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Abstract 

Understanding the early molecular interactions between Mycobacterium tuberculosis (M.tb) and host immune cells is 
essential to identifying novel diagnostic markers and therapeutic targets for tuberculosis (TB). Despite advances in TB 
research, the global burden of the disease remains substantial, with millions of new infections annually, many in 
resource-constrained settings. The pathogen's ability to persist within host macrophages during initial infection stages 
underlies its pathogenicity and resistance to clearance. This study aims to elucidate transcriptomic changes in both host 
and pathogen during early stages of M.tb infection using high-throughput RNA sequencing (RNA-Seq). Human 
peripheral blood-derived macrophages were infected with virulent M.tb H37Rv, and dual RNA-Seq was performed at 
multiple early time points (2h, 6h, and 24h post-infection). Bioinformatic analysis revealed dynamic expression changes 
in host innate immune genes, including early upregulation of TNF, IL-6, and type I interferon pathways. Concurrently, 
M.tb exhibited transcriptional adaptation to intracellular stress, with induction of genes involved in dormancy survival,
lipid metabolism, and ESX-1 secretion system. Gene ontology and KEGG pathway analyses indicated key host responses
such as autophagy regulation, inflammasome activation, and metabolic reprogramming. Notably, a subset of non-coding
RNAs and long intergenic transcripts were differentially expressed, suggesting novel regulatory mechanisms. These
findings provide a comprehensive view of the early transcriptional landscape of M.tb-host interactions and offer
candidate targets for host-directed therapies. Furthermore, transcriptomic biomarkers identified here hold promise for
the development of early diagnostic tools to distinguish latent from active TB. Integration of transcriptomics with
proteomics and epigenomics could enhance mechanistic understanding of TB pathogenesis.
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1. Introduction

1.1. Global Burden of Tuberculosis and Research Gaps in Early Infection 

Tuberculosis (TB) remains one of the leading infectious disease killers globally, with an estimated 10.6 million new 
cases and 1.6 million deaths reported in 2021 alone (1). Despite decades of public health efforts, TB continues to pose 
significant challenges due to complex transmission dynamics, the rise of multidrug-resistant strains, and latent 
infections that complicate disease surveillance (2). High-burden countries, especially in sub-Saharan Africa and 
Southeast Asia, account for the majority of global cases, often exacerbated by co-infections such as HIV (3). 

While substantial progress has been made in diagnosing and treating active TB, early infection stages remain poorly 
understood. Most individuals infected with Mycobacterium tuberculosis (M. tuberculosis) do not develop active disease 
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immediately but enter a latent state, which can persist for years before reactivation (4). The immunological and 
molecular events that govern this transition from exposure to latent or active disease are not fully delineated, 
representing a significant research gap (5). 

Current diagnostics primarily detect established infection or active disease, offering little insight into the initial host-
pathogen interactions that occur shortly after exposure (6). As a result, opportunities for early intervention are missed, 
particularly in high-risk populations such as household contacts or immunocompromised individuals. Furthermore, 
early-stage biomarkers capable of distinguishing between latent infection, incipient TB, and progressing disease are 
critically lacking (7). 

Understanding the early stages of TB infection at the molecular level could revolutionize disease management by 
facilitating preclinical diagnosis and targeted preventive therapy. This requires integrative approaches that combine 
immunology, microbiology, and systems biology to capture the subtle host and pathogen changes occurring during early 
infection (8). Addressing these gaps is essential for developing novel diagnostics, vaccines, and treatment strategies that 
can interrupt TB transmission before clinical disease manifests (9). 

1.2. Importance of Understanding Host-Pathogen Dynamics in Early Stages  

The early stages of M. tuberculosis infection are marked by a complex interplay between the host immune system and 
the invading pathogen. Upon aerosol exposure, alveolar macrophages are among the first responders to internalize 
bacilli, initiating a cascade of immune responses that may either control or permit pathogen survival (10). This 
interaction sets the stage for long-term outcomes, including latent infection, sterilizing immunity, or progression to 
active disease (11). 

A critical gap in TB research lies in the insufficient understanding of these early immune events. While the granuloma 
has been extensively studied in established disease, less is known about cellular and molecular responses that occur 
prior to its formation (12). Identifying key immunological checkpoints and pathogen adaptations during this window is 
essential for informing vaccine design and immune-modulating therapies (13). 

Moreover, host responses in early infection can be highly variable depending on genetic background, nutritional status, 
co-infections, and microbiome composition (14). Transcriptomic profiling offers a high-resolution view into these 
variations by revealing patterns of gene expression that reflect real-time immune processes (15). Early transcriptomic 
signatures may provide predictive insights into disease trajectory and distinguish individuals at high risk of progression 
from those with controlled infection. 

In-depth knowledge of host-pathogen dynamics during early infection can thus enable stratified approaches to TB 
prevention and care. It also opens avenues for precision medicine in TB control by tailoring interventions based on 
individual immune responses and infection risk profiles (16). 

1.3. Scope and Objectives of Transcriptomic Profiling in TB  

Transcriptomic profiling, which measures genome-wide gene expression, has emerged as a powerful tool to explore 
host responses to M. tuberculosis infection. This approach enables researchers to capture dynamic biological changes 
across various stages of infection, from initial exposure through to disease progression and resolution (17). By analyzing 
RNA expression patterns, transcriptomics reveals molecular signatures that would be invisible to traditional 
immunological assays. 

The primary objective of transcriptomic profiling in TB is to identify biomarkers and immune pathways involved in 
early infection that could distinguish latent, incipient, and progressing disease (18). Such biomarkers are urgently 
needed to develop prognostic tools that can guide preemptive therapy, especially in individuals with subclinical or 
asymptomatic infection. Additionally, transcriptomic data can help decode mechanisms of immune evasion employed 
by M. tuberculosis, offering targets for host-directed therapies (19). 

This study specifically focuses on transcriptomic analyses of peripheral blood and lung tissue samples collected during 
early infection. Through high-throughput RNA sequencing and bioinformatic modeling, the goal is to map gene 
expression trajectories that define protective versus pathological immune responses (20). A secondary objective is to 
compare expression profiles between high-risk groups, such as HIV-positive individuals, and immunocompetent hosts, 
to identify vulnerabilities and guide context-specific interventions. 
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Ultimately, the scope of this investigation extends to both clinical and translational research. By bridging the gap 
between bench and bedside, transcriptomic profiling holds the potential to transform TB diagnostics, inform vaccine 
development, and enhance global efforts to reduce the disease burden (21). 

2. Pathophysiology of early M. Tuberculosis infection  

2.1. Entry into the Host and Alveolar Macrophage Interaction  

The infection cycle of Mycobacterium tuberculosis (M. tuberculosis) begins upon inhalation of aerosolized droplets 
carrying viable bacilli. These droplets penetrate deep into the lungs and reach the alveolar spaces, where the bacteria 
first encounter alveolar macrophages—the sentinel phagocytes of the respiratory tract (5). The bacilli are engulfed via 
phagocytosis, a process mediated by surface receptors such as the mannose receptor, complement receptor 3 (CR3), 
and DC-SIGN, allowing the bacteria to enter the macrophage in a membrane-bound phagosome (6). 

Unlike many other intracellular pathogens, M. tuberculosis has evolved strategies to survive within this hostile 
environment. It arrests phagosome maturation by interfering with vesicle acidification and preventing phagolysosome 
fusion, thereby creating a protected intracellular niche (7). The pathogen can also exploit host lipids and iron for 
nutrition, supporting its replication within macrophages without triggering strong inflammatory responses early on. 

