
 Corresponding author: Ma. Ericka G. Gutierrez 

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Enhancement of Harris Hawks optimization applied in path planning for an indoor 
navigation mobile application  

Hannah Jacqueline A. Dasal, Ma. Ericka G. Gutierrez *, Ma. Krizel Anne V. Zulueta, Leisyl M. Mahusay, Elsa S. 
Pascual, Joshua James D. Magora, Jamillah S. Guialil and Jonathan C. Morano 

Department of Computer Science, College of Information Systems and Technology Management, Pamantasan ng Lungsod 
ng Maynila, Manila, Philippines.  

World Journal of Advanced Research and Reviews, 2024, 22(02), 681–700 

Publication history: Received on 31 March 2024; revised on 08 May 2024; accepted on 10 May 2024 

Article DOI: https://doi.org/10.30574/wjarr.2024.22.2.1424 

Abstract 

The research focuses on the enhancement of Harris Hawks Optimization (HHO) algorithm in achieving an efficient path 
planning, specifically in indoor environments. It solves problems encountered in HHO; firstly, the exploration operator 
of HHO is modified to incorporate the survival of the fittest principle, this ensures a controlled diversity by using an 
Exponential Ranking selection method. The method aims to guide the algorithm to find a more optimal solution while 
allowing it to search for alternative paths. Secondly, Linear Path Strategy is used to reduce the number of nodes in the 
paths, therefore minimizing its length and simplifying trajectories. In addition, Linear Path Strategy aims to create 
smoother paths and avoid obstacles, improving the overall performance of the algorithm. Lastly, general multi-objective 
formula is defined to evaluate path length and travel time. Considering these factors established a balanced evaluation 
metric, which provided a detailed assessment of path quality for scenarios like indoor navigation. Comparative analysis 
was done, and results highlighted the effectiveness of EHHO in generating better paths, in comparison with Ant Colony 
Optimization (ACO), Grey Wolf Optimization (GWO), and with the current HHO algorithm. It outperformed the 
algorithms compared in terms of path length, travel time, and efficiency of the execution, especially in a complex 
environment. In conclusion, EHHO algorithm showed promising results in providing shorter, faster, and more efficient 
routes, with potential applications across different domains that requires optimal path planning solutions.  

Keywords:  Harris Hawk Optimization Algorithm; Indoor Navigation System; Multi-objective Path Planning; Linear 
Path Strategy; Bi-objective function 

1. Introduction

Navigation systems like Google Maps, Waze, and GPS have transformed how people navigate, offering convenience, 
safety, and efficiency. However, while these systems excel outdoors, indoors they face challenges due to signal blockage 
and limited accuracy. This has led to the development of Indoor Positioning Systems (IPS) for accurate indoor 
navigation, offering benefits like real-time updates and enhanced accuracy. Path planning, crucial for navigation, 
involves finding the best route while avoiding obstacles. Traditional algorithms like A* search and Djikstra are widely 
used but face limitations, especially in complex scenarios. 

Researchers have explored the Harris Hawk Optimization (HHO) algorithm for indoor navigation and path planning, 
finding potential in optimizing paths, especially in grid maps [7]. However, deficiencies in diversity control during the 
exploration phase have been noted, leading to premature convergence and sub-optimal solutions [1]. While HHO shows 
promise, particularly in specific scenarios, its effectiveness diminishes in complex environments, indicating the need 
for improvement [12][10]. These studies highlight the importance of refining HHO to ensure robustness across diverse 
navigation scenarios.  
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Despite advancements in path planning algorithms, certain deficiencies remain unaddressed. The exploration phase of 
HHO, where a path is randomly selected from the existing population of feasible paths as basis for updating the current 
path, lessening the control over population diversity. Moreover, the initial path population created using traditional 
algorithms have many corners that add unnecessary turns and make rough paths. Additionally, the path length is the 
only cost variable used when there are other factors when finding the optimal path.  

Therefore, the primary objective of this study is to enhance the Harris Hawk Optimization algorithm. Specifically, the 
exploration operator of HHO is modified to incorporate the survival of the fittest principle, and this controls the diversity 
more strictly using Exponential Ranking selection method. The study would also use the Linear Path Strategy to reduce 
the nodes of a path to reduce the length and simplify the trajectory of the path. And lastly, the study would define a 
general multi-objective function formula to evaluate the length and travel time of the path. By proposing specific 
solutions and modifications, the study seeks to optimize path planning algorithms for efficient navigation primarily 
within indoor spaces, ultimately providing shorter and faster routes for users. 

