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Abstract 

This paper provides the estimation of population mean under double sampling, using supplementary information in the 
form of an attribute (that is, a proportion of the population possessing an attribute highly correlated with the study 
variable).  A generalized efficient family of ratio estimator of the population mean is suggested and expressions for the 
bias and the mean square error of the estimator, as well as the minimum value are obtained. The proposed estimator 
has an improvement over some existing estimators when compared numerically using a natural population data and 
therefore provides a better substitute for the purpose of estimation. 
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1. Introduction

In the theory of sample survey, auxiliary information or variables plays a vital role for increasing the efficiency of 
estimators of population parameters when the study variable y is highly correlated with the auxiliary variable x. But in 
several cases, instead of the existence of auxiliary variables, there exist some auxiliary attributes which are highly 
correlated with the study variable y. For example, the amount of milk produced and a particular breed of cow, the yield 
of cassava and a particular variety of cassava etc. In such situations, taking advantage of the correlation between the 
study variable and the auxiliary attribute, the estimators of population parameters can be constructed by using prior 
knowledge of the parameter of the auxiliary attribute.  Where this prior information is not feasible, doubling sampling 
becomes necessary.  

Double sampling is useful for obtaining auxiliary variables for ratio and regression estimation and also for finding 
information for stratified sampling.  In this scheme, a large preliminary sample is selected at the first instance from 
which the missing auxiliary information only is obtained. Thereafter, a second sample is selected in which the variable 
of interest is measured in addition to the auxiliary information.   A number of authors have developed estimators based 
on auxiliary attributes. Naik and Gupta (1996), Singh et al (2007), Abd-Elfattah et al. (2010), Solanki and Singh (2012), 
Bahl and Tuteja (1991), Yadav et. al. (2013), Koyuncu (2012) etc. 

Let iY
, iX  and i be the observations on the ith unit of the population for the study variable y, the auxiliary variable x 

and the auxiliary attribute  (i=1, 2, …N). Consider the following notations 

N =  Population size 
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Suppose the information about the auxiliary attribute or variable is not known, then in double sampling, the auxiliary 

attribute or variable are replaced by the corresponding sample values from a large preliminary sample of size 
1n drawn 

using simple random sampling without replacement from a population of size N in the first phase. Also, both the study 

variable y and the auxiliary attribute  or variable X are observed on the second phase sample of size n2 drawn from 
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Consider the following ratio and exponential ratio-type estimators of population mean developed in the past. 

General simple random sampling without replacement (SRSWOR) estimator of population mean  

yY 


1  (Sample mean)      

 MSE
22

1)( yCYY 


         (1) 

(2) Double sampling ratio estimator using auxiliary variable 
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     (2) 

(3) Naik and Gupta (1996) double sampling ratio estimator using auxiliary attribute 
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(5) Nirmala Sawan (2010) double sampling exponential ratio estimator using auxiliary attribute 
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(6) Etorti et. al (2023), generalized family of ratio estimator using auxiliary variable 
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Case I : when the second phase sample n2 is drawn from a large preliminary   first sample n1 
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Case II: when the second phase sample n2 is drawn independently from the population not the first phase sample 
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Ρxy is the correlation coefficient between x and y 

2. Proposed Estimator 

Motivated by Naik and Gupta (1996), Nirmala Sawan (2010) and Etorti et. al. (2023), we proposed the following 
new ratio-type estimator of population mean under double sampling using auxiliary attribute. 
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where a and γ are suitably chosen constants. It may be noted that the estimators given in (1) and (3) are special cases 

of the proposed estimator when γ=0 and a=0.  

In order to obtain the bias and mean square error (MSE), let us denote  
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Case I :  

The proposed estimator can be expressed in terms of the e’s as : 
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u = g1ep1 +g2ep , v= g2ep1+g1ep   and  g1=
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using Taylor approximation as: 
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Where yp  is the correlation coefficient between Y and P 

Case II 

Assuming the second phase sample size n2 was drawn independently from the population, not the first phase sample n1 
then the suggested estimator would still be the same but the bias and MSE will be different in this case. The bias and 
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The minimum mean square error is obtained by differentiating (18) with respect to   and equating to zero. Thus, we 
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3. Efficiency Comparisons:  

Bias, Relative bias, Mean Square Error, Relative Efficiency and Percentage Relative Efficiency  
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)(
)(Re 7       (22) 

(c) Mean square error= 

2

7 )()( 











YYEYMSE       (23) 
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(d) Relative Efficiency: Let )( 7



YMSE be the mean square error of the proposed estimator of the population 

mean and 



)( iYMSE be the mean square error of any other estimator, then )( 7



YMSE is said to be more efficient than 



)( iYMSE , if   

(i) 1

.