The interaction between M. tuberculosis and alveolar macrophages sets the stage for either containment or 
dissemination. Infected macrophages produce chemokines such as MCP-1 and IL-8, which recruit additional immune 
cells, including monocytes, neutrophils, and dendritic cells, to the site of infection (8). These cells participate in the early 
containment response, though excessive recruitment may lead to tissue damage and aid bacterial spread. 

Moreover, the intracellular persistence of M. tuberculosis in macrophages facilitates antigen presentation via both MHC 
class I and II pathways, triggering adaptive immune responses (9). However, this process can be delayed, allowing the 
pathogen a head start in establishing infection. Therefore, the early macrophage interaction is a critical determinant of 
disease outcome, influencing whether the infection remains latent or progresses (10). 

2.2. Immune Evasion and Granuloma Initiation  

M. tuberculosis has developed sophisticated strategies to evade immune clearance, particularly during the early stages 
of infection. One key mechanism is the modulation of host cytokine signaling to dampen pro-inflammatory responses. 
The pathogen can induce the production of IL-10 and TGF-β, which inhibit macrophage activation and reduce the 
bactericidal effects of reactive oxygen and nitrogen species (11). Simultaneously, it interferes with Toll-like receptor 
(TLR) signaling pathways, impairing the innate immune system’s ability to mount an effective defense (12). 

Despite these evasion strategies, the immune system responds by organizing immune cells into granulomas—
structured aggregates of infected macrophages, epithelioid cells, multinucleated giant cells, and surrounding 
lymphocytes. Granuloma formation begins within two to three weeks post-infection and serves to contain the pathogen 
and prevent systemic dissemination (13). However, M. tuberculosis can exploit the granuloma environment as a niche 
for long-term survival. Within this microenvironment, oxygen tension and nutrient availability are limited, leading to 
metabolic adaptation of the bacilli into a dormant state (14). 

Recent studies have shown that granulomas are dynamic rather than static, with continuous cellular turnover and 
bacterial activity occurring within their core. The balance between host containment and bacterial persistence is finely 
regulated, and disruption of this balance—through immune suppression or other factors—can lead to reactivation (15). 
Understanding how M. tuberculosis manipulates granuloma architecture and function is essential for developing 
therapies that target latent reservoirs and prevent disease progression. 

2.3. Transition from Latency to Active Infection  

Latency is a hallmark of M. tuberculosis infection, characterized by the persistence of viable bacteria within the host 
without clinical symptoms or radiographic evidence of disease. This latent state affects approximately one-quarter of 
the global population and represents a substantial reservoir for future reactivation (16). Reactivation occurs when host 
immune surveillance fails, typically due to immunosuppressive conditions such as HIV infection, malnutrition, or 
aging (17). 

At the cellular level, the transition from latency to active TB involves a shift in the host-pathogen equilibrium. Dormant 
bacilli reinitiate replication, often triggered by changes in the microenvironment within granulomas, including hypoxia 
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resolution, altered lipid metabolism, and decreased cytokine production (18). Simultaneously, the immune system may 
experience functional exhaustion, with reduced T-cell proliferation and diminished macrophage responsiveness 
contributing to disease progression. 

Molecular studies have shown that reactivation is accompanied by altered transcriptional profiles in both host and 
pathogen. Host gene expression shifts toward a pro-inflammatory state, marked by increased levels of IFN-γ, IL-1β, and 
TNF-α, which are associated with tissue damage and cavity formation (19). In parallel, M. tuberculosis upregulates genes 
involved in cell wall remodeling, virulence, and energy metabolism, facilitating its escape from dormancy (20). 

Identifying the molecular triggers and regulatory networks involved in reactivation is a critical goal in TB research. It 
offers potential for developing predictive biomarkers and targeted interventions aimed at preventing disease 
resurgence in latently infected individuals. Effective control of TB will ultimately depend on our ability to detect and 
block reactivation before clinical disease emerges (21). 

 

Figure 1 Schematic diagram showing early-stage host-pathogen interaction and granuloma formation 

3. Transcriptomic approaches in infection biology  

3.1. RNA-seq, Microarrays, and Single-Cell Transcriptomics Overview  

Transcriptomic technologies have revolutionized the study of host-pathogen interactions in tuberculosis (TB), enabling 
comprehensive profiling of gene expression during infection. Among these, RNA sequencing (RNA-seq) has emerged as 
the gold standard due to its high sensitivity, dynamic range, and ability to detect novel transcripts (11). RNA-seq 
provides an unbiased view of the transcriptome by sequencing cDNA derived from total or polyadenylated RNA, 
allowing quantification of both host and pathogen transcripts in co-infection models. 

In contrast, microarrays, though historically important, rely on predefined probes and are limited in detecting unknown 
or low-abundance transcripts. Nonetheless, microarrays have contributed significantly to early TB research by 
revealing differential gene expression patterns associated with latent and active disease (12). However, they lack the 
resolution and adaptability of next-generation sequencing platforms, particularly in capturing the complexity of dual 
transcriptomes in host-pathogen systems. 

Single-cell RNA sequencing (scRNA-seq) is a more recent advancement that provides gene expression data at the 
individual cell level, offering insights into cellular heterogeneity and microenvironmental context during TB 
infection (13). This is particularly valuable for studying lung granulomas, where diverse cell types interact dynamically 
with M. tuberculosis. scRNA-seq allows the dissection of cell-specific responses and identification of rare immune cell 
subsets that may influence disease outcomes (14). 
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Each method offers distinct advantages depending on the experimental objective. RNA-seq remains the most widely 
used technique for dual transcriptomics due to its scalability and ability to detect both host and bacterial RNAs 
simultaneously (15). When integrated with scRNA-seq or spatial transcriptomics, these technologies can uncover the 
complex molecular dialogue between host and pathogen with unprecedented resolution, supporting the discovery of 
biomarkers, therapeutic targets, and mechanisms of immune evasion (16). Advancing transcriptomic methods will be 
critical for mapping the temporal and spatial landscapes of TB infection and guiding precision medicine approaches. 

3.2. Sample Preparation and Isolation of Host vs. Pathogen RNA  

Effective transcriptomic analysis of host-pathogen interactions in tuberculosis begins with meticulous sample 
preparation. Tissues such as lung biopsies, bronchoalveolar lavage (BAL), and peripheral blood mononuclear cells 
(PBMCs) are commonly used for host RNA profiling, while infected macrophage cultures or sputum samples enable 
simultaneous capture of M. tuberculosis RNA (17). Given the low abundance of bacterial RNA relative to host RNA, 
protocols must be optimized to enrich for pathogen transcripts without compromising host data integrity. 

Total RNA is extracted using reagents such as TRIzol or specialized kits that preserve RNA integrity while minimizing 
contamination with genomic DNA (18). For dual RNA-seq applications, rRNA depletion is favored over poly-A selection 
to retain both bacterial and eukaryotic transcripts, as most bacterial RNAs lack polyadenylation (19). Commercial kits 
now provide targeted rRNA depletion for human and M. tuberculosis rRNAs, improving the efficiency of dual 
transcriptomics and maximizing sequencing depth for relevant transcripts. 

To reduce background noise and enhance pathogen signal, physical and enzymatic methods such as cell lysis, differential 
centrifugation, and host-cell RNA subtraction may be employed (20). Laser-capture microdissection (LCM) and flow 
cytometry-based sorting can also be applied to isolate infected host cells or granuloma regions of interest, enabling 
spatial transcriptomic analysis (21). 