1.1. The Path Planning Problem 

The A* algorithm is a heuristic search algorithm used for path planning. It is an improvement of the Dijkstra algorithm 
and is designed to find the shortest path from a start node to a goal node by considering both the cost to reach the 
current node from the start node G(x) and the estimated cost H(x) to reach the goal node from the current node (Tang 
and Ma, 2021). This evaluation function is defined as: 

                𝐹(𝑥)  =  𝐺(𝑥)  +  𝐻(𝑥)                (1) 

Compared to other traditional path planning algorithms such as Dijkstra, the A* algorithm is more efficient due to the 
introduction of a heuristic function when exploring the next node, which greatly reduces the search times and improves 
the search speed. The A* algorithm is widely used for global path planning in a static environment and is subject for 
further enhancement of its path planning efficiency and smoothness [15]. 

1.2. Harris Hawks Optimization Algorithm 

Harris Hawks Optimization (HHO) algorithm is a technique introduced by Heidari et al. in 2019 [1]. The algorithm is 
inspired by the hunting behavior of Harris hawks, incorporating surprise pounces and attack strategies. The model of 
HHO involves three main phases: Exploration, Transition from exploration to exploitation, and Exploitation. The phases 
as defined in the mathematical model of the HHO algorithm is best represented in Figure 1 where it shows that the 
algorithm is guided by the prey’s energy (𝐸) variable which controls the exploration-exploitation balance. This balance 
help maintain diverse solutions in the beginning but as iterations pass, the hawks will converge to global optima. The 
candidate solutions are represented as the hawks in the HHO algorithm. Whereas the best candidate solution in each 
iteration is considered as the prey or nearly optimal solution. 

 

Figure 1 Phases of HHO algorithm 
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1.2.1. Exploration Phase 

In this phase, HHO proposed the exploration mechanism that is similar to how Harris hawks wait and monitor the 
environment to find the prey. Additionally, as shown in Equation (2), HHO has two perching strategies: (1) based on the 
positions of family members (other hawks) and (2) based on random locations. 

𝑋(𝑡 + 1) = {
𝑋𝑟𝑎𝑛𝑑(𝑡) −  𝑟1 |𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2 ∙ 𝑋(𝑡)|, 𝑞 ≥ 0.5

(𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋𝑎𝑣𝑔(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)), 𝑞 < 0.5
             (2) 

Where, 𝑋  represents a solution from the population, t is the current iteration, 𝑋rand  is a random solution from the 
population, 𝑋𝑝𝑟𝑒𝑦  is current best solution from the population, 𝑋avg  represents the average value of the solution 

population, 𝐿𝐵  means lower-bound (allowed minimum value of the solutions), 𝑈𝐵  means upper-bound (allowed 
maximum value of the solutions), and 𝑞 and 𝑟1−4 are random numbers from 0 to 1. 

𝑋𝑎𝑣𝑔(𝑡) = 
1

𝑁
∑ 𝑋𝑖(𝑡)𝑁

𝑖=1                (3) 

To calculate the average value of the population, Equation (3) is used; where, 𝑁 is the population size. 

1.2.2. Transition from Exploration to Exploitation 

HHO can transfer from exploration to exploitation methods to further adapt based on the prey’s escaping energy. The 
prey’s energy (E) decreases significantly during the escaping phase. This model shows the prey’s energy reduction as it 
attempts to avoid being captured, having a direct impact on how HHO progresses through different phases. This is 
implemented using the equations: 

                  𝐸0 = 2 ∙ 𝑟1 − 1                               (4)  

                 𝐸 = 2𝐸0(1 − 
𝑡

𝑇
)                               (5) 

                   𝐽 = 2(1 − 𝑟2)               (6) 

Where, 𝐸0  represents the initial energy of the prey, 𝑟1−2  are random numbers from 0 to 1, 𝐸 represents the current 
energy of the prey, 𝑇 is the maximum number of iterations, and  𝐽 represents the jump strength of the prey. 

