝑖𝑘) and whether we 

use the battery swapping (yik) or not at the preceding node, as explained in Equation 22. Similarly, we can obtain the 
departure time 𝐷𝑇𝑗𝑘  using Equation 19. 

Three neighborhood operators were next used in the following order:  

 2-interchange,  
 2-opt, and 
 cross-exchange to improve the final routing solution obtained by G.A.  

These three neighborhoods are nested within each other and allow for solid diversification. These neighborhoods and 
their order were carefully chosen after a series of computation experiments in order to achieve maximum improvement 
with the limited runtime [24]. The improvements are rejected if the vehicle load capacity level is violated. 

First, a 2-interchange routine is run that improves the total cost of the existing routes. Customers and BSVs are 
potentially swapped to different locations on the same route or other routes. All possible moves are considered for each 
candidate, and the move that created the best improvement is selected. This process is iterated until no more improving 
moves are found. Second, the standard 2-opt improvement heuristic is run to improve individual routes. The best-
improving move is chosen among all the candidates on each route, and the process is repeated until no more 
improvements are found. Third, the standard cross-exchange routine exchanges two arbitrary segments in different 
routes. The process is repeated until no improvement is found. 

The output routes from the improvement subroutine can be infeasible concerning time windows. The infeasibility 
concerning battery charge is repaired by calling the insert BSVs routine. First, BSVs are inserted greedily to improve 
the battery infeasibility for each route. Identify the initial  customer in the route where the vehicle arrives with a 
depleted  battery level. The best node for insertion of BSV on all arcs among the customer’s odes and the depot was 
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determined. The lowest cost option among BSVs is preferred. The best insertion position on the infeasible route is the 
one that offers the least insertion cost. This insertion can also yield infeasible routes but reduces the overall battery 
charge infeasibility. 

The fitness value of the individual is calculated by the total cost function presented in Equation 1. As discussed earlier, 
the service by a vehicle at a customer location should start during the time windows specified by the customer. Therefore, 
tracking time window violations at each customer is necessary precisely because battery swapping can satisfy tight time 
windows compared to traditional recharging methods and might affect these costs. Compared to recharging, the battery 
swapping alternative by a BSV is expensive.  

4.2. Local search 

In Algorithm 1, local search techniques such as 2-interchange, 2-opt, and Cross-exchange are employed to iteratively 
improve routing solutions by making local changes until a set number of iterations is reached. Solutions that enhance 
total cost, as per Equation 1, are accepted. The algorithm evaluates routing solutions for various total vehicle 
requirements, with the local search selecting the best solution. Genetic Algorithm (G.A.) constraints ensure battery-
swapping whenever a battery-swapping van (BSV) visits an electric vehicle (E.V.), allowing multiple uses of BSVs. The 
EVRPTW-BSV-EC problem is solved using Algorithm 1, followed by improvement routines in the order of 2-interchange, 
2-opt, and Cross-exchange, aiming to minimize total travel time while ensuring each customer is visited exactly once. 
The resulting routes have at most n + K + 1 arcs, where K is the number of vehicles used and n is the number of 
customers. 

4.3. Computational Study 

In this section, computational experiments are performed to test the proposed GA-LS algorithm. All the programs were 
coded in Python and were implemented on an Intel Core i7 processor with 3GHz speed and 8GB RAM. 

For deriving the different cost values specified in mathematical model , the authors investigated practical logistics 
companies and determined the costs related to E.V. operations. the authors assume that there are two available E. Vs to 
collect the different cargo loads from 5 different customers. Each E.V has a mass of 2000 kg at the start depot and its 
mass will be changed in each node depends on the cargo loads of that node while ensure the total freight weight must 
not exceed the vehicle load capacity which considered to equal 1200 kg. E. Vs can replace their batteries by calling the 
BSV to visit them in the next customer node and the swapping process takes a time of 3 min. The fixed cost for employing 
an E.V., UCf , is SR 35000 which includes purchasing cost of the E.V and any other fixed cost. The per unit travel cost of 
the E.V., 𝑈𝐶𝑡𝑟 , is set as 2 SR /min. Since the battery swapping employs more infrastructure the per unit swapping cost, 
𝑈𝐶𝑠, is 3 SR/min. The above values and other features of E.V are summarized in Table 2. 