RNA integrity is assessed via capillary electrophoresis, ensuring RNA integrity number (RIN) scores above 7 for 
downstream sequencing. Isolated RNA is then quantified, quality-checked, and stored at −80°C to preserve transcript 
stability. Proper sample handling and RNA enrichment strategies are essential for capturing the full transcriptional 
interplay between host and pathogen, allowing for accurate and reproducible transcriptomic analyses (22). 

3.3. Bioinformatic Pipelines for Dual RNA-seq  

The bioinformatic analysis of dual RNA-seq data in tuberculosis studies involves multiple computational steps to 
distinguish and interpret transcripts originating from both host and M. tuberculosis. The first challenge is the accurate 
alignment of reads to two separate reference genomes. This is typically achieved through sequential or parallel 
alignment using tools like HISAT2 or STAR for the human genome, and BWA or Bowtie2 for the bacterial genome (23). 
Reads are filtered and classified based on alignment quality to prevent cross-mapping and ensure precise taxonomic 
assignment (24). 

Once aligned, gene expression is quantified using featureCounts or HTSeq, generating count matrices for both host and 
pathogen transcripts. These data are normalized using methods such as DESeq2 or edgeR to account for differences in 
sequencing depth and gene length (25). Batch effects and sample heterogeneity are controlled through surrogate 
variable analysis (SVA) or principal component analysis (PCA) prior to differential expression analysis (26). 

Functional enrichment tools like DAVID, GSEA, and KEGG are used to interpret host gene expression changes in 
biological context, highlighting pathways related to immune activation, apoptosis, and metabolic reprogramming. On 
the bacterial side, pathway analysis can reveal stress responses, virulence gene activation, and metabolic adaptations 
during intracellular survival (27). Transcriptome-wide association studies (TWAS) can further integrate genotype and 
expression data to identify regulatory variants influencing susceptibility or resistance to TB (28). 

Advanced pipelines now incorporate deconvolution algorithms to resolve cellular heterogeneity and isolate cell-type-
specific responses, particularly useful in lung tissue or PBMC samples. Integration with single-cell datasets can enhance 
resolution and support cross-validation of findings (29). Machine learning models are also increasingly applied to 
identify transcriptomic biomarkers predictive of disease stage or treatment outcome. 

The dual RNA-seq approach thus offers a systems-level view of host-pathogen interactions, supporting precision TB 
research through accurate annotation, quantitative modeling, and mechanistic insight (30). 
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Table 1 Comparative Summary of Transcriptomic Technologies for TB Research 

Technology Sensitivity Resolution Cost (per 
sample) 

Strengths Limitations 

Microarray Moderate – limited 
to predefined 
probes 

Bulk – average 
across mixed cell 
populations 

Low to 
moderate 
(~$100–
$200) 

Cost-effective for 
large cohorts; 
established 
pipelines 

Cannot detect 
novel transcripts; 
low dynamic range 

Bulk RNA-seq High – detects low-
abundance 
transcripts 

Bulk – 
population-level 
gene expression 

Moderate 
(~$200–
$500) 

Unbiased; 
suitable for host-
pathogen dual 
RNA-seq 

Masks cell-type-
specific 
expression; 
limited spatial 
context 

Single-cell RNA-
seq (scRNA-seq) 

Very high – 
captures 
transcriptomes of 
individual cells 

Single-cell – 
resolves cellular 
heterogeneity 

High 
(~$800–
$1,500) 

Dissects immune 
cell subsets; 
identifies rare 
populations 

High cost; complex 
data analysis 

Spatial 
Transcriptomics 

High – combines 
histological and 
gene expression 
data 

Spatial – maps 
expression 
within tissue 
context 

Very high 
(~$1,500–
$3,000) 

Preserves tissue 
architecture; 
localizes host-
pathogen zones 

Expensive; lower 
transcriptome 
depth compared to 
scRNA-seq 

Dual RNA-seq 
(host + pathogen) 

High – 
simultaneously 
detects host and 
bacterial RNAs 

Bulk or single-
cell depending 
on setup 

Moderate to 
high 
(~$500–
$1,200) 

Enables direct 
host-pathogen 
interaction 
profiling 

Pathogen RNA 
often low 
abundance; needs 
deep sequencing 

4. Host transcriptomic responses in early M. Tuberculosis infection  

4.1. Innate Immune Activation: TLRs, Cytokines, and Chemokines  

Upon encountering Mycobacterium tuberculosis (M. tuberculosis), the host innate immune system is activated through 
pattern recognition receptors (PRRs), most notably the Toll-like receptors (TLRs), which detect conserved 
mycobacterial components such as lipoproteins, lipomannan, and peptidoglycan (14). TLR2, often in heterodimeric 
combination with TLR1 or TLR6, plays a central role in initiating the early inflammatory response. Activation of TLRs 
leads to downstream signaling cascades involving MyD88, NF-κB, and MAP kinases, ultimately driving the transcription 
of pro-inflammatory cytokines (15). 

Key cytokines produced include tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-
6), all of which contribute to the recruitment and activation of additional immune cells. TNF-α, in particular, is critical 
for granuloma maintenance and containment of the bacilli, while IL-1β promotes macrophage activation and pyroptotic 
cell death as a defense strategy (16). The IL-6 response serves as both a pro-inflammatory and anti-inflammatory signal, 
helping to shape the outcome of infection through STAT3 signaling (17). 

Chemokines such as CXCL10 (IP-10), CCL2 (MCP-1), and CCL5 (RANTES) are also strongly induced, facilitating the 
recruitment of monocytes, neutrophils, and lymphocytes to the site of infection (18). These chemokines help 
orchestrate the formation of granulomas by concentrating immune cells around infected macrophages. However, 
excessive chemokine production can contribute to tissue pathology, particularly in progressive TB (19). 

Interestingly, M. tuberculosis can modulate TLR expression and cytokine production to create an immune environment 
favorable for its persistence. For example, some strains downregulate TLR4 signaling or upregulate IL-10, an 
immunosuppressive cytokine, to dampen the immune response (20). These evasive tactics delay adaptive immunity, 
prolong bacterial survival, and promote chronic infection. 
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Overall, the interplay between TLR-mediated sensing and cytokine-chemokine networks defines the early immune 
landscape of TB infection. Understanding these mechanisms is essential for developing interventions that strengthen 
innate defenses without exacerbating immunopathology (21). 

4.2. Modulation of Apoptosis, Autophagy, and Metabolic Pathways  

M. tuberculosis manipulates host cellular processes such as apoptosis, autophagy, and metabolism to favor its 
intracellular survival. Apoptosis, a form of programmed cell death, can limit infection by preventing bacterial replication 
and promoting antigen presentation. However, M. tuberculosis inhibits apoptosis in infected macrophages by 
upregulating anti-apoptotic proteins such as Bcl-2 and by activating PI3K/Akt pathways that delay caspase 
activation (22). By blocking apoptosis, the pathogen avoids destruction and continues to replicate within host cells. 

Conversely, in some contexts, M. tuberculosis induces necrotic or pyroptotic forms of cell death, which facilitate bacterial 
dissemination through tissue damage and uncontrolled inflammation (23). This dual modulation of host cell fate allows 
the pathogen to balance intracellular survival with transmission potential. 