1.2.3. Exploitation Phase 

In this phase, the Harris hawks execute a surprise pounce, targeting the prey from the previous phase. However, preys 
attempt to escape from imminent danger, resulting in different escape techniques. Presume that 𝑟 is the probability of 
a prey successfully escaping and if 𝑟  is less than 0.5, which is a low success rate of escape and so the hawk takes 
advantage by employing the surprise pounce. Regardless of how the prey responds, hawks would employ either a hard 
or soft besiege to catch the prey, depending on how much energy the prey has left. Hawks gradually approach the prey, 
and as the escaping prey loses energy over time, the hawks intensify the besiege process for easier capture. Moreover, 
the HHO algorithm introduced the parameter 𝐸 to dynamically switch between soft and hard besiege approaches. When 
the absolute value of 𝐸 is greater than 0.5, a soft besiege occurs, on the other hand, if the absolute value of 𝐸 is less than 
0.5, it triggers a hard besiege. To address the random escaping tactics of the prey, the chasing strategies employed by 
the hawks is represented in the HHO algorithm by the following defined mathematical models. 

The Soft Besiege attack occurs when |𝐸| ≥ 0.5 and 𝑟 ≥ 0.5, which indicates that the prey has enough energy to attempt 
an escape. However, the hawks will encircle it then perform a surprise pounce, leading to a gradual exhaustion of the 
prey and decreased ability to escape. Soft Besiege is implemented using the formula: 

      𝑋(𝑡 + 1) =  𝛥𝑋(𝑡) − 𝐸|𝐽 ∙ 𝑋𝑝𝑟𝑒𝑦(𝑡) −  𝑋(𝑡)|              (7) 

                   𝛥𝑋(𝑡) =  𝑋𝑝𝑟𝑒𝑦(𝑡) −  𝑋(𝑡)                (8) 

Where, 𝛥𝑋 represents the difference of the prey’s value and the current hawk’s value. 
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The Hard Besiege attack occurs when |𝐸| < 0.5 and 𝑟 ≥ 0.5, meaning the prey is exhausted. Furthermore, the hawks 
minimally encircle the prey before executing the surprise pounce. In this strategy, updates to the current solutions are 
implemented using the equation: 

             𝑋(𝑡 + 1) = 𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝐸|𝛥𝑋(𝑡)|               (9) 

When |𝐸| ≥ 0.5 and 𝑟 < 0.5, this indicates that the prey has sufficient energy for a successful escape, a Soft Besiege is 
implemented prior to the surprise pounce which is employed by HHO with the Levy Flight (LF) concept. The surprise 
pounce was modelled from the prey’s escaping patterns and leapfrog movements, simulating the zigzag deceptive 
motions observed in real prey behavior. HHO assumes that hawks can select optimal dives toward the prey in 
competitive scenarios. To execute a Soft Besiege, the hawks decide their next move following the equation: 

        𝑌1 =  𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝐸|𝐽 ∙ 𝑋𝑝𝑟𝑒𝑦(𝑡) −  𝑋(𝑡)|             (10) 

In the case when the Soft Besiege attack is unsuccessful, the hawks will implement the surprise pounce by executing 
irregular, sudden, and swift dives as they approach the prey. It is assumed that these rapid dives align the levy flight 
patterns as presented in the formula: 

        𝑍1 =  𝑌1 + 𝑆 × 𝐿𝐹(𝐷)              (11) 

With that, the Soft Besiege with progressive rapid dives can be implemented with the equation: 

            𝑋(𝑡 + 1) = {
𝑌1   𝑖𝑓  𝐹(𝑌1) < 𝐹(𝑋(𝑡))

𝑍1   𝑖𝑓  𝐹(𝑍1) < 𝐹(𝑋(𝑡))
             (12) 

When |𝐸| < 0.5 and 𝑟 < 0.5, this shows that the prey lacks energy for escape, a hard besiege is done before the surprise 
pounce to capture the prey. In hard besiege, the hawks’ focus is on reducing the distance between their location and the 
escaping prey. Hence, the following rule is applied in hard besiege condition: 

            𝑋(𝑡 + 1) = {
𝑌2   𝑖𝑓  𝐹(𝑌2) < 𝐹(𝑋(𝑡))

𝑍2   𝑖𝑓  𝐹(𝑍2) < 𝐹(𝑋(𝑡))
             (13) 

Where, 𝑌2 and 𝑍2 are acquired through the application of new rules: 

            𝑌2 =  𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝐸|𝐽 ∙ 𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋𝑎𝑣𝑔(𝑡)|            (14) 