Table 2 Illustrates different features of E.V.s 

Vehicle  1 2 

Unit Fixed Cost (SR) 35000 35000 

Unit Travel Cost (SR/min)  2 2 

Unit Swap Cost (SR/min)  3 3 

Vehicle Travel Speed (m/min)x10^3  2 2 

Vehicle Mass (kg) 2000 2000 

Vehicle Frontal Area (m^2) 3 3 

Acceleration (m/s^2) 1.2 1.2 

Vehicle Load Capacity (kg) 1000 1000 

Battery Capacity (kWh) 70 70 

On the other hand, BSV has a battery capacity of 100 kWh and it consumes one kWh per minute while it travels to the 
E.V and the other limitations of BSV are shown in Table 3. In addition, the selected customers are located in different 
sites and each one has a unique time window to be visited during it be the assigned E.V and will be serviced by a certain 
service time. The different parameter values are presented in Table 4. Furthermore, for the energy consumption 
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calculations; different constants and parameters will be considered which be listed in Table 4. Finally, this dataset can 
be generalized and improved to work with a large size instance.  

Table 3 Demonstrates different limitations of BSV 

 Travel Time of Battery Swap 
Van (min) 

 NO. of Carried 
Batteries  

Battery Capacity 
(kWh) 

Energy Consumption Rate 
(kWh/ min) 

Va
n 

1 2 3 4 5 

1 53 35 47 43 38 10 100 1 

 

Table 4 Customer’s specifications and limitations 

  Travelling Time (min) Service Time (min) Time Windows (min) Freight Weight (Kg)  

Customer 1 2 3 4 5 Earliest Latest  

1 0 52 49 46 52 13 32 48 23 

2 52 0 41 45 48 11 72 86 30 

3 49 41 0 59 39 13 119 135 27 

4 46 45 59 0 39 15 154 172 24 

5 52 48 39 39 0 13 190 206 15 

 

Table 5 List of several constants and parameters 

Parameters   / Constant Name Parameters   / Constant 

Mass factor (δ) 1.1 

Power Losses (η) % 80 

Gravitational constant (m/s2) 9.8 

Rolling Resistance Coefficient 0.01 

Angle of the road (α) 0 

The percentage of braking energy (β)% 90 

Air Density (kg/m3) 1.205 

Aerodynamic drag coefficient 0.6 

After applying the designed GA-LS we come up with an acceptable result during a reasonable running time. For example, 
the first iteration generated a minimum total cost of SR 70.126 as presented in Table 6, and the resulted route was to 
visit customers 1 and 3 respectively by first E.V without any requirement of BSV, while customers 2,5 and 4 are serviced 
respectively by the second E.V with swapping demand at customer 4 to return the E.V to the end depot as displayed in 
Table 7. Moreover, the resulted routes were checked to make sure that they satisfied the load capacity constraint, 
battery level constraint, time window constraint and all other designed constraints, while considering the energy 
consumption calculations that are demonstrated in Table 8.  

 



World Journal of Advanced Research and Reviews, 2024, 22(02), 1914–1926 

1924 

Table 6 Total cost of different routes 

Iteration's Summary 

Route NO. Fitness (Total cost) Rank 

1 70.182 3 

2 70.186 4 

3 70.160 2 

4 70.126 1 

5 70.208 5 

 

Table 7 The resulted paths of E. Vs for the min-cost route 

  Vehicle 1   Vehicle 2  

Customer 1 2 3 4 5 Depot  Customer 1 2 3 4 5 Depot  

Depot  1 0 0 0 0 0 Depot 0 1 0 0 0 0 

1 0 0 1 0 0 0 1 0 0 0 0 0 0 

2 0 0 0 0 0 0 2 0 0 0 0 1 0 

3 0 0 0 0 0 1 3 0 0 0 0 0 0 

4 0 0 0 0 0 0 4 0 0 0 BSV 0 1 

5 0 0 0 0 0 0 5 0 0 0 1 0 0 

 