Autophagy, a catabolic pathway that targets intracellular pathogens for lysosomal degradation, is another key host 
defense mechanism. In response to infection, host cells upregulate autophagy-related genes such as ATG5 and LC3 to 
sequester and destroy intracellular M. tuberculosis (24). However, the bacterium actively suppresses autophagic flux 
through virulence factors like Eis and PknG, which interfere with phagosome maturation and autophagosome-lysosome 
fusion (25). Additionally, M. tuberculosis can subvert mTOR signaling to inhibit autophagy initiation, thereby evading 
immune clearance. 

At the metabolic level, infected macrophages undergo reprogramming toward aerobic glycolysis, a phenomenon known 
as the Warburg effect, to support energy demands during inflammation (26). This shift enhances production of reactive 
oxygen species (ROS) and nitric oxide (NO), both of which have antimicrobial effects. However, M. tuberculosis adapts 
by upregulating stress response genes and antioxidant defenses, enabling it to persist in this hostile environment (27). 

The pathogen also manipulates host lipid metabolism, inducing foamy macrophage formation rich in cholesterol and 
triglycerides that serve as nutrient reservoirs. This lipid accumulation, driven by PPARγ activation, supports long-term 
bacterial survival during latency (28). 

Collectively, these interactions highlight how M. tuberculosis intricately modulates host apoptosis, autophagy, and 
metabolism to evade immune destruction and create a favorable intracellular niche (29). 

4.3. Host Cell Reprogramming and Immune Escape Signals  

Host cell reprogramming during M. tuberculosis infection extends beyond localized immune responses and involves 
widespread transcriptional and epigenetic changes that affect both innate and adaptive immunity. One of the central 
features of this reprogramming is the induction of immune-regulatory molecules such as PD-L1, IL-10, and indoleamine 
2,3-dioxygenase (IDO), which collectively suppress T cell activity and facilitate immune escape (30). These factors are 
upregulated in infected macrophages and dendritic cells, inhibiting the proliferation and effector function of CD4+ and 
CD8+ T cells, thereby weakening the host's ability to mount an effective adaptive response (31). 

Epigenetic modifications play a pivotal role in host-pathogen interactions, influencing the accessibility of key immune 
genes. M. tuberculosis induces histone modifications such as H3K27 trimethylation to silence inflammatory genes in 
macrophages, thereby modulating chromatin structure to favor a permissive environment for bacterial 
persistence (32). DNA methylation of host gene promoters, including those encoding pro-inflammatory cytokines, has 
also been observed during latent and chronic stages of infection (33). These heritable yet reversible changes ensure 
prolonged modulation of host responses even after bacterial clearance. 

Transcriptomic profiling has revealed that M. tuberculosis drives a distinct host gene expression program characterized 
by upregulation of type I interferon pathways, suppression of antigen presentation genes, and skewing toward a 
regulatory macrophage phenotype (M2) (34). The M2 phenotype, marked by high expression of arginase-1 and IL-10, 
promotes tissue repair but also compromises bacterial killing. Moreover, infected macrophages express lower levels of 
costimulatory molecules like CD80 and CD86, impairing effective T-cell priming (35). 

Another escape strategy involves extracellular vehicles (EVs) secreted by infected cells. These vesicles carry bacterial 
antigens, RNA, and immune-modulatory molecules that alter the function of recipient immune cells at distant sites (36). 
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EV-mediated communication can either promote immune tolerance or trigger systemic inflammation, depending on the 
context and cargo composition. 

Together, these strategies underscore the ability of M. tuberculosis to reprogram host cells at multiple levels, including 
transcriptional, metabolic, and epigenetic layers. This reprogramming ensures immune evasion, persistence, and the 
establishment of latent or chronic infection, presenting significant challenges for TB treatment and vaccine 
development (37). 

 

Figure 2 Volcano plot and heatmap of upregulated and downregulated host genes at 48 hours post-infection 

5. Pathogen gene expression during early intracellular survival  

5.1. Activation of Dormancy Regulons and Stress Response Pathways  

One of the key survival strategies employed by Mycobacterium tuberculosis (M. tuberculosis) during latent infection is 
the activation of dormancy regulons and stress response pathways. These gene networks enable the bacterium to 
endure hostile conditions such as hypoxia, nutrient deprivation, acidic pH, oxidative stress, and nitric oxide exposure 
within granulomas (18). Central to this response is the DosR (dormancy survival regulator) regulon, a transcriptional 
program comprising over 50 genes that are upregulated in response to oxygen limitation and nitric oxide signaling (19). 

The DosR regulon includes genes such as hspX (encoding α-crystallin), acg, and Rv2623, which contribute to growth 
arrest and metabolic adaptation under anaerobic conditions. These genes facilitate a non-replicative persistent (NRP) 
state in which M. tuberculosis reduces its metabolic activity and becomes tolerant to antibiotics, particularly those 
targeting active cell division (20). Additionally, DosS and DosT, the two histidine kinase sensors upstream of DosR, allow 
the bacterium to monitor environmental cues and rapidly adjust gene expression profiles in response to changing 
conditions (21). 

In parallel, general stress response genes are activated to mitigate damage and support intracellular survival. These 
include oxidative stress regulators such as sigH and ahpC, which counteract reactive oxygen species, as well as 
chaperones like groEL and dnaK that refold misfolded proteins (22). Metabolic regulators including isocitrate lyase (icl) 
and phosphoenolpyruvate carboxykinase (pckA) are also upregulated, enabling the bacterium to shift toward lipid-
based metabolism during nutrient deprivation (23). 

This dormancy program provides M. tuberculosis with resilience and adaptability, allowing it to persist in host tissues 
for years without triggering immune clearance or clinical symptoms. Understanding the transcriptional regulation of 
dormancy is crucial for identifying drug targets capable of eliminating latent bacilli and reducing reactivation risk (24). 
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5.2. ESX Secretion Systems and Cell Wall Remodeling Genes  

The ESX (early secretory antigenic target-6 system) secretion systems are critical to M. tuberculosis pathogenesis, 
allowing the bacterium to transport effector proteins across its complex cell envelope. Of the five ESX systems (ESX-1 
to ESX-5), ESX-1 is the most extensively studied and is essential for virulence, especially during early infection and 
immune evasion (25). ESX-1 mediates the secretion of proteins such as ESAT-6 and CFP-10, which disrupt phagosomal 
membranes, facilitate cytosolic access, and promote antigen presentation modulation (26). 

These effector proteins also trigger host cell death pathways, such as necrosis and pyroptosis, leading to tissue damage 
and enhanced bacterial dissemination (27). ESX-1 components are regulated by transcriptional factors including EspR 
and WhiB6, which respond to environmental stress and host-derived signals (28). Mutations or deletions in the ESX-1 
locus, as seen in the vaccine strain Mycobacterium bovis BCG, result in significant attenuation of virulence, underlining 
its importance in pathogenesis (29). 

Beyond protein secretion, M. tuberculosis dynamically remodels its cell wall in response to host-derived pressures. 
Genes involved in the synthesis and modification of mycolic acids, arabinogalactan, and peptidoglycan—such as pks13, 
embC, and murA—are differentially expressed under stress conditions (30). These modifications increase cell wall 
thickness and permeability barrier, enhancing resistance to antimicrobial peptides and reactive oxygen species (31). 

Furthermore, the bacterium produces surface lipids like phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids 
(PGLs), which modulate host immune responses and contribute to immune evasion (32). Their biosynthesis is 
controlled by regulators including PhoP and SigE, which are also involved in coordinating broader virulence responses. 