                 𝑍2 =  𝑌2 + 𝑆 × 𝐿𝐹(𝐷)             (15) 

In the context of path planning, HHO is applied to find the optimal path in a defined map environment starting with a 
population of “hawks” representing the feasible paths. The process begins by initializing the population and calculating 
the fitness of each hawk (path), commonly based on the path’s length. The prey represents the fittest path or the one 
with the least cost. The algorithm iterates until the maximum number of iterations is reached, updating the solutions 
and decreasing the prey’s energy per iteration. Depending on these conditions, the paths are updated using various 
exploration and exploitation tactics, such as perching, soft besiege, hard besiege, soft besiege with rapid dives, or hard 
besiege with rapid dives.  Finally, the algorithm outputs the fittest path, that is the shortest path. 

2. Material and methods  

2.1. Initialization of Path Population 

During initialization, random solutions are generated to create the population. To form the random feasible paths, a 
modified A* search algorithm is used. This traditional path finding algorithm, iterates through the available nodes and 
chooses the next node with a defined heuristic function. Standard A* search heuristic uses the distance between the 
current node and the goal node. To integrate randomness and generate random paths, the proponents modified the 
heuristic function from Equation (1) into:  

             𝐻(𝑋) =  √(𝑥 +  𝑥𝑔𝑜𝑎𝑙  )2 − (𝑦 + 𝑦𝑔𝑜𝑎𝑙  )2  ∙ 2𝑟            (16) 
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Given that the current node 𝑋 and goal node have (𝑥, 𝑦) coordinates, the Euclidean distance formula is used to get the 
gap between the two nodes. A random factor that ranges from zero to two (0 – 2) is multiplied to the distance which 
reduces or increases the heuristic by 1, resulting to a path with random turns that still move towards the destination. 

2.2. Exponential Ranking Selection Method 

To address the problem of lessened diversity control, the Exponential Ranking selection method is used to get the 
𝑋𝑡𝑎𝑟𝑔𝑒𝑡  for the first strategy of the exploration phase. Instead of randomly getting a hawk as basis for the update, by 

incorporating the survival-of-the-fittest concept, HHO would have a higher chance of finding the optimal solution while 
maintaining diversity during the exploration phase.   

Algorithm 1: Exponential Ranking selection method 

Inputs: control parameter 𝑠 =  −0.99, solution population 𝑋𝑖(𝑖 = 1, 2, … , 𝑁) 

Outputs: Selected solution 𝑋𝑡𝑎𝑟𝑔𝑒𝑡  

 

START 

SET 𝑡𝑜𝑡𝑎𝑙_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  0 

SET 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =  [ ] 

FOR (𝑖 = 0;  𝑖 < 𝑁;  𝑖 += 1) DO 

SET 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖) ∙ 𝑠 

COMPUTE 𝑡𝑜𝑡𝑎𝑙_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 +=  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

SET 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑖] = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

FOR END 

COMPUTE 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑡𝑜𝑡𝑎𝑙_𝑓𝑖𝑡𝑛𝑒𝑠𝑠/𝑁 

FOR (𝑖 = 0;  𝑖 < 𝑁;  𝑖 += 1) DO 

SET 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑖] /=  𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

FOR END 

SELECT 𝑋𝑡𝑎𝑟𝑔𝑒𝑡  solution from  𝑋  based on  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

RETURN 𝑋𝑡𝑎𝑟𝑔𝑒𝑡  

The Exponential Ranking selection process is presented as a pseudocode in Algorithm 1. The control parameters 
indicate the exponential trajectory of the candidates. To use Exponential Ranking, it first traverses through the solution 
population and multiplies each fitness of the population by the control parameter. The selection probability of the 
solution is determined by getting the average fitness of the population as base for the probabilities of each solution. This 
means that solutions with higher fitness will have higher probability. Finally, the solution with the highest probability 
is selected as the 𝑋𝑡𝑎𝑟𝑔𝑒𝑡  for the exploration operator. In line with this, the HHO exploration operator is updated to 

incorporate the Exponential Ranking selection as follows: 

                                     𝑋(𝑡 + 1) = {
𝑋𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) −  𝑟1 |𝑋𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 2𝑟2 ∙ 𝑋(𝑡)|, 𝑞 ≥ 0.5

(𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋𝑎𝑣𝑔(𝑡)) − 𝑟3(𝐿𝐵 +  𝑟4(𝑈𝐵 − 𝐿𝐵)), 𝑞 < 0.5
           (17) 