Table 8 Total energy consumption for the min-cost route 

The power out at the battery terminals (kWh) 57,12 

The regenerative braking at the battery terminals (kWh) 12.5 

The energy consumption from batteries (kWh) 44.6 

5. Conclusions 

This manuscript presents a variant of the Electric Vehicle Routing Problem with Time Windows that includes battery 
swaps in conjunction with traditional recharging methods. Systematically, the research combines mathematical 
modeling techniques with optimization algorithms to formulate and solve the Electric Vehicle Routing Problem with 
Time Windows, Battery Swapping Van, and Energy Consumption (EVRPTW-BSV-EC). A local search routine combined 
with a Genetic Algorithm and improvement heuristics is developed to produce high-quality solutions in a limited time.  

The results show that the additional choice of battery swaps at a swapping van led to better delivery routes, thereby 
reducing the overall costs, particularly for cases where battery swapping time and battery swapping cost are relatively 
lower. The impact of problem characteristics such as battery swapping time and battery swapping cost on the routing 
solution is also discussed. The likelihood of battery swaps reduces as the battery swapping time and cost increase.  

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest to be disclosed. 



World Journal of Advanced Research and Reviews, 2024, 22(02), 1914–1926 

1925 

References 

[1] Bekta¸s T, Laporte G (2011). The pollution-routing problem. Transportation Research Part B: Methodological 
45(8):1232–1250 

[2] Raja, V. & Raja, Ignatius & Kavvampally, Rahul. (2021). Advancements in Battery Technologies of Electric Vehicle. 
Journal of Physics: Conference Series. 2129. 012011. 10.1088/1742-6596/2129/1/012011.  

[3]  Neaimeh M, Hill G, Hubner Y, Blythe PT, et al. (2013). Routing systems to extend the driving range of electric 
vehicles. Intelligent Transport Systems, IET 7(3):327–336 

[4] Shao, S., Guan, W., & Bi, J.. Electric vehicle‐routing problem with charging demands and energy consumption. IET 
Intelligent Transport Systems, 12(3), 202-212. https://doi.org/10.1049/iet-its.2017.0008, (2018). 

[5] Electrical vehicle database website, https://ev-database.org/cheatsheet/energy-consumption-electric-car. 
Accessed on 25-11-2023. 

[6] Shao S, Guo S, Qiu X. A Mobile Battery Swapping Service for Electric Vehicles Based on a Battery Swapping 
Van. Energies.; 10(10):1667. https://doi.org/10.3390/en10101667 (2017) 

[7] Y. Wang, Z. Liu, J. Shi, G. Wu, and R. Wang, ‘‘Joint optimal policy for subsidy on electric vehicles and infrastructure 
construction in highway network,’’ Energies, vol. 11, no. 9, p. 2479,(2018).  

[8] Sbihi A, Eglese RW. Combinatorial optimization and green logistics. 4OR 5(2):99–116 Schneider M, Stenger A, 
Goeke D (2014) The electric vehicle-routing problem with time windows and recharging stations. Transportation 
Science 48(4):500–520, (2007). 

[9] Ginting, Emmita & Gultom, Parapat & Wage, Sutarman. Optimization Model for Electric Vehicle Routing Problem 
with Two Charging Options. Sinkron. 8. 1446-1452. 10.33395/sinkron.v8i3.12577. (2023). 

[10] Yu, Vincent & Anh, Pham & Chen, Y.-W. The Electric Vehicle Routing Problem with Time Windows, Partial 
Recharges, and Parcel Lockers. Applied Sciences. 13. 9190. 10.3390/app13169190. (2023). 

[11] Liu, Min & Zhao, Yijiang. A Hybrid Genetic Search Algorithm for Capacitated Electric Vehicle Routing Problem. 
10.16182/j.issn1004731x.joss.23-0863. (2023). 

[12] Kyriakakis, Nikolaos & Stamadianos, Themistoklis & Marinaki, Magdalene & Matsatsinis, Nikolaos & Marinakis, 
Yannis. A Bee Colony Optimization Approach for the Electric Vehicle Routing Problem with Drones. 10.1007/978-
3-031-25891-6_17. (2023). 

