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Abstract

The existing Four-Square cipher, specifically the Four-Square with Zigzag transformation encryption algorithm, serves
as the foundation of this study, aiming to solve its cryptographic limitations. The existing algorithm cannot encrypt
messages with numbers and special characters, the keys can be easily cracked, and when the process is repeated more
than 26 times, the encrypted digraph is the same as the first encrypted digraph. This study aims to enhance the existing
algorithm by transforming the 5x5 matrix, enhancing the encryption-decryption key, and improving the Zigzag
transformation. The methodology employed involves utilizing a 6x6x6 cube to include uppercase and lowercase letters,
numbers, and special characters. Random encryption-decryption keys are generated using the Cryptographically Secure
Pseudorandom Number Generator (CSPRNG), Fibonacci sequence, Tribonacci sequence, and Linear Feedback Shift
Register. Zigzag transformation is improved by employing Rubik's cube principle, CSPRNG, Fibonacci sequence, and
Tribonacci sequence to randomize the cube rotation. Various tests were conducted to evaluate the enhanced algorithm.
The matrix comparison test demonstrated a significant expansion in the character set, allowing the utilization of
uppercase and lowercase letters, numbers, and special characters. The comparison of encrypted and decrypted text
highlighted the enhanced algorithm's ability to revert ciphertext into the original plaintext, surpassing the limitations
of the existing algorithm. Statistical randomness tests, including the Frequency (Monobit) and Runs tests, provided
robust evidence of the randomness of the algorithm, meeting the threshold for secure encryption. The average
avalanche effect of the enhanced algorithm is 52.78%, surpassing the minimum avalanche effect of a secure
cryptographic algorithm.
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1. Introduction

Cryptography is the study and application of techniques for securing communication and protecting information from
unauthorized access or tampering. To enable secure communication in the context of possible adversaries is the main
objective of cryptography. It entails employing encryption and decryption techniques to convert plain text—readable
information—into cipher text or unreadable information, and vice versa, using mathematical procedures. As technology
advances, there is a demand for novel and secure cryptographic methods.

In 1898, the French cryptographer Felix Delastelle introduced the four-square cipher, a manual symmetric encryption
method [1]. The four 5x5 matrices stacked in a square form the basis of the technique. Except for one letter—typically
the letter "Q" or another less common letter, each matrix has a distinct set of the alphabet. Letter pairs from the plaintext
are separated and placed on the key matrices. These pairs are converted into ciphertext according to rules involving the
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matrices' rows and columns. The symmetry of the procedure adds to the cipher's elegance by guaranteeing that the
decryption is as simple as the encryption [1]. The Four-Square cipher is still vulnerable to contemporary cryptographic
analysis despite its significant advancement in cryptographic design at its creation. The Four-Square cipher encrypts
pairs of letters (like Playfair), making it significantly more robust than substitution ciphers; however, it can be easily
cracked if plaintext and ciphertext are known [2]. Numerous researchers have already worked on more popular
encryption techniques, such as Playfair, Polybius, and Hill Cipher. However, expanded versions of Four-Square ciphers
are uncommon, so research on an extended version of Four-Square ciphers that is still very simple and adaptable to
implement is needed.

The 5x5 Polybius square is vulnerable to cryptographic weaknesses due to several constraints despite its historical
significance. The 5x5 Polybius square's limited key space is its primary weakness. Because there are only 25 spaces in
the grid—which may hold all 26 letters of the alphabet, except for the letter "]"—brute-force attacks can exploit the
encryption [3, 4]. Due to its limitations, the 5x5 Polybius square is no longer relevant in contemporary security
standards, regardless of its historical relevance as an early attempt at cryptographic encoding. Its limited key space,
vulnerability to known-plaintext attacks, susceptibility to frequency analysis, lack of confusion, and weakness against
sophisticated cryptanalysis techniques underscore the significance of adopting more resilient and secure encryption
mechanisms to protect sensitive data in the modern digital age [5].

Elazzaby, El Akkad, and Kabbaj [6] enhanced the algorithm of Four-Square cipher by developing a new encryption
approach based on Four-Square ciphers and Zigzag transformation to resist cryptanalysis attacks such as brute attacks
and statistic attacks, slowing down the decryption process by having different encryption in each digraph in a message.
However, this algorithm has limitations: (1) It cannot encrypt messages with numbers and special characters due to its
limitations in using a 5x5 Polybius square matrix, (2) The keys can be easily cracked if both the plaintext and ciphertext
are known, and (3) when the process is repeated to the same digraph more than 26 times, the encrypted digraph is the
same as the first encrypted digraph.

This study aims to enhance the existing Four-Square with Zigzag transformation encryption by adding necessary
security and complexity when encrypting texts. Specifically, this study is intended to: (1) Transform the 5x5 matrix into
a 6x6x6 cube containing a total of 216 characters, which includes uppercase letters, lowercase letters, numbers, and
special characters, (2) Enhance the keys by applying Cryptographically Secure Pseudorandom Number Generator
(CSPRNG), Fibonacci sequence, Tribonacci sequence and Linear Feedback Shift Register (LFSR) to randomize the
encryption-decryption keys, and (3) Enhance the Zigzag transformation by applying the CSPRNG, Fibonacci sequence,
and Tribonacci sequence to randomize the number of rotations of the cube.

2. Material and methods

2.1. Materials

In this study, the Python programming language is used to develop the simulator of the enhanced Four-Square with
Zigzag transformation encryption algorithm based on 3D Rubik’s cube principle. PyCharm and Visual Studio Code IDE
are used to implement the Python code. The Python modules used are NumPy, secrets and LFSR from the pylfsr package.
The characters used in the encryption and decryption process are based on the standard ASCII printable characters and
extended ASCII printable characters from ASCII CP437 [7].

2.2. Notations and Descriptions

The table below shows the notations used in this paper to discuss the methods of the enhanced Four-Square with Zigzag
transformation encryption algorithm based on 3D Rubik’s cube principle.

Table 1 Notation and Descriptions

Notation | Description Notation | Description

PT The plaintext to be encrypted. CT The ciphertext to be decrypted.
D The digraph of the plaintext or ciphertext F1 The front face of the cube

X The position of the digraph F2 The right face of the cube

D1x The first character of the digraph based on position x F3 The back face of the cube
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D2« The second character of the digraph based on position x | F4 The left face of the cube

1 The half of the length of the plaintext or ciphertext F5 The top face of the cube

UL One of the plaintext cubes. The upper-left cube F6 The bottom face of the cube

UR One of the ciphertext cubes. The upper-right cube D-D1x The decrypted character of the D1
based on position x

LL One of the ciphertext cubes. The lower-left cube D-D2« The decrypted character of the D2
based on position x

LR One of the plaintext cubes. The lower-right cube n The first cryptographically secure
random number generated

K1 The first encryption or decryption key m The second cryptographically
secure random number
generated

K2 The second encryption or decryption key FIBn The Fibonacci number based on
position n

E-K1 The first random encrypted key TRIm The Tribonacci number based on
position m

E-K2 The second random encrypted key Rur The row number of UR to be
rotated

FNcuge | The face number of the character in the cube Ri The row number of LL to be
rotated

Rcuse The row number of the character in the cube aURx The angle (in degrees) that the F1
of UR would be rotated

Ccuse The column number of the character in the cube aLLx The angle (in degrees) that the F1
of LL would be rotated

E-D1x The encrypted character of the D1 based on positionx | RRur The number of times Rur would be
rotated

E-D2x The encrypted character of the D2 based on positionx |RRLL The number of times R. would be
rotated

2.3. Random Number Generation

2.3.1. Cryptographically Secure Pseudorandom Number Generator (CSPRNG)

Two cryptographically secure pseudorandom numbers are generated using the secrets module in Python. The range of
cryptographically secure pseudorandom numbers is from 1 to 216. The first cryptographically secure pseudorandom
number generated will be used to determine the position of the random first Fibonacci sequence number, and the
second cryptographically secure pseudorandom number generated will be used to determine the position of the random
first Tribonacci sequence number.