2.3. Linear Path Strategy  

To create smoother and shorter paths, the Linear Path Strategy (LPS) is used to reduce the nodes that can lead to 
unnecessary turns while keeping the shape of the path and adhering to obstacle constraints. The LPS process, initially, 
takes three consecutive nodes and calculates the distance range between the first and third nodes. When there is no 
obstacle found within the range, the middle node is removed. Then, the first and third nodes are connected to form the 
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updated path. If otherwise an obstacle is found in the range, the process terminates and will move on to the next three 
nodes until the last node which will output the linearized path. The core process of LPS demonstrated in Figure 2.   

 

Figure 2 Linear Path Strategy process 

The LPS method is further elaborated as a pseudo-code presented in Algorithm 2, showing that the expected output is 
the linearized path P. It involves an iterative process of removing middle nodes while ensuring the path will not collide 
with the obstacle in the map. 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Bi-objective Cost Function 

To address the need for finding faster paths, not just shorter paths, a bi-objective function is defined. The first objective 
is to reduce path length and the Euclidean distance is used to compute the distance which is defined with the formula: 

              𝑓(𝑋)1 =  ∑ √(𝑥𝑖+1 − 𝑥𝑖  )2 + (𝑦𝑖+1 − 𝑦 )2 𝑘−1
𝑖=1            (18) 

Where, path X consists of nodes with (x, y) coordinates and k represents the total number of nodes. 

To calculate the travel time of the path, given that the path consists of nodes with (x, y) coordinates and speed rate S. 
The sum of the length divided by the speed results to the time it takes to travel from the start to the goal. 

      𝑓(𝑋)2 = ∑
√(𝑥𝑖+1−𝑥𝑖 )2+(𝑦𝑖+1−𝑦 )2 

𝑆𝑖

𝑘−1
𝑖=1                                                                   (19) 

Algorithm 2: Linear Path Strategy 

Inputs: Feasible path Pi (𝑖 = 1,2, … , 𝑘) , where 𝑘 is the number of nodes  

Outputs: Linearized path P 

 

START 

SET 𝑖 =  1 

WHILE (𝑖 < 𝑘 − 2) DO 

GET coordinates of nodes 𝑃𝑖  and 𝑃𝑖+2 

IF there’s no obstacle between nodes 𝑃𝑖  and 𝑃𝑖+2 

REMOVE node 𝑃𝑖+1 

UPDATE 𝑘 =  𝑘 − 1 

ELSE 

UPDATE  𝑖 =  𝑖 + 1 

END WHILE 

RETURN linearized path 𝑃 
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With these evaluation formulas defined, the general multi-objective function is as follows: 

            min 𝐹(𝑋) =    
∑ 𝜂𝑖 ∙ 𝑓(𝑋)𝑖

𝑛
𝑖=1

∑ 𝜂𝑖
𝑛
𝑖=1

                                                                                             (20) 

The cost function is used to determine the fitness of the path and the objective is to minimize the path length 𝒇(𝑿)𝟏  and 
travel time 𝒇(𝑿)𝟐. The individual objective’s significance can be adjusted using the weight coefficients η which by default 
are equal to 1, to indicate the equal significance of the path length and travel time. Once the summation of the weighted 
costs is computed, it is divided by the sum of all the weights applied per cost objective, resulting to the final fitness score 
of the path. 

2.5. Proposed HHO Framework  

The proposed enhancement discussed are summarized in Figure 3, representing the flowchart which highlights the 
parts of the current HHO algorithm that are modified. 

 

Figure 3 Proposed HHO Framework 
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3. Results and discussion   

3.1. Simulation map and parameters setting 

A two-dimensional continuous map is used for the simulation. There are two environments created to test the proposed 
enhancements to the HHO algorithm. Shown in Figure 4 is a simple and complex 20´20 maps with the obstacles 
represented by the black-colored areas. Along with the defined obstacle constraints, the expected paths must begin from 
the start node (blue) to reach the destination node (red).  

 

Figure 4 Simple (left) and complex (right) 20´20 maps 

The simulation conducted for this study applied the proposed algorithm, EHHO, under similar map environments and 
control parameters in comparison with other evolutionary algorithms such as: Ant Colony Optimization (ACO), Grey 
Wolf Optimization (GWO), and the current. Path planning simulations were run using a MacBook Pro laptop with an 
Apple M1 CPU and 8GB of RAM. The parameters for each algorithm simulated are defined in Table 1 which have the 
same number of iterations and population size to facilitate an efficient comparison of the algorithms. Python version 
3.9.6 was used as the simulation tool for the experiments. 