Combined, the ESX secretion systems and cell wall remodeling genes are vital for M. tuberculosis adaptation, immune 
modulation, and persistence. Targeting these pathways could lead to novel therapeutics that impair bacterial survival 
and enhance host immune clearance (33). 

5.3. Antigenic Variation and Immune Modulation by M. tuberculosis  

M. tuberculosis employs antigenic variation and immune modulation to persist in the host by avoiding detection and 
destruction. While its genome is relatively conserved compared to other pathogens, M. tuberculosis expresses a diverse 
array of antigenic proteins in a phase-variable manner, especially under immune pressure (34). The PE/PPE family of 
proteins, which constitutes nearly 10% of the genome, is notable for its antigenic diversity and capacity to modulate 
host immune responses through altered T-cell recognition (35). 

These proteins are often secreted through ESX-5, facilitating antigenic variation on the bacterial surface and interfering 
with host antigen processing pathways. This variability reduces the effectiveness of antigen-specific T-cell responses 
and may contribute to vaccine failure, as seen with limited efficacy of BCG in adults (36). 

In addition to antigenic variation, M. tuberculosis actively modulates host immune responses through the secretion of 
immunomodulatory lipids, nucleic acids, and proteins. For example, the LAM (lipoarabinomannan) molecule can inhibit 
dendritic cell maturation and suppress the expression of costimulatory molecules necessary for T-cell activation (37). 
Similarly, secreted proteins such as Rv1988 and PtpA interfere with host cell signaling pathways, blocking phagosome-
lysosome fusion and antigen presentation (38). 

M. tuberculosis also skews the cytokine environment by inducing regulatory cytokines like IL-10 and TGF-β, thereby 
suppressing Th1-mediated immunity and allowing persistent infection (39). These immune evasion mechanisms 
collectively hinder effective clearance, promote latency, and contribute to long-term pathogen survival. 

Understanding antigenic variation and immune modulation is essential for the design of next-generation TB vaccines 
and immunotherapies. Targeting conserved antigens and blocking immunosuppressive signals could improve host 
immunity and reduce disease burden (40). 
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Table 2 Selected M. tuberculosis Genes Differentially Expressed During Early Infection Stages and Their Roles 

Gene Expression Pattern Function / Role Associated Pathway 

esxA 
(ESAT-6) 

Upregulated Disrupts phagosomal membrane; aids in 
cytosolic escape 

ESX-1 secretion system 

esxB (CFP-
10) 

Upregulated Binds ESAT-6; facilitates secretion and 
immune modulation 

ESX-1 secretion system 

hspX (acr) Upregulated Stress response protein; mediates dormancy 
and survival 

DosR regulon / hypoxia 
response 

Rv2031c Upregulated Part of dormancy regulon; expressed under 
low oxygen 

DosR regulon 

sigH Induced under 
oxidative stress 

Sigma factor regulating antioxidant and 
stress response genes 

General stress response 

mbtB Upregulated Involved in siderophore (mycobactin) 
synthesis for iron uptake 

Iron acquisition / metabolic 
adaptation 

pknG Constitutively 
expressed 

Inhibits phagosome–lysosome fusion; 
promotes intracellular survival 

Intracellular survival / 
signaling 

fadD26 Upregulated Involved in lipid metabolism and virulence 
lipid synthesis 

Cell wall lipid synthesis 

Rv2623 Upregulated Universal stress protein; regulates bacterial 
growth rate 

Dormancy and persistence 

eis Induced early Enhances resistance to host-mediated stress; 
inhibits autophagy 

Immune evasion / 
antibiotic resistance 

6. Dual RNA-SEQ and cross-talk analysis  

6.1. Experimental Models for Dual RNA-seq in TB (in vitro, in vivo)  

Dual RNA sequencing (dual RNA-seq) enables simultaneous profiling of host and pathogen transcriptomes, offering 
unprecedented insights into their dynamic interactions during tuberculosis (TB) infection. To generate meaningful data, 
both in vitro and in vivo experimental models are employed, each with distinct advantages and limitations (23). 

In vitro models typically involve the infection of human or murine macrophage cell lines (e.g., THP-1 or RAW264.7) or 
primary monocyte-derived macrophages with Mycobacterium tuberculosis at defined multiplicity of infection (MOI). 
These models allow controlled manipulation of variables such as oxygen tension, nutrient availability, and drug 
exposure (24). Time-course sampling of infected cultures provides high-resolution insights into temporal 
transcriptional changes. However, these models lack the tissue complexity and immunological context of a whole 
organism (25). 

In vivo models, especially murine infection systems, are more physiologically relevant and are commonly used to study 
transcriptional responses in lung tissue or granulomas. Genetically modified mice (e.g., IFN-γ knockout) can help dissect 
specific immune pathways. Additionally, non-human primates (NHPs) offer closer immunological and pathological 
resemblance to human TB, enabling longitudinal studies of latent and active infection stages (26). Despite their 
strengths, in vivo models present challenges in pathogen RNA recovery due to the host transcriptome’s dominance and 
the low abundance of bacterial RNA. 

To overcome these challenges, cell-sorting techniques and laser-capture microdissection are used to enrich infected 
cells or granuloma regions before RNA extraction (27). Emerging organoid and ex vivo lung tissue models also offer 
promising alternatives, bridging the gap between reductionist in vitro setups and complex in vivo systems. Thus, the 
choice of model directly influences the resolution, interpretability, and translational potential of dual RNA-seq studies 
in TB (28). 
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6.2. Analytical Frameworks for Identifying Interactome Modules  

Identifying meaningful interactions between host and pathogen transcriptional profiles requires robust analytical 
frameworks capable of integrating high-dimensional dual RNA-seq datasets. The first step typically involves quality 
filtering, mapping reads to both host and pathogen genomes, and generating separate count matrices for each organism 
using tools such as STAR for the host and Bowtie2 or BWA for M. tuberculosis (29). Following alignment, normalization 
methods such as TPM (transcripts per million) or variance stabilizing transformation (VST) are applied to correct for 
sequencing depth and RNA composition (30). 

To identify interactome modules, co-expression network analysis is employed. Weighted Gene Co-expression Network 
Analysis (WGCNA) constructs gene modules based on expression similarity, which can then be correlated with clinical 
phenotypes or experimental conditions (31). Modules are examined for enrichment of Gene Ontology (GO) terms or 
KEGG pathways to infer biological function. On the pathogen side, bacterial modules are often smaller but can reveal 
clusters associated with virulence, dormancy, or stress response pathways (32). 

Cross-species interaction networks are constructed by correlating host and pathogen gene modules using biclustering, 
canonical correlation analysis (CCA), or joint non-negative matrix factorization (jNMF). These methods identify 
transcriptional overlaps or dependencies that may indicate molecular crosstalk (33). For instance, host immune 
activation genes may correlate negatively with bacterial stress response genes, suggesting an adaptive pathogen 
reaction to immune pressure. 

Machine learning algorithms such as random forests and support vector machines (SVMs) are also used to classify 
infection states or predict key regulatory genes from dual RNA-seq data. Feature selection methods rank genes based 
on importance scores, identifying transcriptional hubs that may control host-pathogen interactions (34). 

Integrated datasets can further be visualized using platforms like Cytoscape, allowing dynamic modeling of 
transcriptomic networks. Host-pathogen interactome maps constructed from dual RNA-seq provide valuable insight 
into systems-level interactions and identify novel targets for host-directed therapies or antimicrobial agents (35). The 
precision of these analytical frameworks is critical for translating dual RNA-seq data into actionable biological 
knowledge. 