2.3.2. Fibonacci Sequence

In this study, the Fibonacci sequence is used to randomize the first key, the number of times a row of the upper-right
cube would be rotated, and the angle (in degrees) of the front face of the upper-right cube would be rotated. Only the
first 216 Fibonacci numbers will be used in this study. Once the 216t Fibonacci number is reached, the next Fibonacci
number will be the first Fibonacci number, followed by the second Fibonacci number, and so forth.

The initial position of the random first Fibonacci sequence number is determined by using the first cryptographically

secure pseudorandom number generated in the previous step. The last number of the Fibonacci sequence number
depends on the length of the key or the plaintext.
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2.3.3. Tribonacci Sequence

In this study, the Tribonacci sequence is used to randomize the second key, the number of times a row of the lower-left
cube would be rotated, and the angle (in degrees) of the front face of the lower-left cube would be rotated. Only the first
216 Tribonacci numbers will be used in this study. Once the 216t Tribonacci number is reached, the next Tribonacci
number will be the first Tribonacci number, followed by the second Tribonacci number, and so forth.

The initial position of the first random Tribonacci sequence number is determined using the second cryptographically
secure pseudorandom number generated in the previous step. The last number of the random Tribonacci sequence
number depends on the length of the key or plaintext.

2.4. Random Key Generation

The Linear Feedback Shift Register (LFSR) model is used to generate a random key. The pylfsr package in Python
programming language is used to create the Linear Feedback Shift Register (LFSR) model. The model is set to an 8-bit
LFSR model. The taps of the LFSR model should create an output with a maximum length [8, 9]. The taps are set to 8, 6,
5, and 4 to generate an output with a maximum length.

The two initial keys, random Fibonacci sequence numbers and random Tribonacci sequence numbers are used to
generate the random initial seed of the LFSR model. The remainder when the Fibonacci sequence number is divided by
256 and the remainder when the Tribonacci sequence number is divided by 256 are computed to get the first and second
random numbers, respectively. The two initial keys, the first and second random numbers, are converted into their
equivalent binary form. The XOR operation between the first initial key and the first random number determines the
initial seed of the first LFSR model. The XOR operation between the second initial key and the second random number
determines the initial seed of the second LFSR model.

Figure 1 shows the process of the LFSR model, where the rightmost bit from the shift register pops out and is reused to
XORed taps, which push the output into the leftmost bit, shifting every bit to the right. The process is repeated until the
model processes all the characters of the key [9]. The binary output of the LFSR is converted to its equivalent CP437
ASCII character. If the character is not included in the first 216 printable characters, the bits will be shifted to the left
until the character is included in the first 216 printable characters. The process will be repeated for each character of
the two initial keys to generate two random (encrypted) keys. The two random encrypted keys will be used as the key
in the ciphertext matrices.

XOR Taps

A ™D
r w{
Shifted _ I\F __

Bits

i

Pop out
e o

Figure 1 8-bit LFSR with Feedback Polynomial x8+x6+ x5 + x4 with Maximum Length of 255

2.5. Four 6x6x6 Cubes

Four 6x6x6 cubes are used to generate the two plaintext and ciphertext cubes. Each cube contains 216 characters from
the standard ASCII printable and ASCII CP437 extended characters [7]. The arrangement of characters of the ciphertext
cubes depends on the two random encrypted keys. The first random encrypted key is used in the upper-right cube. The
second random encrypted key is used in the lower-left cube. The ciphertext cube will be filled with the unique characters
of random encrypted keys, followed by the remaining characters that do not appear in the random encrypted keys. The
remaining characters are arranged based on the ASCII table [7]. The sequence in filling the squares of the faces of the
cubes is front face, right face, back face, left face, top face, and bottom face. The four 6x6x6 cube in the expanded version
is shown in Figure 2.
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Figure 2 216 ASCII Printable and Extended Printable Characters (Expanded Version of Four 6x6x6 Cube)

2.6. Enhanced Zigzag Transformation

Cryptographically Secure Pseudorandom Number Generator (CSPRNG), Fibonacci sequence numbers, and Tribonacci
sequence numbers are used in the Zigzag transformation process to randomly rotate the row and the angle of the front
face of the two ciphertext cubes.

The Fibonacci sequence, Tribonacci sequence, Modulus operation, and Addition operation randomly rotate the row and
angle of the front face of the upper-right and lower-left cube in the encryption and decryption process. The rotation of
the row of the upper-right and lower-left cube is to the right and the left, respectively. The number of times the row can
be rotated is one, two, and three times. The degrees the front face of the cube can be rotated are 0 degree, 90 degrees,
180 degrees, and 270 degrees.

2.6.1. Upper-Right Cube Rotation

The random angle of rotation of the front face of the upper-right cube for each digraph is computed by getting the
remainder when the corresponding Fibonacci number based on the position of the current digraph to be encrypted or
decrypted is divided by 4 and multiplied by 90. This can be expressed using the Equation (1):

aUR, = (FIB, mod 4) * 90.................. (D

where n is the position of the Fibonacci number from the random Fibonacci sequence generated from the previous step,
aUR, is the upper-right cube front face angle rotation for the digraph x to be encrypted or decrypted, FIB, is the
Fibonacci number obtained from the random Fibonacci sequence generated in the previous step.

The random number of rotations of the row of the upper-right cube for each digraph is computed by getting the
remainder when the corresponding Fibonacci number based on the position of the current digraph to be encrypted or
decrypted is divided by 3 and added by 1. This can be expressed using the Equation (2):

RRyr = (FIB, mod 3) + 1.....c........ (2)
where n is the position of the Fibonacci number from the random Fibonacci sequence generated from the previous step,

RRyp is the upper-right cube row rotation for the current digraph to be encrypted or decrypted, FIB, is the Fibonacci
number obtained from the random Fibonacci sequence generated in the previous step.
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2.6.2. Lower-Left Cube Rotation

The random angle of rotation of the front face of the lower-left cube for each digraph is computed by getting the
remainder when the corresponding Tribonacci number based on the position of the current digraph to be encrypted or
decrypted is divided by 4 and multiplied by 90. This can be expressed using the Equation (3):

alLL, = (TRIL, mod 4) * 90.....cccce..... 3)

where m is the position of the Tribonacci number from the random Tribonacci sequence generated from the previous
step, alLL, is the lower-left cube front face angle rotation for the digraph x to be encrypted or decrypted, TRI,, is the
Tribonacci number obtained from the random Tribonacci sequence generated in the previous step.

The random number of rotations of the row of the lower-left cube for each digraph is computed by getting the remainder
when the corresponding Tribonacci number based on the position of the current digraph to be encrypted or decrypted
is divided by 3 and added by 1. This can be expressed using the Equation (4):

RR;; = (TRL, mod 3) + 1............ (4)

where m is the position of the Tribonacci number from the random Tribonacci sequence generated from the previous
step, RR;; is the lower-left cube row rotation for the current digraph to be encrypted or decrypted, TRI,, is the

Tribonacci number obtained from the random Tribonacci sequence generated in the previous step.