Table 1 Simulation parameters of the algorithms 

Algorithm Parameter Value 

ACO Total iterations 100 

Total ant population 20 

Pheromone factor 2 

Pheromone evaporation rate 0.1 

alpha (𝛼) 2 

beta (𝛽) 4 

GWO Total iterations 100 

Total search agents 20 

HHO Total iterations 100 

Total hawk population 20 

EHHO Total iterations 100 

Total hawk population 20 
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3.2. Evaluation Metrics 

To determine the effectiveness of the enhanced HHO, all the algorithms will run for 50 simulations, while keeping track 
of the shortest path produced by each algorithm and the results of each algorithm will be compared along with the 
execution time to observe the amount of time it takes for each algorithm to produce a path. To not affect the results of 
the other algorithms, the researchers have kept the cost objective function, that is, minimizing the path length. Since the 
other algorithms primarily use the path length to measure the optimality of the path, that is the only metric we will use 
when comparing the algorithms. 

To evaluate the effectiveness of the defined multi-objective function, the enhanced HHO will run for 50 simulations 
starting with using the single-objective function that only measures the path length. Then, another 50 simulations when 
using the bi-objective function to evaluate the fitness score based on the least path length and travel time. Additionally, 
a collision risk objective will be added to test the reliability of the general multi-objective function and another 50 
simulations will run to compare the three scenarios of differing number of cost objectives. The weight coefficient (𝜂) of 
each objective was set to 1, indicating equal significance of minimizing the path length, travel time, and collision risk. 

3.3. Simulation results and performance comparative analysis 

For the experiment, 50 simulations were run per map environment, from which the best path of each algorithm is 
outputted. The multiple simulations show the stability and consistency of the algorithm to produce optimal paths in a 
relatively acceptable time. 

                

Figure 5 Optimal paths generated by the algorithms in map 1. 

Out of the 50 simulations in Map 1, the best paths generated by each algorithm were gathered and compared showing 
that EHHO produced the shortest path, in the least amount of time. While HHO came a close with second shortest path, 
followed by GWO, then ACO. 

Table 2 Optimal path results for map 1. 

Algorithm Path length Execution time (seconds) 

ACO 32.8468 1.49 

GWO 31.5768 1.13 

HHO 29.2860 1.22 

EHHO 29.1100 0.83 

 

In the simple map, the best run of all algorithms output the optimal paths in Figure 5 which have the results summarized 
in Table 2 showing the path length and execution time. The convergence curves (Figure 6) of the algorithms represent 
the evolutionary nature of the method, showing the decreasing cost of the optimal path found per iteration is the main 
concept of these metaheuristic optimization algorithms. 
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Figure 6 Convergence curve of the algorithms in map 1. 

For the second map, the goal node’s placement is in a complex area which can be challenging for the algorithms. After 
running 50 simulations in Map 2, the optimal paths generated by each algorithm are presented in Figure 7 and the 
details of the resulting paths are listed in Table 3. 

                

Figure 7 Optimal paths generated by the algorithms in map 2. 

Table 3 Optimal path results for map 2. 

Algorithm Path length Execution time (seconds) 

ACO 49.7515 2.21 

GWO 44.6186 1.97 

HHO 37.3351 2.56 

EHHO 37.1865 2.03 

 

The convergence curve of the algorithms after simulation in Map 2 (see Figure 8), show the vast difference of HHO and 
EHHO from the other algorithm in terms of efficiency. 
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Figure 8 Convergence curve of the algorithms in map 2. 

In both environments, EHHO produced the best path in 50 simulations. HHO and EHHO generated the better paths in 
close range, but EHHO has a shorter implementation time as an advantage in more complex scenarios. 

Due to the inherent random nature of evolutionary algorithms such as HHO, the results will not always be the same. The 
simulation tests of the four algorithms are carried out 50 times separately in maps 1 and 2, respectively, to demonstrate 
the stability and robustness of the proposed algorithm. The results of the 50 simulations will show the fluctuation of the 
fitness score and execution time of the algorithms.  