)(

)(

1
1

)(

)(

7

7 







i

i

YMSE

YMSE

or

YMSE

YMSE
       (24) 

(ii) 0)()( 7 


YMSEYMSE i        (25)
 

(e) Percentage Relative Efficiency (PRE): )( 7



YMSE is said to be more efficient than 



)( iYMSE in terms of PRE if 

100100

.

)(

)(

1
100100

)(

)(

7

7 







X

YMSE

YMSE

orX

YMSE

YMSE

i

i

     (26)

 

Note :  An estimator is said to be more efficient than its counterpart estimator if the estimator is one with a minimum 
mean square error. Also, an estimator is said to be percentage relative efficient in relation to another estimator, if it’s 
one with the largest Percentage relative efficiency. 

4. Consider the following estimators 

(i) Sample mean (SRSWOR). From (1) and (15) we have 

   0)()( 2122

7min1 


pyyCYYMSEYMSE   

Whenever 2

yp 0  (since 0,0 22

 yCY  and   0
11

1

1 









nn
 )   (27) 

(ii) Double sampling ratio estimator using auxiliary attribute. From (3) and (15) we have  

     21222122

7min3 )(2)()( pyypypypy CYCCCCYYMSEYMSE  


 

    0
221  ypyp CCY   

Since   0
2
 ypyp CC  ,   01    and 0

2

Y .      (28) 

(iii) Double sampling exponential ratio estimator using auxiliary attribute. From (5) and (15), we have 
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  21222122

75

4

1
)()()( pyypypypy CYCCCCYYMSEYMSE  



















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2
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









p

ypy

C
CY   
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










2

12

2
0)(,0

p

ypy

C
CandY  0     (29) 

(iv) Double sampling generalized family of ratio estimator using auxiliary variable. From (6) and (15) we have  

   21222122

76 )()()()( pyypxy CYCYYMSEYMSE  


 

   022122

 yxpyyCY   

If 
22

yxpy  
          (30)

 

5. Empirical Studies 

In this section, various results obtained in the previous sections are now examined with the help of the following data: 

Population I:  (Source:  William G. Cochran (1977), page 34) 

Y= Food Cost 

X=  Family Income 

  Family of size more than 3 

N=33 n2=16 n1=22 102.1Y  Cx=0.146 

Cy=0.369 Cp=2.7005 P=0.124 49987.0py  2521.0yx  

 

Population II: (Source: Advance Data from vital and Health statistics, number 347, October, 2004(CDC) ) 

Y= Height of the people 

X= Weight of the people 

  Sex of the people 

N=36  n2=12 n1=22 18.140Y  482337.0xC  

191654.0xC  014.1pC  P=0.50 963.0py  973.0yx  
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Table 1 MSE of various estimators 

ESTIMATOR MSE 

 POPULATION 

 I II 



1Y  
3.7172 40.0992 



2Y  
3.6002 79.36818 



3Y  
17.4947 526.8215 



4Y  
3.5520 16.4415 



5Y  
5.7500 92.1299 



6Y  (case I) 
3.5440 14.2153 



6Y  (case II) 
3.5307 

 

11.2996 

 



7Y  (case I) 

3.3069 14.7446 



7Y  (case II) 

3.2754 

 

11.8885 

 

  

Table 2 Pre of the Various Estimators with Respect to the Sample Mean 

ESTIMATORS PRE 

 POPULATION 

 I II 



1Y  
100 100 



2Y  
103.25 50.52 



3Y  
21.25 7.61 



4Y  
104.65 243.89 



5Y  
64.65 43.52 



6Y  (case I) 
104.89 282.08 



6Y (case II) 
105.28 354.87 
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

7Y (case I) 

112.41 271.96 



7Y (case II) 

113.49 337.29 

 

6. Conclusion 

From table 1 and 2, we can see that under population I, the proposed estimator ( 7



Y ) under double sampling using 

auxiliary attribute is more efficient in terms of MSE and PRE than the existing sample mean 1



Y ,  the double sampling 

ratio estimator using auxiliary variable 2



Y , the double sampling ratio estimator using auxiliary attribute 3



Y , the 

double sampling exponential ratio estimator using auxiliary variable 4



Y , the double sampling exponential ratio 

estimator using auxiliary attribute 5



Y  and the generalized family of ratio estimator 6



Y  with auxiliary variable. Also, 

from population II, we can see that the generalized family of ratio estimator using auxiliary variable is more efficient 

than the proposed estimator as a result of the correlation between the study variable y and the auxiliary attribute  . 

 i.e  pyyx  0.973>0.963, which is contrary to the condition for its efficient performance as stated in (30). For 

both the existing generalized family of ratio estimator and the proposed estimator,  we can see that  case II is more 
efficient than case I for both populations 

Thus, we can conclude that using auxiliary attribute with high correlation with the study variable can boost variable 
estimation. Also, using double sampling scheme with the second phase sample size selected independently from the 
population instead of the first phase sample is more efficient. 
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