2.7. Conceptual Framework
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Figure 3 Conceptual Framework of Encryption and Decryption Process of the Enhanced Four-Square with Zigzag
Transformation Encryption Algorithm based on 3D Rubik’s Cube Principle

2.8. Pseudocode

2.8.1. Encryption Process

1. InputPT, K1 and K2.
2. Generate n and m.
3. GetFIBnand TRIm.
4. Generate random E-K1 and E-K2 using LFSR.
4.1. Generate two 8-bit LFSR (LFSR1 and LFSR2).
4.2. LFSR1 and LFSR2 taps =8, 6,5, 4
4.3. randFib = FIB, mod 256 and randTri = TRIm mod 256
4.4. For each character in K1:
4.4.1. charK1 = convertToBinary(character)
4.4.2. binaryFIB = convertToBinary(randFib)
4.4.3. LFSR initial state = charK1 @ binaryFIB
4.4.4. LFSR-K1 = output of LFSR1
4.4.5. binK1 = convertToString(LFSR-K1)
4.4.6. While binK1 is not included in the first 216 printable and extended printable characters:
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4.4.6.1. LFSR-K1 =LFSR-K1 << 1
4.4.6.2. binK1 = convertToString(LFSR-K1)
4.4.7. randFib = (FIBn+1) mod 256
4.4.8. E-K1 = E-K1 + binK1
4.5. For each character in K2:
4.5.1. charK2 = convertToBinary(character)
4.5.2. binaryTRI = convertToBinary(randTri)
4.5.3. LFSR2 initial state = charK2 @ binaryTRI
4.5.4. LFSR-K2 = output of LFSR2
4.5.5. binK2 = convertToString(LFSR-K2)
4.5.6. While binK2 is not included in the first 216 printable and extended printable characters:
4.5.6.1. LFSR-K2 = LFSR-K2 << 1
4.5.6.2. binK2 = convertToString(LFSR-K2)
4.5.7. randTri= (TRIm+1) mod 256
4.5.8. E-K2 = E-K2 + binK2
5. Generate four 6x6x6 cubes and arrange them in a square.
5.1. Fill the squares of F1, F2, F3, F4, F5, and F6 of the UL and LR with the printable and extended printable
characters of the ASCII Table.
5.2. Fill the squares of F1, F2, F3, F4, F5, and F6 of the UR with the unique characters of E-K1, followed by the
printable and extended printable characters of the ASCII Table that do not appear in E-K1.
5.3. Fill the squares of F1, F2, F3, F4, F5, and F6 of the LL with the unique characters of E-K2, followed by the
printable and extended printable characters of the ASCII Table that do not appear in E-K2.
6. Breakup the PT into D.
6.1. Ifthe length of the PT is odd, append the letter ‘X’ at the end.
7. Locate the position of the current Dx to be encrypted in UL and LR.
7.1. Determine FNui, Rui, and Cuyr of the D1x in the UL.
7.2. Determine FNir, Rir, and Cir of the D2x in the LR.
8. Determine the character in the UR and LL around the corners of the rectangle the characters of the Dx of the PT
created.
8.1. E-D1xis the character in UR at FNig, Cir, and Rui.
8.2. E-D2«is the character in LL at FNui, Cur, and Rir.
8.3. Append E-D1x and E-D2x to the CT.
8.4. Set Flur = FNLg, F1LL = FNuL, Rur = Rut, and RiL = Rir.
9. Apply zigzag transformation to the UR and LL.
9.1. Rotate the angle of Flur: aURx = (FIBn mod 4) * 90)
9.2. Rotate the Rur to the right: RRur = (FIBn mod 3) + 1
9.3. Rotate the angle of F1..: aLLx = (TRIm mod 4) * 90)
9.4. Rotate the RuL to the left: RRiL = (TRIm mod 3) + 1
9.5. FIBn = FIBn+1 and TRIm = TRIm+1
10. Repeat Step 7-9 until all the D of the PT are encrypted.

2.8.2. Decryption Process

1. InputCT, K1, K2, nand m.
2. GetFIBn and TRIm.
3. Generate E-K1 and E-K2 using LFSR.
3.1. Generate two 8-bit LFSR (LFSR1 and LFSR2).
3.2. LFSR1 and LFSR2 taps =8, 6, 5, 4
3.3. randFib = FIBn mod 256 and randTri = TRIm mod 256
3.4. For each character in K1:
3.4.1. charK1 = convertToBinary(character)
3.4.2. binaryFIB = convertToBinary(randFib)
3.4.3. LFSR initial state = charK1 @ binaryFIB
3.4.4. LFSR-K1 = output of LFSR1
3.4.5. binK1 = convertToString(LFSR-K1)
3.4.6. While binK1 is not included in the first 216 printable and extended printable characters:
3.4.6.1. LFSR-K1 =LFSR-K1<<1
3.4.6.2. binK1 = convertToString(LFSR-K1)
3.4.7. randFib = (FIBn+1) mod 256
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3.4.8. E-K1 = E-K1 + binK1
3.5. For each character in K2:
3.5.1. charK2 = convertToBinary(character)
3.5.2. binaryTRI = convertToBinary(randTri)
3.5.3. LFSR2 initial state = charK2 @ binaryTRI
3.5.4. LFSR-K2 = output of LFSR2
3.5.5. binK2 = convertToString(LFSR-K2)
3.5.6. While binK2 is not included in the first 216 printable and extended printable characters:
3.5.6.1. LFSR-K2 =LFSR-K2 <<1
3.5.6.2. binK2 = convertToString(LFSR-K2)
3.5.7. randTri= (TRIm+1) mod 256
3.5.8. E-K2 = E-K2 + binK2
4. Generate four 6x6x6 cubes and arrange them in a square.
4.1. Fill the squares of F1, F2, F3, F4, F5, and F6 of the UL and LR with the printable and extended printable
characters of the ASCII Table.
4.2. Fill the squares of F1, F2, F3, F4, F5, and F6 of the UR with the unique characters of E-K1, followed by the
printable and extended printable characters of the ASCII Table that do not appear in E-K1.
4.3. Fill the squares of F1, F2, F3, F4, F5, and F6 of the LL with the unique characters of E-K2, followed by the
printable and extended printable characters of the ASCII Table that do not appear in E-K2.
5. Break up the CT into D.
6. Locate the position of the current Dx to be decrypted in UR and LL
6.1. Determine FNug, Rur, and Cur of the D1y in the UR.
6.2. Determine FNuii, Rii, and Cii of the D2y in the LL.
7. Determine the character in the UL and LR around the corners of the rectangle the characters of the Dx of the CT
created.
7.1. D-D1xis the character in UL at FNL, CL, and Rur.
7.2. D-D2xis the character in LR at FNug, Cugr, and Ru..
7.3. Append D-D1xand D-D2x to the PT.
7.4. SetFlyr = FNur and F1.L = FNLL
8. Apply zigzag transformation to the UR and LL
8.1. Rotate the angle of F1ur: aURx = (FIBn mod 4) * 90)
8.2. Rotate the Rur to the right: RRur = (FIBn mod 3) + 1
8.3. Rotate the angle of F1..: aLLx = (TRIm mod 4) * 90)
8.4. Rotate the Ry to the left: RRiL = (TRIm mod 3) + 1
8.5. FIBn = FIBn+1 and TRIm = TRIm+1
9. Repeat Step 6-8 until all the D of the CT are decrypted.