6.3. Examples of Host-Pathogen Interaction Clusters (transcriptional overlap)  

Dual RNA-seq studies in TB have uncovered specific clusters of host and pathogen genes whose transcriptional profiles 
are interdependent. One example involves the host type I interferon response and the M. tuberculosis DosR regulon. 
Elevated expression of IFN-stimulated genes (ISGs), such as IFIT1, OASL, and MX1, in infected macrophages has been 
found to coincide with upregulation of bacterial dormancy genes including hspX and Rv2031c, suggesting a bacterial 
adaptation to interferon-induced stress (36). 

Another prominent cluster includes the host pro-inflammatory cytokine genes IL1B, TNF, and CXCL10, which show a 
positive correlation with M. tuberculosis genes involved in lipid metabolism and iron acquisition, such as mbtB and 
fadD26. These bacterial genes help the pathogen access host-derived nutrients under immune pressure, indicating 
metabolic cross-talk as a form of immune evasion (37). 

Studies have also identified clusters linking host autophagy genes (e.g., ATG5, BECN1) with M. tuberculosis secretion 
system genes (e.g., esxA, esxB), suggesting that bacterial effector proteins directly modulate host degradation pathways 
to avoid clearance (38). This transcriptional overlap implies coordinated regulatory mechanisms that sustain 
intracellular persistence. 

In granulomatous tissue samples, dual RNA-seq has shown co-activation of host angiogenesis markers (VEGFA, 
ANGPT2) and bacterial stress response genes, reflecting the hypoxic microenvironment and its influence on both host 
and pathogen gene expression (39). These clusters exemplify how transcriptional patterns reflect mutual adaptation 
during chronic infection. 

Such findings validate the utility of dual RNA-seq in uncovering synchronous gene expression modules that define host-
pathogen interaction landscapes. These interaction clusters offer a mechanistic basis for designing diagnostics and 
interventions that disrupt critical pathways sustaining TB infection (40). 
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Figure 3 Network map showing bidirectional gene expression interactions between host and pathogen 

7. Case studies and comparative analyses  

7.1. Human Lung Epithelial Cell Models vs. Murine Macrophages  

Experimental model selection significantly influences transcriptomic insights in tuberculosis (TB) research. Human 
lung epithelial cell lines, such as A549 and Calu-3, are increasingly used to study early-stage host responses to 
Mycobacterium tuberculosis (M. tuberculosis), particularly in the context of mucosal immunity and pathogen entry (27). 
These epithelial models offer advantages in mimicking the first point of contact between inhaled bacilli and the 
respiratory tract, allowing the investigation of barrier integrity, cytokine secretion, and cell-cell signaling. 

Lung epithelial cells respond to infection by producing chemokines such as CXCL8 and CCL20, which recruit immune 
cells to the infection site, and by expressing pattern recognition receptors like TLR2 and NOD2 (28). However, they lack 
robust phagocytic capacity and certain innate immune functionalities present in macrophages, limiting their utility in 
studying intracellular survival and bacterial clearance (29). 

Conversely, murine macrophage models, including RAW264.7 and bone marrow-derived macrophages (BMDMs), 
remain widely used due to their well-characterized immune phenotypes and ease of genetic manipulation. They 
efficiently phagocytose M. tuberculosis, generate reactive oxygen and nitrogen species, and undergo regulated cell death 
in response to infection (30). These models are ideal for examining intracellular signaling pathways and host defense 
mechanisms. 

Nonetheless, species differences in immune gene expression and signaling pathways between mice and humans limit 
the translational relevance of murine macrophages. For instance, certain cytokines and TLR responses differ 
substantially, leading to divergent transcriptomic profiles (31). Therefore, the integration of human epithelial models 
with macrophage systems offers a more comprehensive view of early TB pathogenesis, capturing both barrier and 
innate immune responses. Selecting complementary models allows researchers to dissect compartment-specific 
transcriptional responses and enhance the biological relevance of dual RNA-seq analyses (32). 
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7.2. Virulent vs. Attenuated M. tuberculosis Strains Transcriptomic Contrast  

Comparative transcriptomic profiling of virulent and attenuated Mycobacterium tuberculosis strains reveals distinct 
bacterial adaptation mechanisms and host immune responses. Virulent strains such as H37Rv and Beijing lineage 
strains elicit strong inflammatory reactions and exhibit enhanced survival within host cells, while attenuated strains 
like H37Ra and M. bovis BCG typically induce reduced pathogenicity and altered immune signatures (33). 

At the bacterial transcriptome level, virulent strains upregulate genes involved in lipid metabolism (e.g., fadE24, 
Rv2945c), iron acquisition (mbtB, irtA), and ESX-1 secretion system components (espA, esxA), facilitating intracellular 
adaptation and immune modulation (34). These virulence-associated genes enhance phagosomal escape, inhibit 
autophagy, and interfere with antigen presentation, contributing to bacterial persistence (35). 

In contrast, attenuated strains demonstrate reduced expression of ESX-1-associated genes and lower induction of the 
DosR regulon under hypoxic or nitric oxide stress conditions. This downregulation correlates with impaired ability to 
establish latency-like states and less robust transcriptional responses to host-imposed stress (36). Furthermore, 
attenuated strains show diminished regulation of regulatory proteins such as SigH and WhiB3, limiting their capacity 
to coordinate complex survival programs (37). 

From the host perspective, infection with virulent strains leads to the upregulation of pro-inflammatory cytokines (IL1B, 
TNF, IFNG) and chemokines (CCL2, CXCL10), accompanied by interferon-stimulated gene signatures, especially during 
early infection stages (38). This strong response reflects recognition of virulence factors and immune-stimulatory 
components. Meanwhile, attenuated strains elicit milder transcriptomic shifts, characterized by lower expression of 
inflammatory genes and reduced activation of NF-κB and STAT1 pathways (39). 

Notably, dual RNA-seq studies have shown that macrophages infected with virulent strains exhibit higher expression of 
autophagy suppressors (e.g., mTOR) and anti-apoptotic regulators (BCL2), indicating the pathogen’s capacity to actively 
subvert host defense (40). These transcriptional contrasts underscore the significance of virulence-associated genes in 
shaping both pathogen survival strategies and host immune dynamics. 

Such comparative analyses are essential for identifying molecular determinants of pathogenicity and for informing the 
design of improved vaccines and attenuated strains that elicit protective, rather than suppressive, host responses (41). 

7.3. Time-Course Differential Expression Study (6h, 24h, 48h)  

Time-course transcriptomic studies allow researchers to capture the dynamic evolution of host and pathogen gene 
expression across different stages of infection. A typical timeline includes early (6 hours), intermediate (24 hours), and 
late (48 hours) time points post-infection, providing a kinetic perspective on transcriptional reprogramming during 
Mycobacterium tuberculosis infection (42). 

At 6 hours post-infection, the host response is dominated by the upregulation of innate immune genes such as TLR2, 
NOD2, IL1B, and TNF. These early signals initiate pathogen recognition and promote the recruitment of immune cells 
through chemokines like CXCL8 and CCL2 (43). On the bacterial side, early transcriptional changes involve ESX-1-
associated genes (esxA, esxB), enabling phagosomal disruption and immune interference. 

By 24 hours, host macrophages begin transitioning toward a more regulated immune response, characterized by 
increased expression of IL10, SOCS3, and autophagy-related genes (BECN1, ATG5) (44). Bacterial gene expression shifts 
to include dormancy regulon components (e.g., hspX, Rv2623) and stress response genes (sigH, ahpC), indicating 
adaptation to host-induced pressures. 