Figure 9 shows the path length of the optimal paths found per simulation in Map 1 and, clearly, the EHHO algorithm 
consistently produced the shortest paths. So even with multiple runs, EHHO show consistent yield of the best path. The 
overlap of the execution time graph in Figure 10 of GWO, HHO, and EHHO represent the similarity of rates in which 
these algorithms produce a feasible path, where HHO took the least amount of time. 

 

Figure 9 Path length of the algorithms’ generated path for 50 simulations in map 1. 
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Figure 10 Execution time of the algorithms for multiple simulations in map 1. 

In Map 2, the fitness scores of the optimal paths generated in 50 simulations (Figure 11) show that EHHO produced the 
best paths. In Figure 12, the execution time of HHO and ACO have high variance due to the large gap of the highest and 
lowest execution time. Whereas GWO and EHHO are relatively stable, EHHO being less so and achieving the lowest 
execution time compared with the other algorithms. 

The results for 50 simulations in Map 2 show that EHHO is more stable in comparison with the current HHO, as when 
the map gets more complicated, the execution times of HHO are higher than EHHO in most cases. 

 

Figure 11 Path length of the algorithms’ generated path for 50 simulations in map 2. 
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Figure 12 Execution time of the algorithms for multiple simulations in map 2. 

To evaluate the effectiveness of defined general multi-objective function, another set of simulation was run to compare 
the performance of EHHO with one objective (minimize path length), two objectives (minimize path length and travel 
time), and three objectives (minimize path length, travel time and collision risk). Using both maps, EHHO with differing 
number of cost objectives ran for 50 simulations and by the end output the path with the best fitness score. 

The resulting paths in Map 1 with different number of objectives is shown in Figure 13 with the path details in Table 4. 
The path produced that only used 1 objective (path length) is found to be longer than the middle path that uses two 
objectives. Lastly, the path that uses three objectives (path length, travel time, and collision risk), compared with the 
two paths, clearly does not touch the obstacles at all, achieving the minimal risk for collision. 

 

Figure 13 Optimal paths generated by EHHO with different number of objectives in map 1. 

 

Table 4 Optimal path results for map 1. 

Number of 
objectives 

Objectives Fitness score Execution 
time 

(seconds) 
Path length Travel time Collision risk 

1 29.1060 -- -- 29.1060 0.91 

2 29. 0932 38.9849 -- 34.0391 0.92 

3 29.7072 39.8076 1.9437 23.8195 0.93 
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In Figure 14, the optimal paths found in Map 2 where EHHO is used with different number of objectives are presented 
showing minimal difference at first glance but as summarized in Table 5, EHHO using two objectives achieved the 
shortest path length in the least amount of time.  

 

Figure 14 Optimal paths generated by EHHO with different number of objectives in map 2. 

 

Table 5 Optimal path results for map 2. 

Number of objectives Path length Travel time Collision risk Fitness score Execution time (seconds) 

1 37.1257 -- -- 37.1257 2.44 

2 37. 0648 49.6668 -- 43.3658 2.30 

3 38.1400 51.1077 4.2418 31.1631 2.43 

 

Aside from the fitness of the optimal path produced, the execution time tells the algorithm’s performance with the 
varying number of objectives. In Figure 15 and Figure 16, it shows the amount of time it took for EHHO to produce an 
optimal path for 50 simulations in both maps. As seen in the graph, the longest execution time was from using 3 
objectives but in most cases, there is no significant difference between the stability of EHHO when multiple objectives 
are used. The algorithm performance could also be dependent on the complexity of the objective. 

 

Figure 15 Execution time of EHHO with different number of objectives in map 1. 
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Figure 16 Execution time of EHHO with different number of objectives in map 2. 

3.4. Inexplorer: Indoor Navigation Mobile Application 

The proponents developed a mobile application called “Inexplorer” for indoor navigation purposes. This application 
utilizes the enhanced HHO algorithm to suggest paths to users based on their specified starting and destination 
locations. Inexplorer offers various features, including the ability to view indoor maps, track precise indoor locations, 
receive optimal path recommendations, and select from 3 route options; the first being optimized path length and travel 
time equally, the second prioritizes minimizing the path length over the travel time, and the third option does vice versa. 

 

Figure 17 Application launcher with logo (left), Map page (middle), and Directions page (right). 