2.9. Simulation

2.9.1. Encryption Process

1. Input:
a. Plaintext-W_4d
b. FirstKey - FO*r
c. Second Key - Cu9&
2. Cryptographically Secure Pseudorandom Number Generation:
a. First Random Number - 7
b. Second Random Number - 3
3. Random Sequence Number Generation:
a. Fibonacci Sequence Numbers - 13, 21, 34, 55
b. Tribonacci Sequence Numbers - 2,4, 7, 13
4. Random Key Generation:
a. First Random Encrypted Key
i. FirstKey-FO0*r
ii. Binary Form of First Key - 01000110, 00110000,01011110,01110010
iii. Fibonacci Sequence Numbers - 13, 21, 34, 55
iv. Binary Form of Fibonacci Sequence Numbers - 00001101, 00010101, 00100010, 00110111
v. First LFSR Initial State - 01001011, 00100101,01111100, 01000101
vi. First LFSR Output-10100100,01001000,01111101, 01000100
vii. First LFSR Output (Character) - iH}D
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viii. First Random Encrypted Key - AH}D
b. Second Random Encrypted Key
i. Second Key - Cu9&
ii. Binary Form of Second Key - 01000011,01110101, 00111001, 00100110
iii. Tribonacci Sequence Numbers - 2,4, 7,13
iv. Binary Form of Tribonacci Sequence Numbers - 00000010, 00000100, 00000111, 00001101
v. Second LFSR Initial State - 01000001, 01110001,00111110, 00101011
vi. Second LFSR Output-00000101,00011100,11111001,10101000
vii. Second LFSR Output (Character) - #L;
viii. Second Random Encrypted Key - (8<;
5. Plaintext Digraph Generation:
a. length=2
b. First Digraph: W_
c. Second Digraph: 4d
6. Four-Square (Cube) Encryption (Plaintext First Digraph: W_):
Upper-Left Cube (Plaintext First Letter: W) - Face 2, Row 4, Column 2
Lower-Right Cube (Plaintext Second Letter: _) - Face 2, Row 5, Column 4
Upper-Right Cube (Ciphertext First Letter: W) - Face 2, Row 4, Column 4
Lower-Left Cube (Ciphertext Second Letter: [) - Face 2, Row 5, Column 2
Ciphertext - W[
Upper-Right Cube Front Face (F1) - Face 2
Upper-Right Cube Row Rotation: Row 4
Lower-Left Cube Front Face (F1) - Face 2
i. Lower-Left Cube Row Rotation: Row 5
7. Random Zigzag Transformation:
Rotate the angle of F1ur: aUR1 = (FIB1 mod 4) *90) = (13 mod 4) * 90 = 90 degrees
Rotate the Rur to the right: RRur = (FIB1 mod 3) + 1 = (13 mod 3) + 1 = 2 times
Rotate the angle of F1..: aLL1 = (TRI1 mod 4) * 90) = (2 mod 4) * 90 = 180 degrees
Rotate the Ru. to the left: RRi. = (TRI1 mod 3) + 1 = (2 mod 3) + 1 = 3 times
FIBn = FIBn+1 = FIB1+1 = FIB2 = 21
TRIm = TRIm+1 = TRI1+1 = TRI2 = 4
8. Four -Square (Cube) Encryption (Plaintext Second Digraph: 4d):
Upper-Left Cube (Plaintext First Letter: 4) - Face 1, Row 4, Column 3
Lower-Right Cube (Plaintext Second Letter: d) - Face 2, Row 6, Column 3
Upper-Right Cube (Ciphertext First Letter: -|-) - Face 2, Row 4, Column 3
Lower-Left Cube (Ciphertext Second Letter: E) - Face 1, Row 6, Column 3
Ciphertext - W[-|-E
Upper-Right Cube Front Face (F1) - Face 2
Upper-Right Cube Row Rotation: Row 4
Lower-Left Cube Front Face (F1) - Face 1
i.  Lower-Left Cube Row Rotation: Row 6
9. Random Zigzag Transformation:
a. Rotate the angle of F1ur: aUR1 = (FIB2 mod 4) *90) = (21 mod 4) * 90 = 90 degrees
Rotate the Rur to the right: RRur = (FIB2 mod 3) + 1 = (21 mod 3) + 1 =1 time
Rotate the angle of F1..: aLL1 = (TRI2 mod 4) * 90) = (4 mod 4) * 90 = 0 degree
Rotate the Ru. to the left: RRi. = (TRIz mod 3) + 1 = (4 mod 3) + 1 = 2 times
FIBn = FIBn+1 = FIB2+1 = FIB3 = 34
TRIm = TRIm+1 = TRI2+1 =TRI3 =7
10. Clphertext W[-|-E
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01001000,01111101, 01000100

First LFSR Output (Character) - iH}D

Rubik’s Cube Principle
Binary Form of First Key - 01000110, 00110000,01011110, 01110010

Fibonacci Sequence Numbers - 13, 21, 34, 55
iv. Binary Form of Fibonacci Sequence Numbers - 00001101, 00010101, 00100010, 00110111

v. First LFSR Initial State - 01001011, 00100101, 01111100, 01000101

First LFSR Output - 10100100

First Key - FO*r

i.
ii.
ji.
Vi.

Fibonacci Sequence Numbers - 13, 21, 34, 55
vii.

b. Tribonacci Sequence Numbers - 2,4, 7, 13

3. Random Key Generation:
First Random Encrypted Key

Second Random Number - 3

Plaintext - W[—|—E
2. Random Sequence Number Generation:

b. FirstKey - FO*r
Second Key - Cu9&

d. First Random Number - 7

a.
C.
e.
a.
a.

Input:

Figure 4 Encryption Process of Enhanced Four-Square with Zigzag Transformation Encryption Algorithm based on 3D
1.

2.9.2. Decryption Process
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viii. First Random Encrypted Key - iH}D
b. Second Random Encrypted Key
i. Second Key - Cu9&
ii. Binary Form of Second Key - 01000011,01110101, 00111001, 00100110
iii. Tribonacci Sequence Numbers - 2,4, 7,13
iv. Binary Form of Tribonacci Sequence Numbers - 00000010, 00000100, 00000111, 00001101
v. Second LFSR Initial State - 01000001, 01110001,00111110, 00101011
vi. Second LFSR Output - 00000101, 00011100,11111001, 10101000
vii. Second LFSR Output (Character) - #L;
viii. Second Random Encrypted Key - (8<;
4. Ciphertext Digraph Generation:
a. length=2
b. First Digraph: W[
c. Second Digraph: 4E
5. Four-Square (Cube) Decryption (Ciphertext First Digraph: W[):
Upper-Right Cube (Ciphertext First Letter: W) - Face 2, Row 4, Column 4
Lower-Left Cube (Ciphertext Second Letter: [) - Face 2, Row 5, Column 2
Upper-Left Cube (Plaintext First Letter: W) - Face 2, Row 4, Column 2
Lower-Right Cube (Plaintext Second Letter: _) - Face 2, Row 5, Column 4
Plaintext - W_
Upper-Right Cube Front Face (F1) - Face 2
Upper-Right Cube Row Rotation: Row 4
Lower-Left Cube Front Face (F1) - Face 2
i. Lower-Left Cube Row Rotation: Row 5
6. Random Zigzag Transformation:
Rotate the angle of F1ur: aUR1 = (FIB1 mod 4) *90) = (13 mod 4) * 90 = 90 degrees
Rotate the Rur to the right: RRur = (FIB1 mod 3) + 1 = (13 mod 3) + 1 = 2 times
Rotate the angle of F1..: aLL1 = (TRI1 mod 4) * 90) = (2 mod 4) * 90 = 180 degrees
Rotate the Ru. to the left: RRi. = (TRI1 mod 3) + 1 = (2 mod 3) + 1 = 3 times
FIBn = FIBn+1 = FIB1+1 = FIB2 = 21
TRIm = TRIm+1 = TRI1+1 = TRI2 = 4
7. Four -Square (Cube) Decryption (Ciphertext Second Digraph: -|—E)
Upper-Right Cube (Ciphertext First Letter: -|-) Face 2, Row 4, Column 3
Lower-Left Cube (Ciphertext Second Letter: E) - Face 1, Row 6, Column 3
Upper-Left Cube (Plaintext First Letter: 4) - Face 1, Row 4, Column 3
Lower-Right Cube (Plaintext Second Letter: d) - Face 2, Row 6, Column 3
Plaintext - W_4d
Upper-Right Cube Front Face (F1) - Face 2
Upper-Right Cube Row Rotation: Row 4
Lower-Left Cube Front Face (F1) - Face 1
i. Lower-Left Cube Row Rotation: Row 6
8. Random Zigzag Transformation:
a. Rotate the angle of F1ur: aUR1 = (FIB2 mod 4) *90) = (21 mod 4) * 90 = 90 degrees
Rotate the Rur to the right: RRur = (FIB2 mod 3) + 1 = (21 mod 3) + 1 =1 time
Rotate the angle of F1..: aLL1 = (TRI2 mod 4) * 90) = (4 mod 4) * 90 = 0 degree
Rotate the Ru. to the left: RRi. = (TRIz mod 3) + 1 = (4 mod 3) + 1 = 2 times
FIBn = FIBn+1 = FIB2+1 = FIB3 = 34
TRIm = TRIm+1 = TRI2+1 =TRI3 =7
9. Plalntext Ww_4d
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Figure 5 Decryption Process of Enhanced Four-Square with Zigzag Transformation Encryption Algorithm based on 3D
Rubik’s Cube Principle