At 48 hours, the host exhibits feature of immune modulation and polarization. M2 markers such as ARG1 and IL4RA 
may emerge, while pro-inflammatory responses subside in favor of granuloma-associated processes (45). Concurrently, 
M. tuberculosis increases the expression of lipid metabolism genes (fadD26, tgs1), preparing for long-term survival 
under nutrient-limited conditions. 

These temporal expression patterns reveal how both host and pathogen progressively recalibrate their strategies. Early 
activation is followed by immune modulation and persistence signals, highlighting key windows for therapeutic 
intervention. Time-course dual RNA-seq thus provides a mechanistic basis for understanding infection progression and 
identifying stage-specific biomarkers or drug targets (46). 
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Table 3 Temporal Transcriptomic Markers of Infection Stage Progression  

Time 
Point 

Key Transcriptomic 
Markers 

Function / Role Implication for Stage 

6 hours TLR2, NOD2, IL1B, TNF, 
CXCL8 

Early innate immune activation, 
inflammation, neutrophil recruitment 

Indicates recognition and initial 
immune response 

24 
hours 

IL10, SOCS3, ATG5, BECN1, 
IFIT1 

Immune regulation, autophagy 
initiation, type I IFN response 

Marks transition to immune 
modulation and intracellular 
stress 

48 
hours 

ARG1, IL4RA, VEGFA, 
MMP9, CXCL10 

M2 polarization, angiogenesis, matrix 
remodeling, chronic inflammation 

Reflects granuloma development 
and immune adaptation 

Latent 
TB 

GBP5, IFI44L, BATF2, 
Rv2031c (bacterial) 

Host immune surveillance, dormancy 
regulation in pathogen 

Characteristic of controlled 
infection and dormancy 
maintenance 

Active 
TB 

MX1, OASL, IFNG, IL1RN, 
HLA-DRB1 

Heightened inflammation, antigen 
presentation, interferon signaling 

Indicates progression to 
symptomatic disease 

8. Application of transcriptomic signatures in diagnostics and therapeutics  

8.1. Biomarkers for Early TB Detection and Disease Stratification  

Identifying reliable biomarkers for early tuberculosis (TB) detection and disease stratification remains a global health 
priority. Transcriptomic profiling has emerged as a powerful tool for uncovering host gene expression signatures that 
distinguish between latent TB infection (LTBI), incipient TB, and active disease. Numerous studies have identified gene 
panels with diagnostic potential, particularly those involving interferon-stimulated genes (ISGs) (32). For example, the 
upregulation of genes such as IFI44L, GBP5, and BATF2 has been associated with progression from latent to active TB 
and offers predictive potential (33). 

Several transcriptional signatures have been validated across independent cohorts and populations. One notable 
example is the 16-gene RISK6 signature, which can predict progression to active TB up to 12 months before clinical 
diagnosis (34). Similarly, three- and four-gene signatures have demonstrated high sensitivity and specificity in 
distinguishing active TB from other respiratory diseases or latent infection in HIV-coinfected individuals (35). These 
biomarkers may support early therapeutic interventions and help prioritize individuals for preventive therapy. 

Transcriptomic biomarkers also aid in disease stratification by reflecting the extent and nature of immune activation. 
Gene expression patterns involving type I interferons, inflammation, and neutrophil activation have been correlated 
with more severe disease phenotypes and greater bacterial burden (36). Stratification based on these markers can 
inform risk-based treatment strategies, optimizing clinical outcomes and resource allocation. 

Moreover, dual RNA-seq data allow for parallel pathogen-derived transcript quantification. Pathogen RNA load and 
expression of virulence or dormancy-related genes may serve as correlates of infection stage or treatment 
response (37). Thus, transcriptomic biomarkers, both host- and pathogen-derived, have potential as minimally invasive, 
blood-based tools for TB diagnosis, prognostication, and monitoring. Their integration into clinical workflows, however, 
will require standardized platforms, cross-population validation, and regulatory endorsement (38). 

8.2. Predictive Models for Drug Response and Resistance Using Transcriptomic Data  

Transcriptomic data are increasingly being applied to predict drug response and resistance in TB, supporting the 
personalization of treatment regimens and surveillance of resistance emergence. Differential gene expression profiles 
of both the host and Mycobacterium tuberculosis during treatment can offer insights into therapeutic efficacy, host 
tolerance, and the potential for resistance development (39). By monitoring changes in transcriptomic signatures over 
time, researchers can assess whether treatment is suppressing the bacterial transcriptional response or inadvertently 
selecting for resistant subpopulations. 

On the bacterial side, RNA-seq has identified genes whose upregulation correlates with drug exposure. For instance, 
increased expression of the efflux pump genes Rv1258c and Rv1410c has been linked to isoniazid and rifampicin 



World Journal of Advanced Research and Reviews, 2024, 22(01), 2054–2073 

2068 

tolerance, respectively (40). Similarly, transcriptional activation of stress response genes such as sigE and dnaK is 
frequently observed in response to antimicrobials and may predict subclinical resistance or tolerance phenotypes (41). 

Host transcriptomic responses can also serve as indirect indicators of treatment success. A decline in inflammation-
related genes (e.g., IL1B, CXCL10) and restoration of homeostatic gene expression patterns have been associated with 
treatment efficacy (42). Machine learning models trained on these temporal transcriptomic patterns can classify 
responders and non-responders with high accuracy, enabling dynamic treatment adjustments. 

Moreover, predictive models that incorporate transcriptomic features have been developed to identify potential 
resistance mutations even before phenotypic resistance is apparent. Combining expression-based classifiers with 
genotypic data enhances the sensitivity and specificity of resistance prediction (43). 

These approaches pave the way for transcriptome-guided TB therapy, wherein real-time transcriptional monitoring 
could tailor drug combinations, reduce treatment duration, and mitigate resistance evolution. Implementing these 
predictive tools in clinical practice, however, will require scalable platforms, integrated bioinformatics, and extensive 
validation (44). 

8.3. Integration with Multi-Omics and Machine Learning Frameworks  

To fully realize the potential of transcriptomics in TB research and clinical application, integration with multi-omics and 
machine learning frameworks is essential. Multi-omics approaches combine transcriptomics with genomics, 
proteomics, metabolomics, and epigenomics to provide a systems-level understanding of host-pathogen 
interactions (45). These data layers reveal complementary insights—for example, while transcriptomics captures gene 
activity, proteomics and metabolomics provide functional context in terms of protein abundance and metabolic flux. 

Machine learning algorithms, including random forests, support vector machines (SVM), and deep learning models, are 
increasingly employed to integrate and analyze high-dimensional omics datasets. These tools can identify complex 
patterns and construct predictive models for diagnosis, treatment response, or disease progression (46). Feature 
selection techniques help pinpoint the most informative biomarkers, improving interpretability and reducing 
computational burden. 

Integration platforms such as Multi-Omics Factor Analysis (MOFA) and Similarity Network Fusion (SNF) are used to 
harmonize disparate data types, while visualization tools like t-SNE and UMAP enable intuitive exploration of multi-
omics landscapes. These frameworks enhance biological discovery and accelerate translation to precision medicine. 

Ultimately, the convergence of transcriptomics, multi-omics, and AI-based analytics will unlock new biomarkers, drug 
targets, and clinical tools for TB control in diverse global settings (47). 