[13] Hiermann, Gerhard & Hartl, Richard & Puchinger, Jakob & Vidal, Thibaut. Routing a Mix of Conventional, Plug-in 
Hybrid, and Electric Vehicles. European Journal of Operational Research. 10.1016/j.ejor.2018.06.025. (2018). 

[14] Macrina G, Di Puglia Pugliese L, Guerriero F, Laporte G . The green mixed fleet vehicle routing problem with 
partial battery recharging and time windows. Computers & Operations Research, 101: 183–199 . (2019) 

[15] Macrina G, Laporte G, Guerriero F, Di Puglia Pugliese L. An energy-efficient green-vehicle routing problem with a 
mixed vehicle fleet, partial battery recharging, and time windows. European Journal of Operational Research, 
276(3): 971–982. (2019) 

[16] Liu, Zhishuo & Zuo, Xingquan & Zhou, MengChu & Wei, Guan & Al-Turki, Yusuf. Electric Vehicle Routing Problem 
with Variable Vehicle Speed and Soft Time Windows for Perishable Product Delivery. IEEE Transactions on 
Intelligent Transportation Systems. P.P. 1-13. 10.1109/TITS.2023.3249403. (2023). 

[17] Junqueira, Igor & Bernardino, Heder & Moreno, Lorenza & Gonçalves, Luciana & Soares, Stenio. Iterated Greedy 
for The Two-Echelon Electric Vehicle Routing Problem with Time Windows. Anais do Encontro Nacional de 
Intelligence Artificial e Computational (ENIAC). 432-446. 10.5753/eniac.2023.234252. (2023). 

[18] Hammouti, Issam & Derqaoui, Khaoula & El Merouani, Mohamed. A modified clustering search based genetic 
algorithm for the proactive electric vehicle routing problem. International Journal of Industrial Engineering 
Computations. 14. 609-622. 10.5267/j.ijiec.2023.9.004. (2023). 

[19] Lijun, Fan & Liu, Changshi & Zhang, Wu.. Half-open time-dependent multi-depot electric vehicle routing problem 
considering battery recharging and swapping. International Journal of Industrial Engineering Computations. 14. 
129-146. 10.5267/j.ijiec.2022.9.002. (2023). 

https://doi.org/10.1049/iet-its.2017.0008
https://ev-database.org/cheatsheet/energy-consumption-electric-car
https://doi.org/10.3390/en10101667


World Journal of Advanced Research and Reviews, 2024, 22(02), 1914–1926 

1926 

[20] Xiao, Jianhua & Du, Jingguo & Cao, Zhiguang & Zhang, Xingyi & Niu, Yunyun. A diversity-enhanced memetic 
algorithm for solving electric vehicle routing problems with time windows and mixed backhauls. Applied Soft 
Computing. 134. 110025. 10.1016/j.asoc.2023.110025. (2023). 

[21] Vani, Batchu & Dharavath, Kishan & Ahmad, Waseem & Reddy, Ch. An efficient optimization algorithm for electric 
vehicle routing problem. IET Power Electronics. n/a-n/a. 10.1049/pel2.12555. (2023). 

[22] Chen J, Qi M, Miao L. The electric vehicle routing problem with time windows and battery swapping stations. In: 
Industrial Engineering and Engineering Management (IEEM), 2016 IEEE International Conference on, IEEE, pp 
712–716 (2016). 

[23] H. Mao, J. Shi, Y. Zhou, and G. Zhang, "The Electric Vehicle Routing Problem With Time Windows and Multiple 
Recharging Options," in IEEE Access, vol. 8, pp. 114864–114875, doi: 10.1109/ACCESS.2020.3003000. (2020). 

[24] Amit Verma, Electric vehicle routing problem with time windows, recharging and battery swapping stations, 
EURO Journal on Transportation and Logistics, Volume 7, Issue 4, 2018, Pages 415-451, ISSN 2192-4376, 
https://doi.org/10.1007/s13676-018-0136-9. (2018). 

https://doi.org/10.1007/s13676-018-0136-9