2.10. Performance Evaluation and Testing

2.10.1. Frequency (Monobit) Test

The randomness of the binary sequence of the two random encrypted keys and ciphertext are evaluated using the
Frequency (Monobit) Test by the NIST Special Publication 800-22 revision 1a [10]. According to the NIST Statistical
Test Suite [10], the Frequency (Monobit) Test evaluates the numbers of zeros and ones in a binary sequence. The
number of ones and zeroes should be almost the same for a binary sequence to be random. The randomness of a binary
sequence is determined by its P-value. The P-value is computed and compared to the level of significance. The level of
significance is 0.01. Based on the NIST Statistical Test Suite [10], the binary sequence is random if the P-value is greater
than or equal to 0.01. Otherwise, the sequence is not random.

2.10.2. Runs Test

The randomness of the binary sequence of the two random encrypted keys and ciphertext are evaluated using the Runs
Test by the NIST Special Publication 800-22 revision 1a [10]. Based on the NIST Statistical Test Suite [10], the Runs Test
evaluates whether the number of runs of zeros and ones with different lengths is as expected for a random binary
sequence. The randomness of a binary sequence is determined by its P-value. The P-value is computed and compared
to the level of significance. The level of significance is 0.01. According to the NIST Statistical Test Suite [10], the binary
sequence is random if the P-value is greater than or equal to 0.01. Otherwise, the sequence is not random.
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2.10.3. Avalanche Effect

The avalanche effect is one of the evaluation methods used to test the strength of an encryption algorithm. The avalanche
effect measures the change in ciphertext when the plaintext or the key is slightly changed. Even a single change of bit in
a plaintext should significantly change the ciphertext. A cryptographic algorithm is a secure cryptographic algorithm if
it has a strong avalanche effect; the avalanche effect should be more than 50% [11, 12]. According to Abikoye et al. [13],
the avalanche effect could be computed by dividing the number of bits different in two ciphertexts and the total number
of bits of the ciphertext and then multiplying it by 100, as shown in Equation (5).

__ Number of bits dif fers in two ciphertexts

Avalanche Ef fect (%) =

x 100 (5)

Total number of bits in ciphertext

The plaintext, two encryption keys, and two random numbers are the inputs of the encryption and decryption process
of the enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D Rubik's cube principle. The
avalanche effect of the ciphertext is evaluated to test the strength of the enhanced algorithm.

3. Results and discussion

This section will present and discuss the results of several evaluation methods and tests on the enhanced Four-Square
with Zigzag transformation encryption algorithm based on 3D Rubik's cube principle. The enhanced Four-Square with
Zigzag transformation encryption algorithm based on 3D Rubik's cube principle is compared to the existing Four-Square
with Zigzag transformation encryption algorithm by Elazzaby, El Akkad, and Kabbaj [6] to evaluate the robustness of
the enhanced algorithm.

3.1. Matrix Comparison: Square Matrices VS. Cube Matrices

The inherent constraints of the existing Four-Square with Zigzag transformation encryption algorithm [6] are notably
restrictive, as they demonstrate proficiency solely in encrypting and decrypting lowercase and uppercase letters from
the English alphabet, as shown in Table 2. Its functionality stumbles when confronted with the inclusion of numbers
and special characters, limiting its scope to a meager 50 characters that align with the conventional English alphabet.
This constraint considerably impedes the algorithm's versatility and adaptability in handling a broader range of data

types.

Table 2 Comparison of Allowed Characters in the Existing Four-Square with Zigzag Transformation Encryption
Algorithm and Enhanced Four-Square with Zigzag Transformation Encryption Algorithm based on 3D Rubik's Cube
Principle

Existing four-square with zigzag|Enhanced four-square with zigzag
transformation encryption algorithm [6] |transformation encryption algorithm based on
3d rubik’s cube principle

QUALIFICATION NUMBER OF | QUALIFICATION NUMBER OF
(/ - Accepted, X - CHARACTERS (/ - Accepted, X - CHARACTERS
Rejected) Rejected)

LOWERCASE / (lowercase letters are|25 / 26

LETTERS transformed to uppercase
letters)

UPPERCASE / 25 / 26

LETTERS

NUMBERS X 0 / 10

SPECIAL X 0 / 154

CHARACTERS

TOTAL NUMBER |50 216

OF CHARACTERS
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In contrast, the enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D Rubik's cube
principle enhancement represents a significant stride forward in overcoming these limitations. This improved version
can process letters, numbers, and special characters seamlessly throughout its cryptographic processes, as shown in
Table 2. The capacity to encompass this expanded set of characters enhances the algorithm's utility in diverse
applications where data may extend beyond the conventional alphabet.

The enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D Rubik's cube principle
substantially broadens the algorithm's functional repertoire by accommodating numbers and special characters as
viable inputs for encryption and decryption. This expansion results in a notable increase in the available characters
from 50 to 216, paving the way for more versatile and comprehensive cryptographic operations.

3.2. Comparison of Encryption and Decryption of Existing Four-Square Encryption Algorithm and Enhanced
Four-Square Encryption Algorithm

In evaluating the seven distinct test cases employing the existing Four-Square with Zigzag transformation encryption
algorithm [6], the encryption and decryption outputs reveal noteworthy patterns, as shown in Table 3. A consistent
trend emerges despite the inherent variations in the plaintext across these diverse cases. In its encryption process, the
existing Four-Square with Zigzag transformation encryption algorithm [6] predominantly transforms the plaintext into
arecurring ciphertext string, identified as ' MUMBMFIVMS.'

This recurrent ciphertext, observed across various test cases, introduces a notable challenge in the decryption. The
uniformity in the ciphertext poses a formidable obstacle when attempting to reverse-engineer the original plaintext
from the encrypted data. This characteristic of the existing Four-Square encryption algorithm raises concerns about its
ability to provide a sufficiently varied and secure encryption output.

In multiple instances, the recurrence of 'MUMBMFIVMS' underscores a potential vulnerability in the existing Four-
Square with Zigzag transformation encryption algorithm’s encryption methodology. The consequential difficulty in
decrypting the original plaintext from this consistent ciphertext pattern highlights an area where the algorithm might
benefit from enhancements.