The primary functions of the application were designed into the following user interfaces: Map page and Directions 
page. The Map page contains the map, where the user can view their current location when outdoors and search for the 
places in the current map. Upon opening Inexplorer, the Map page shows the global map, similar to existing navigation 
applications like Google Maps and Waze, the user can search locations recognized by the OpenStreetMap (OSM) 
database which offers information on the precise locations visible on the surface of the earth detected by GPS satellites. 
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Inexplorer utilizes the global map information from OSM to determine if a location exists before it can support indoor 
navigation in any location. The proponents have prepared the indoor map information of Pamantasan ng Lungsod ng 
Maynila (PLM) to test the Inexplorer application. As seen in Figure 18, selecting a globally identifiable location will 
trigger an API request to the Inexplorer server to check if a location has indoor navigation support. If so, the “Explore 
inside” button will appear which will lead the user to the base indoor map of their desired location, in this case the 
grounds of PLM. 

 

Figure 18 Selected location supported by Inexplorer (left) and base indoor map of PLM (right). 

 

Figure 19 Searching global location (left) and a selected location not supported by Inexplorer (right). 

Aside from that, the search bar on the top of the map enables the user to search for locations which will give them 
suggestions of recognized places they may be referring to. Other map manipulation features are available which includes 
zooming and finding the current location of the user with the use of GPS technology. 
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In the Directions page, the users can ask for route recommendations by giving their starting location and desired 
destination. The users can input their origin and destination locations using the provided text fields which automatically 
gives suggestions of recognized indoor locations that the user may be referring to. If both the origin and destination 
locations are properly set, the user can press the “Search” button which will trigger the Inexplorer API to process the 
request and give the optimal path possible using the EHHO algorithm. 

 

Figure 20 Input start and goal location (left), validated start and goal location (middle), and result routes (right). 

 

Figure 21 Input start and goal location (left), validated start and goal location (middle), and result routes (right). 
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Once the recommended paths are loaded, the user can view 3 recommended routes that show each of the path’s 
estimated distance and travel time. Clicking one of the results will lead the user back to the Map page and the path is 
presented from the starting point to the goal point. The blue dot marker on the map represents the starting location of 
the path, and following the dotted line, the user can traverse the indoor map until reaching the red dot marker which 
signifies the end of the route. 

The user can go back to the Directions page and view the other routes generated, by clicking the “Change route” button 
where the “Get directions” button previously was. From there, the user can choose to cancel and go back to the Map 
page which will remove the route on the map, or the user can choose to search a new route for a different destination. 

Overall, the Inexplorer application has achieved its purpose to provide indoor navigation assistance by recommending 
optimal paths using the enhanced Harris Hawks optimization algorithm within the premises of PLM in an appealing 
user interface. 

4. Conclusion 

To conclude, the result of the study highlights the effectiveness of the Enhanced Harris Hawks Optimization algorithm 
in generating better paths comparing it with Ant Colony Optimization (ACO), Grey Wolf Optimization, and with the 
current HHO algorithm. Two map environments, simple and complex, were utilized to test the algorithms’ performance, 
with obstacles represented by the black-colored areas. Each algorithm was subjected to 50 simulations per map, aiming 
to identify the optimal path from a start node to a destination node. In the evaluation metrics, it showed that the bi-
objective function employed effectively balances the importance of minimizing path length and travel time, thereby 
providing a robust algorithm performance. Additionally, the execution time of each algorithm was considered as it will 
provide valuable insights into the computational effectiveness of each algorithm, with EHHO showing favorable results 
in this aspect as well. Results indicated that EHHO consistently outperformed other algorithms across simulations, 
producing shorter path lengths and faster execution times, particularly evident in complex map environments. 
Furthermore, convergence curves showed how the algorithms evolve over time. EHHO and HHO move towards optimal 
solutions, while GWO and ACO tend to converge prematurely or produce less desirable paths.  

In addition, the researchers developed a mobile indoor navigation application called, “Inexplorer”, which leveraged the 
strengths of EHHO to offer users efficient navigation assistance, allowing for optimal path recommendations based on 
specified starting and destination locations. Through user-friendly interfaces, “Inexplorer” enables users to seamlessly 
plan routes within indoor spaces, enhancing their overall navigation experience.  

The Harris Hawks Optimization algorithm, being a versatile optimization technique, finds application across various 
domains, including path planning. The enhancements proposed in the study represent valuable advancements that can 
serve as a foundation for future research involving HHO.  
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