 

Figure 4 Diagnostic model incorporating early-stage transcriptomic biomarkers with ROC curve performance 
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9. Challenges and future perspectives  

9.1. Limitations of Sample Quality, Heterogeneity, and Model Systems  

Despite the transformative potential of transcriptomics in tuberculosis (TB) research, several limitations constrain its 
applicability and interpretation. One primary challenge is the variability in sample quality. RNA is inherently labile, and 
degradation due to improper handling, prolonged storage, or suboptimal extraction protocols can compromise data 
integrity, leading to biased or incomplete transcriptomic profiles (36). This issue is especially pertinent in field settings 
where biospecimen collection conditions may be inconsistent. 

Another limitation arises from biological heterogeneity. Clinical TB samples—especially those derived from sputum, 
blood, or granulomatous tissue—contain diverse cell populations, including immune cells at various activation states, 
epithelial cells, and extracellular matrix components (37). This heterogeneity can obscure cell-specific transcriptional 
signals and complicate downstream analyses. Bulk RNA-seq, in particular, averages signals across mixed populations, 
potentially masking meaningful expression changes in rare or functionally distinct cells. 

Moreover, the choice of experimental model systems introduces limitations in data extrapolation. In vitro models often 
lack the complexity of in vivo host-pathogen interactions, while murine models, although widely used, do not fully 
recapitulate the immunopathological features of human TB (38). Differences in gene regulation, immune cell 
composition, and lung architecture between species can lead to discordant findings. As a result, translating 
transcriptomic insights from experimental settings to human disease remains a challenge. 

Overcoming these limitations requires standardized protocols for sample processing, stratified analyses to address 
heterogeneity, and validation across human-relevant models. Acknowledging and addressing these issues is essential 
for maximizing the reliability and translational value of TB transcriptomics (39). 

9.2. Opportunities for Spatial Transcriptomics and AI-based Meta-analysis  

Emerging technologies such as spatial transcriptomics and artificial intelligence (AI)-driven meta-analysis offer 
powerful opportunities to overcome current limitations and deepen our understanding of TB pathogenesis. Spatial 
transcriptomics allows gene expression to be mapped within intact tissue sections, preserving the spatial architecture 
of granulomas and other infection niches. This technology enables the identification of transcriptional gradients and 
cell-cell interactions that are critical for understanding localized immune responses and bacterial persistence (40). 

In TB, spatial transcriptomics can reveal how distinct regions within granulomas—such as necrotic cores, peripheral 
immune zones, and fibrotic capsules—differ in gene expression and cellular composition (41). Such analyses may 
identify microenvironments that favor bacterial survival or immune suppression, offering targets for localized 
therapeutic intervention. Additionally, this approach can dissect the spatial co-expression of host and pathogen genes, 
providing insights into functional host-pathogen interfaces that were previously invisible in bulk transcriptomic 
analyses. 

Parallel to these advances, AI-based meta-analysis can synthesize findings across heterogeneous datasets to identify 
robust, reproducible signatures of disease. Machine learning algorithms can integrate transcriptomic data from 
different cohorts, time points, tissues, and experimental platforms, controlling for confounding variables such as batch 
effects or demographic diversity (42). Meta-learning frameworks enable the generation of consensus biomarkers that 
perform consistently across populations and facilitate the discovery of novel regulatory networks involved in TB 
pathogenesis and resolution. 

Moreover, AI models can predict clinical outcomes such as treatment response, relapse risk, or progression from latent 
to active disease using multi-modal data inputs. These predictive tools support precision medicine strategies, enabling 
more effective and individualized TB management (43). Cloud-based platforms and federated learning methods can 
also facilitate global data sharing while preserving patient privacy, further enhancing the impact of AI in TB research. 

By harnessing spatial transcriptomics and AI-powered analytics, researchers can transcend current methodological 
constraints and generate actionable insights into the spatiotemporal dynamics of TB infection and immunity (44). 
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Figure 5 Flowchart summarizing pipeline from infection model to transcriptomic insight and translational endpoint 

10. Conclusion 

10.1. Recapitulation of Key Transcriptomic Insights in Early TB Infection  

Transcriptomic studies have significantly advanced our understanding of host-pathogen interactions during the early 
stages of Mycobacterium tuberculosis (M. tuberculosis) infection. These insights have uncovered the complex molecular 
events that shape the trajectory of tuberculosis (TB) from initial exposure to latency or active disease. Early infection is 
characterized by rapid activation of innate immune signaling pathways, particularly those mediated by Toll-like 
receptors, type I and II interferons, and pro-inflammatory cytokines. Gene expression signatures within the first 6 to 24 
hours post-infection reflect an intense host effort to contain the pathogen, with upregulation of IL1B, TNF, and CXCL10, 
accompanied by recruitment of monocytes and macrophages to the site of infection. 

Simultaneously, M. tuberculosis activates stress response pathways, including the DosR dormancy regulon, and 
remodels its transcriptome to evade host defenses. The pathogen upregulates genes related to cell wall integrity, 
secretion systems (e.g., ESX-1), and lipid metabolism to ensure intracellular survival. Dual RNA-seq has enabled parallel 
profiling of both host and pathogen transcripts, revealing interdependent transcriptional programs and molecular 
crosstalk. 

Temporal transcriptomic patterns have also shown how the immune system transitions from an inflammatory to a 
regulatory state, marked by increased expression of IL10, ARG1, and autophagy-related genes by 48 hours post-
infection. These changes suggest a host attempt to mitigate tissue damage while simultaneously allowing pathogen 
persistence. Collectively, transcriptomic data provide a high-resolution, time-resolved view of early TB infection, 
identifying critical windows for intervention, key immune pathways that dictate disease outcomes, and molecular 
signatures that may serve as diagnostic or prognostic biomarkers in both latent and progressive forms of TB. 

10.2. Research Implications for Host-Directed Therapies and Vaccine Design  

The wealth of transcriptomic insights from early TB infection has profound implications for the development of host-
directed therapies (HDTs) and next-generation vaccines. By dissecting host gene expression patterns that favor 
pathogen containment or disease progression, researchers can identify immune pathways that are amenable to 
therapeutic modulation. For example, augmenting protective responses such as autophagy, inflammasome activation, 
or specific cytokine signaling (e.g., IL-1β or IFN-γ) could enhance bacterial clearance without exacerbating tissue 
damage. Conversely, dampening excessive inflammation through selective targeting of pathways like type I interferon 
signaling may reduce immunopathology while preserving antimicrobial efficacy. 
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HDTs informed by transcriptomic data could complement conventional antibiotic therapy, particularly in multidrug-
resistant TB, by restoring effective immune function and shortening treatment duration. These approaches also offer 
opportunities to repurpose existing immunomodulatory drugs—such as mTOR inhibitors or checkpoint blockade 
agents—based on their ability to shift transcriptional programs in favor of host defense. 

Transcriptomic profiling also supports rational vaccine design by identifying antigens and host responses associated 
with protective immunity. Signatures of early containment, such as robust Th1-type responses, macrophage activation, 
and limited expression of immune suppressive genes, provide benchmarks for evaluating vaccine efficacy. Vaccine 
candidates that mimic these protective transcriptional profiles may offer improved protection over existing options like 
BCG. 

Furthermore, transcriptomic biomarkers can guide vaccine trial stratification by identifying individuals with high-risk 
profiles for progression, allowing more precise assessment of efficacy. Overall, transcriptomic research offers a systems-
level framework to develop tailored, multi-pronged strategies that not only prevent TB but also enhance therapeutic 
success in infected individuals. 
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