Table 3 Encryption and Decryption of Existing Four-Square with Zigzag transformation Encryption Algorithm

Encryption Remarks Decryption

Plaintext Ciphertext Ciphertext Plaintext
Helloworld Mumbmfivms Equal Mumbmfivms Helloworld
Helloworld Mumbmfivms Not equal Mumbmfivms Helloworld
1234567890 Encryption error |N/a N/a N/a
1@#%$% "&*( Encryption error |N/a N/a N/a
Helloworld Mumbmfivms Not equal Mumbmfivms Helloworld
Hellolworld2 Mumbmfivms Not equal Mumbmfivms Helloworld
Hellol!world2@ |Mumbmfivms Not equal Mumbmfivms Helloworld

Upon implementing the enhancement to the existing Four-Square with Zigzag transformation encryption algorithm [6]
across the identical set of 7 test cases, a marked departure in results becomes evident compared to the outcomes
produced by the unmodified algorithm. Introducing the enhancement brings about a notable diversity in the ciphertext
generated for each distinct plaintext.

In stark contrast to the consistent 'MUMBMFIVMS' ciphertext pattern observed with the existing Four-Square with
Zigzag transformation encryption algorithm [6], the enhanced Four-Square with Zigzag transformation encryption
algorithm based on 3D Rubik's cube principle demonstrates remarkable adaptability. Each unique plaintext undergoes
encryption, yielding a correspondingly distinct ciphertext, as shown in Table 4. This variability in the encrypted output
speaks to the enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D Rubik's cube
principle capacity to tailor its encryption process to different inputs. It underscores an improved resistance to patterns
that potential adversaries might exploit.
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Furthermore, the decryption process following the use of the enhanced Four-Square with Zigzag transformation
encryption algorithm based on 3D Rubik's cube principle exhibits impressive efficacy. The ciphertext, characterized by
its uniqueness for each test case, successfully reverts to the original plaintext.

Table 4 Encryption and Decryption of Enhanced Four-Square with Zigzag transformation Encryption Algorithm based
on 3D Rubik's Cube Principle

ENCRYPTION REMARKS AND | DECRYPTION

PLAINTEXT CIPHERTEXT RANDOMNUMBERS | pHERTEXT PLAINTEXT
HELLOWORLD | 8;-niaq pt" EQUAL (147, 6) 8;-Niod pt" HELLOWORLD
helloworld <C=WFmj.a’ EQUAL (162, 185) <C=WFmj.a’ helloworld
1234567890 (EL pHO(k EQUAL (83, 152) (EL pHO(k 1234567890
l@#$% "&*( N3~47CkZ 3 EQUAL (34, 211) N3~47CkT l@#$% "&*(
HelloWorld =\[eMUWS£2a EQUAL (50, 98) =\[eMUWS£2a HelloWorld
Hello1World2 S[VigNK {24 || EQUAL (161, 141) S[VigNK (24 || Hello1World2
Hello1!World2@ | >*[i*G9]Jzi~E—C | EQUAL (207, 17) >A[17G9Jzu+E—C | Hello1l!World2@

3.3. Frequency (Monobit) Test of Random Encrypted Keys and Ciphertext

Table 5 shows the result of the Frequency (Monobit) Tests of the two random encrypted keys and ciphertext of the
enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D Rubik's cube principle. The table
below shows the different character lengths of keys and ciphertext, the computed p-value, the remarks if the generated
random encrypted keys and ciphertext are random or not, and the average p-value of all the random encrypted keys
and ciphertext used in the test.

Table 5 Frequency (Monobit) Test of First Random Encrypted Key, Second Random Encrypted Key and Ciphertext

Character | First random encrypted key | Second random encrypted key | Ciphertext

Length  |p.yalue Remarks P-value Remarks P-value | Remarks
8 0.60 RANDOM 0.54 RANDOM 0.66 RANDOM
10 0.40 RANDOM 0.50 RANDOM 0.65 RANDOM
12 0.42 RANDOM 0.44 RANDOM 0.43 RANDOM
14 0.63 RANDOM 0.69 RANDOM 0.52 RANDOM
16 0.49 RANDOM 0.46 RANDOM 0.54 RANDOM
18 0.45 RANDOM 0.52 RANDOM 0.50 RANDOM
20 0.61 RANDOM 0.46 RANDOM 0.64 RANDOM
22 0.46 RANDOM 0.62 RANDOM 0.58 RANDOM
24 0.57 RANDOM 0.45 RANDOM 0.56 RANDOM
26 0.40 RANDOM 0.45 RANDOM 0.59 RANDOM
28 0.49 RANDOM 0.55 RANDOM 0.55 RANDOM
30 0.43 RANDOM 0.46 RANDOM 0.59 RANDOM
32 0.46 RANDOM 0.49 RANDOM 0.60 RANDOM
AVERAGE |0.49 RANDOM 0.51 RANDOM 0.57 RANDOM
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The Frequency (Monobit) Test was performed ten times in each random encrypted key and each ciphertext. The p-value
shown in the table below is the average p-value of the ten iterations in each random encrypted key and each ciphertext.
The same plaintext and second key are used in each first key, the same plaintext and first key are used in each second
key, and the same keys are used in each plaintext.

The range of the p-value of the first random encrypted key is between 0.40 to 0.63 and the average p-value is 0.49. The
range of the p-value of the second random encrypted key is between 0.44 and 0.69 and the average p-value is 0.51. The
range of the p-value of the ciphertext is between 0.43 and 0.66 and the average p-value is 0.57.

Based on the NIST-Statistical Test Suite [10], the level of significance is 0.01. Since the range of p-value and the average
p-value of the two random encrypted keys and ciphertext is greater than 0.01, the binary sequence of the two random
encrypted keys and ciphertext passed the frequency (monobit) test. Therefore, based on the Frequency (Monobit) test,
the two random encrypted keys and ciphertext generated by the enhanced Four-Square with Zigzag transformation
encryption algorithm based on 3D Rubik's cube principle are random.

3.4. Runs Test of Random Encrypted Keys and Ciphertext

Table 6 shows the result of the Runs Tests of the two random encrypted keys and ciphertext of the enhanced Four-
Square with Zigzag transformation encryption algorithm based on 3D Rubik's cube principle. The table below shows
the different character lengths of keys and ciphertext, the computed p-value, the remarks if the generated random
encrypted keys and ciphertext are random or not, and the average p-value of all the random encrypted keys and
ciphertext used in the test.

Table 6 Runs Test of First Random Encrypted Key, Second Random Encrypted Key and Ciphertext

Character First random encrypted key Second random encrypted key Ciphertext

Length P-value Remarks P-value Remarks P-value | Remarks
8 0.43 RANDOM 0.51 RANDOM 0.48 RANDOM
10 0.44 RANDOM 0.66 RANDOM 0.60 RANDOM
12 0.68 RANDOM 0.44 RANDOM 0.50 RANDOM
14 0.38 RANDOM 0.68 RANDOM 0.52 RANDOM
16 0.52 RANDOM 0.66 RANDOM 0.54 RANDOM
18 0.56 RANDOM 0.53 RANDOM 0.49 RANDOM
20 0.51 RANDOM 0.49 RANDOM 0.32 RANDOM
22 0.43 RANDOM 0.46 RANDOM 0.25 RANDOM
24 0.66 RANDOM 0.65 RANDOM 0.41 RANDOM
26 0.49 RANDOM 0.43 RANDOM 0.35 RANDOM
28 0.33 RANDOM 0.53 RANDOM 0.45 RANDOM
30 0.38 RANDOM 0.42 RANDOM 0.31 RANDOM
32 0.32 RANDOM 0.40 RANDOM 0.27 RANDOM
AVERAGE 0.47 RANDOM 0.53 RANDOM 0.42 RANDOM

The Runs Test was performed ten times in each random encrypted key and each ciphertext. The p-value shown in the
table below is the average p-value of the ten iterations in each random encrypted key and each ciphertext. The same
plaintext and second key are used in each first key, the same plaintext and first key are used in each second key, and the
same keys are used in each plaintext.

The range of the p-value of the first random encrypted key is between 0.32 to 0.68 and the average p-value is 0.47. The
range of the p-value of the second random encrypted key is between 0.40 to 0.68 and the average p-value is 0.53. The
range of the p-value of the ciphertext is between 0.27 and 0.60 and the average p-value is 0.42.
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Based on the NIST-Statistical Test Suite [10], the level of significance is 0.01. Since the range of p-value and the average
p-value of the two random encrypted keys and ciphertext is greater than 0.01, the binary sequence of the two random
encrypted keys and ciphertext passed the Runs Test. Therefore, based on the Runs Test, the two random encrypted keys
and ciphertext generated by the enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D
Rubik's cube principle are random.

3.5. Repeating the Same Characters Multiple Times in the Plaintext

Table 7 shows the comparison between the encrypted plaintext (ciphertext) of the existing Four-Square with Zigzag
transformation encryption algorithm by Elazzaby, El Akkad, and Kabbaj [6] and the enhanced Four-Square with Zigzag
transformation encryption algorithm based on 3D Rubik's cube principle when same characters are repeated multiple
times in the plaintext. The table below shows the different plaintext the algorithm encrypted, the number of times the
word is repeated in the plaintext, and the equivalent ciphertext of each plaintext encrypted using the two algorithms.
Five different plaintexts are used to compare the ciphertext generated by the two algorithms. The number of times the
word is repeated in the plaintext ranges from 26 to 30 times. The same keys are used in each plaintext.

The generated ciphertext of the plaintext is encrypted using the existing Four-Square with Zigzag transformation
encryption algorithm by Elazzaby, El Akkad, and Kabbaj [6], which contains unique characters when repeated 25 times
in plaintext. However, a pattern can be observed when the characters are repeated more than 25 times in plaintext. The
26t digraph and the succeeding digraph of the ciphertext are the same as the first digraph, second digraph, third
digraph, and the following digraphs. Therefore, the ciphertext generated by the existing algorithm can be decrypted
easily by repeating the characters more than 25 times in the plaintext and observing the pattern of the generated
ciphertext when the two keys are known.

On the other hand, the generated ciphertext of each plaintext encrypted using the enhanced Four-Square with Zigzag
transformation encryption algorithm based on 3D Rubik's cube principle contains random characters despite the
characters being repeated in the plaintext more than 25 times. Therefore, the enhanced Four-Square with Zigzag
transformation encryption algorithm based on 3D Rubik's cube principle generates a random ciphertext and cannot be
decrypted by repeating the characters in the plaintext multiple times and observing the pattern of the generated
ciphertext, even when the two keys are known.

Table 7 Comparison of Existing Four-Square with Zigzag Transformation Encryption Algorithm and Enhanced Four-
Square with Zigzag Transformation Encryption Algorithm based on 3D Rubik's Cube Principle when Same Words are
Repeated Multiple Times in the Plaintext

Plaintext Number  of|Ciphertext
::,T:;S thi‘; Existing four-square with|Enhanced four-square with zigzag
repeated zigzag transformation | transformation encryption algorithm
P encryption algorithm [6] based on 3d rubik's cube principle
OnOnOnONnONONONONOnN |25 GHEKDLCNAOSPKQISBURVUW |hEfS=
OnOnOnONONONONONON OYFMZAYTXRWIVXTZQGPBNC c7| ] |=<C68y a60fq #:A< [Fif<2a=y Foh
OnOnOnONnONONOn MDLEHF 8=Q=SCafgé]Aa
AMAMAMAMAMAMAMA |26 ODFEZFYHXKWLVNTOQPPQNS | _£+aRDRt+iir2éD0 el DOzépr.«£'z'
MAMAMAMAMAMAMAM MULVHWGYEMDACTARSIKXIZ || O£4Dée0*tW'Draeé |r-£«ae
AMAMAMAMAMAMAMA BGRBUCOD
MAMAMAM
Dogsdogsdogsdogsdogsd |27 RHKOOLBQZOUUXQFWVUYMQ aB—|J|-|K 0 sLo-véia perile Vi) \;
ogsdogsdogsdogsdogsdo WWTNMTILTPZGIMBDZHDAB -n—lL-'hSJLa rgS=| [»A as-f\-'h 0u£e8-+
gsdogsdogsdogsdogsdogs EFKDCKBFSNUKIPFNRSYPOVW aOax=| h I'LA"%IA\B'"'OU [Fox~15xaK¢8
dogsdogsdogsdogsdogsd SZYTVXAPYVRMAQXHRNGEXL |Zh;|av0--»lq @+2
ogsdogsdogsdogsdogsdo CCGGESCDHIEALRHKOOLBQ
gs
CubeCubeCubeCubeCube |28 BORTUQOIFUZZYWXBWMVDT %e]BE" a|=«A N8aS¢(;A7'-"-i&"”-ZZe[f
CubeCubeCubeCubeCube TQFPINKMZLNHBGPEDDSCFAV | % —||-0< fOU[ peué\ad:B%49c\ Fué LN
CubeCubeCubeCubeCube SKKYINBARPUROSFXZVYGXYW
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CubeCubeCubeCubeCube CVATEQRPHNXMLLGHOGCEQD | ¢\ tu8fu9=+Nd+@=TF[-14¢[@
CubeCubeCubeCubeCube ECUAHSWKLIMBORTUQOIFUZ | pt'é70>+Bo+7%'6Z7N4
CubeCubeCube YA
SECONDSECONDSECOND |29 TTUHEINXZNAGHBWQIDDEQV | H?&A&7=, || ¢»c5Q2/&?~m6 86-Hii:eZ
SECONDSECONDSECOND UHSKMMZNBOGRWQOSCZQVY |3, |*<c=Q¥@&?~m |=6[H>Y»ZanQcB
SECONDSECONDSECOND WKCMMVARFGRPIFLCZLGXPK Qen»75m |-a6hH Fi%Z4,0 pmcAQ2214?
SECONDSECONDSECOND CEDTURFAHNYFLINHTXPUQDX | rm || E k6iH 628, lJLrg;f'er L46?hm-
SECONDSECONDSECOND TUZVSBNYWMBEHTQROKDXM |G&65HnA-HZ3,e~ ]QJrn ?rmnn<6sH-
SECONDSECONDSECOND ZYOSBGCVSBECFPWOKKLLAYO 1UZ§1AAch||YU?§mT 6]H? A7
SECONDSECONDSECOND RPEIVSFUAGPWXYIDLATTUHE
SECONDSECONDSECOND INXZNAGHBWQIDDEQVUH
SECONDSECONDSECOND
SECONDSECOND
lengthlengthlengthlength |30 LMDBMDERSEGHAZBKCNICOO |AanL:56M1[:Nf."a: -'6-"|a"JLféna’\°A11fé
lengthlengthlengthlength KQUFYSRVZLVWFMWPPAXRQ |iy "1/za<6l|aa5fanaa[AAlsaC1l"aaaA-" [+
lengthlengthlengthlength ULITZMYEGNCGTADHFCXIHDL |-°lgn<-#f—1i:67 "Ya:r+AA| |=1(;ni|-Afy
lengthlengthlengthlength KBUNSPREZQBUFKWVOYX0Q | 1[:f6—"a:~fA|<*#6an~"[i—1A3AA"daaf
lengthlengthlengthlength MYTTSMRVXNWGZPBHACCLE |y|Lla[64n:asly1[a5A."16a" i |[a~#Abn+-f
lengthlengthlengthlength DIKFEKSGRLAOBDFPISOHXUU |6.1¢€:°
lengthlengthlengthlength WYNTYZAVQNTWIPVHXQGLM
lengthlength DBMDERSEGHAZBKCNICOOKQ

UFYSRV

3.6. Avalanche Effect of the Enhanced Four-Square with Zigzag transformation Encryption Algorithm based on
3D Rubik's Cube Principle

Table 8 shows the comparison between the avalanche effect of the existing Four-Square with Zigzag transformation
encryption algorithm by Elazzaby, E1 Akkad, and Kabbaj [6] and the enhanced Four-Square with Zigzag transformation
encryption algorithm based on 3D Rubik's cube principle. The table shows the different sets of plaintext, its equivalent
ciphertext, random numbers used to randomize the key and rotation of the cubes, the avalanche effect of each set of
plaintext, and the average avalanche effect of the two algorithms.

As the existing Four-Square with Zigzag transformation encryption algorithm {6] accepts lowercase and uppercase
letters only, three sets of almost the same plaintext where only one character is changed are used to compute and
compare the avalanche effect of the two algorithms. In the first set of plaintext, one of the lowercase letters of the other
plaintext is changed to an uppercase letter. In the second set of plaintext, one of the lowercase letters of the other
plaintext is changed to a different lowercase letter. In the last set of plaintext, the uppercase letter of the other plaintext
is changed to a different uppercase letter. The same sets of almost the same plaintexts are encrypted in both algorithms,
and the same keys are used in each plaintext.

The avalanche effect of the existing Four-Square with Zigzag transformation encryption algorithm by Elazzaby, El
Akkad, and Kabbaj [6] in all different sets of plaintext tested is consistently 4.69%. Consequently, the average avalanche
effect of the existing Four-Square with Zigzag transformation encryption algorithm [6] is also 4.69%. The existing Four-
Square with Zigzag transformation encryption algorithm [6] does not satisfy the condition that the avalanche effect of
a secure encryption algorithm should be more than 50%. This denotes that the existing Four-Square with Zigzag
transformation encryption algorithm [6] is considered not a secure encryption algorithm.

On the other hand, compared to the existing Four-Square with Zigzag transformation encryption algorithm [6], the
enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D Rubik's cube principle had a
promising result, the avalanche effect in different sets of plaintext tested range between 51.39% to 54.17% and the
average avalanche effect is 52.78%. The enhanced Four-Square with Zigzag transformation encryption algorithm based
on 3D Rubik's cube principle satisfies the condition that the avalanche effect of a secure encryption algorithm should be
more than 50%. Thus, the enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D Rubik's
cube principle is a secure encryption algorithm.
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Table 8 Comparison of Avalanche Effect of the Existing Four-Square with Zigzag Transformation Encryption Algorithm
and Enhanced Four-Square with Zigzag Transformation Encryption Algorithm based on 3D Rubik's Cube Principle

Plaintext |Existing four-square with zigzag|Enhanced four-square with zigzag transformation
transformation encryption algorithm | encryption algorithm based on 3d rubik's cube principle
[6]
Ciphertext Avalanche effect (%) |Ciphertext Random number | Avalanche effect (%)

Graphics |ELRDEXZQ 4.69% gG"$ae4 | 52,151 52.78%

GraFhics |ELZMEXZQ dHQsks! # 53,65

Keyboard | GKVKDSNK 4.69% C] |=>g6rl 178, 147 54.17%

Ceyboard |CBVKDSNK N-exky # 129,203

Software |SEALSIPK 4.69% oESCDJ LH§ 186, 74 51.39%

Softvare |SEALSBPK njaQ¢Cq L 46,111

AVERAGE |4.69% 52.78%

Table 9 shows the avalanche effect of the enhanced Four-Square with Zigzag transformation encryption algorithm based
on 3D Rubik's cube principle. The table shows the different sets of plaintext, its equivalent ciphertext, random numbers
used to randomize the key and rotation of the cubes, the lowest avalanche effect of each set of plaintext, the highest
avalanche effect of each set of plaintext, and the average avalanche effect of the algorithm.

Table 9 Avalanche Effect of the Enhanced Four-Square with Zigzag Transformation Encryption Algorithm based on 3D
Rubik's Cube Principle

PLAINTEXT |LOWEST HIGHEST

CIPHERTEXT |AVALANCHE EFFECT (%) | CIPHERTEXT | AVALANCHE EFFECT (%)
Graphics dF+8oo |k« 33.33% hH!ag=u1 52.78%
GraFhics cHGCS=14j gGsel;le
Keyboard F\n F pVji 36.11% F\ o) GE 51.39%
Ceyboard A<M nX" J<+»z~q"
Software gF<tPNnm» 33.33% nG4++/Anl 54.17%
Softvare pD:cO£ L qFfdwnl
Zero One S_616§ lG9E 33.33% RaNA N!B 55.56%
$ero One ?7<(a&rfia <:6has/d|
Device1234 |>\PtsO+L Frul |36.36% >[G¥¢choTt' 53.41%
Device8234 | A\N£L [ Geqp N&dd | m)Ry
Hexa_decimal ?b‘réégS—'—aﬁﬁﬁﬁéfAc 41.35% 7bs§®meLbC 51.92%
Hexa:decimal | A't6TG3£¢ m| @"1~Sy&¥2¢806e
Computer al&&S63¢ej 31.94% a"vl[z%Q 52.78%
Co3puter al,|coy; £ al+B-2UV
Question of;N|FCV 31.94% gLarq=<43 54.17%
Que%tion | oLaAO g2 oit) 4 —
Javascript ~ |GWod|d=5°FT [37.50% GW(G] e=iny  |53.41%
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7avascript R6s @bMC;p T5td VSYo=w
Filesystem86 |b= ai6~34 Lka |35.58% d@ | ¢pel P;_+P |51.92%
Filesystem&6 | b?:6bUh(%afi 7be$£2 120

AVERAGE 35.08% 53.15%

Ten sets of almost the same plaintext where only one character is changed are used to compute the avalanche effect of
the algorithm. The only character changed in the other plaintext can be another lowercase letter, an uppercase letter, a
number, or a special character. The same keys are used in each plaintext. Each set of plaintext is encrypted five times.
The avalanche effect is computed in each iteration in each set of plaintext. The table below shows the lowest and highest
avalanche effect in each set of plaintext.

The avalanche effect of the enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D
Rubik's cube principle has its fluctuating outcome due to its random number generator (RNG) that is incorporated into
the key generation. The lowest and highest outcomes ranged between 33.33% to 54.17%, resulting in an average of
35.08% for the lowest avalanche effect and 53.15% for the highest avalanche effect. The enhanced Four-Square with
Zigzag transformation encryption algorithm based on 3D Rubik's cube principle reaches the condition that the
avalanche effect of a secure algorithm should be more than 50%. Therefore, the enhanced Four-Square with Zigzag
transformation encryption algorithm based on 3D Rubik's cube principle is a robust encryption algorithm.

4., Conclusion

The study successfully enhanced Four-Square with Zigzag transformation encryption algorithm based on 3D Rubik's
cube principle, bolstering its security and applicability. By transforming the 5x5 matrix into a dynamic 6x6x6 cube,
accommodating 216 characters, including uppercase and lowercase letters, numbers, and special characters, significant
improvements were achieved. Statistical randomness tests, including the Frequency (Monobit) and Runs tests,
confirmed the robustness of the encryption method, surpassing established thresholds. The evaluation of the avalanche
effect demonstrated a substantial enhancement compared to the existing algorithm, meeting the minimum requirement
of a 50% avalanche effect. This research addresses the limitations of the Four-Square cipher, contributing to
cryptography with a versatile and secure algorithm. The findings hold promise for enhancing digital communication
security, and ensuring confidentiality, integrity, and authenticity of sensitive information. This study lays the
groundwork for future research in encryption techniques, fostering further advancements in the field.
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