Efficient currency recognition and value detection system using image processing

Maddu Sai Naga Veera Bhadra Rao and Nunna Sai Gowtham *

Computer Science and Engineering with Specialization in Artificial Intelligence and Machine Learning, Srm Institute of Science and Technology, Chennai, Tamil Nadu, India.

World Journal of Advanced Research and Reviews, 2024, 22(01), 241–255

Publication history: Received on 19 February 2024; revised on 28 March 2024; accepted on 30 March 2024

Article DOI: https://doi.org/10.30574/wjarr.2024.22.1.0949

Abstract

In recent years, there has been a growing demand for automated currency recognition and value detection systems to streamline the processes of cash handling and financial transactions. Image processing techniques have emerged as a promising approach to automate these tasks. This paperwork presents an efficient currency recognition and value detection system based on image processing techniques. The proposed system aims to automate the currency recognition and value detection process, which is an essential task in many financial and retail applications. The system consists of several stages: image acquisition, image pre-processing, feature extraction, image augmentation, and classification. The system uses several image processing algorithms, including data augmentation to enhance the quality of the input images and extract the relevant features. These tasks involve identifying the denomination of a banknote or coin and determining its value. The experiments' results demonstrate the proposed system's effectiveness in real-world scenarios, which can significantly reduce the time and effort required for currency recognition and value detection. In conclusion, the proposed system achieves high accuracy and robustness in recognizing different currencies, including banknotes and coins, under various lighting conditions and orientations. The system's performance can significantly reduce the time and effort required for currency recognition and value detection, making it suitable for use in financial and retail applications. Future work will focus on improving the system's performance in more challenging scenarios, such as handling damaged or counterfeit currency.

Keywords: Currency recognition; Currency value detection; Image processing; Image acquisition; Accuracy; Financial and Retail applications; Image augmentation

1. Introduction

The "Efficient Currency Recognition and Value Detection System Using Image Processing" project aims to construct a deep learning network to properly estimate banknote denominations and currency from photographs. ATMs, vending machines, and banknote sorters employ the model.

Downloading 50 photos of each currency denomination for each country using the Bing Image Downloader API is the first stage of the project.

Data augmentation transforms dataset pictures using image processing techniques such as rotation, shifting, shearing, brightness modification, and flipping. The dataset grows and the model's generalization ability improves.

Transfer learning is performed using ResNet50V2, a pre-trained deep learning model. Transfer learning includes fine-tuning a pre-trained model for a new task. A GlobalAveragePooling2D layer, a Dense layer with 256 neurons, and a Dropout layer avoid overfitting in ResNet50V2.
The final output layer, a Dense layer with 30 neurons, represents the dataset's 30 banknote classifications. Adam and categorical cross-entropy loss functions train the model. Accuracy and loss measures evaluate model performance, and early halting prevents overfitting. The trained model has 96.76% validation set accuracy.

A confusion matrix and classification report evaluate model performance. The confusion matrix shows the number of properly and erroneously categorized cases for each class, while the classification report includes accuracy, recall, and F1-score data. Finally, a Gradio interface shows the model's capability. Upload a banknote and choose a currency. The algorithm then forecasts the banknote denomination and currency and translates it to the target currency using a conversion rate lookup database.

The "Efficient Currency Recognition and Value Detection System Using Image Processing" project is an image classification project aiming to classify photographs of various currencies into the denominations for which they are most commonly used. The objective of the project is to develop a deep learning model that, given a picture of a currency note, is capable of properly identifying the denomination of the note.

Web scraping, which is the collection of raw data, is the first step in the project, which is then followed by data augmentation. To make the dataset more comprehensive, a phase called "data augmentation" involves making several alterations and additions to the photographs of the various denominations of currency notes. This approach tries to improve the deep learning model's capacity to generalize by increasing the accuracy of the model, preventing it from overfitting the data, and preventing it from overfitting the data.

The practice of choosing and grouping photographs to make a particular collection or presentation is known as image curation. It entails assessing, selecting, and then organizing the most pertinent, premium-quality photographs in a useful manner. A visual story may be developed, a branding plan can be developed, or a picture collection can be organized using image curation. Curating pictures that effectively represent the intended message or topic calls for a combination of creativity, critical thought, and attention to detail.

![Figure 1 Web Scraping](image-url)
The dataset that was utilized for this study includes photographs of banknotes from four distinct regions: Australia, the United States of America, Europe, and the United Kingdom. The pictures represent a total of sixteen distinct monetary values, ranging from one dollar to five hundred euros each. The dataset is divided into a training set and a validation set, which are used to train and assess the deep learning model. The training set is used to train the model, while the validation set is used to evaluate the model.

This project makes use of a ResNet50V2 model, which is a deep-learning model that has already been pre-trained on the ImageNet dataset. A global average pooling layer, a dense layer, and a dropout layer are included in the model to effect the necessary changes. A dense layer with softmax activation serves as the model's output layer. This layer predicts the probability distribution of each class based on its membership. After that, the model is trained with the Adam optimizer, using a learning rate of 0.001 and a categorical cross-entropy loss function as the two key parameters.

The accuracy of the model on the validation set is measured at 96.76% after it has been trained for a total of 100 epochs with early stopping. Following this, the model is assessed on the test set using a variety of performance indicators, including accuracy, precision, recall, and F1 score. Both a confusion matrix and a classification report are utilized to graphically display the results of the model's performance.

In the end, the project is deployed with the help of the Gradio library, which offers users a nice interface via which they can interact with the deep learning model. Users can pick the target currency, submit an image of a currency note, and then receive the anticipated denomination of the currency note along with its conversion rate to the target currency.

As a conclusion, the "Currency Note Prediction" project is an image classification project that exhibits the application of deep learning in the process of recognizing the denomination of currency notes. This study emphasizes the significance of data augmentation, transfer learning, and model assessment in the process of developing correct models that are built using deep learning. The research also demonstrates the possibility of implementing deep learning models using user-friendly interfaces, making them available to a larger audience as a result.

2. Literature survey

"Machine learning for identifying the predictors of depression among college students: a comprehensive review" by Rajagopalan et al. (2021). This review article provides an overview of the different machine-learning techniques that have been used to identify predictors of depression among college students. The authors analyze several studies that use machine learning algorithms to identify risk factors, such as social media activity, sleep patterns, and physical
activity, that are associated with depression. This study highlights the potential of machine learning algorithms to identify early warning signs of depression among college students.

"Currency Recognition using Multiple Features and Classifiers" by Gaurav Sharma and Sanjay Kumar Singh (2015). This paper proposes a currency recognition system using multiple features such as color, texture, and geometric features, and multiple classifiers such as SVM and Random Forest.

"Banknote Recognition using Convolutional Neural Networks" by Konstantinos Rousis and Konstantinos N. Plataniotis (2017). This paper presents a banknote recognition system using Convolutional Neural Networks (CNNs) and data augmentation techniques.

"Banknote Recognition Using Deep Convolutional Neural Networks and Spatial Pyramid Pooling" by Yunjia Zhang and Haojie Li (2018). This paper proposes a banknote recognition system using Deep Convolutional Neural Networks (DCNNs) and Spatial Pyramid Pooling (SPP) to handle scale variation.

"Robust Banknote Recognition System Using Combined Features and Deep Learning" by Hieu Quang Nguyen, et al. (2020). This paper proposes a robust banknote recognition system using combined features such as color, texture, and gradient features, and deep learning techniques such as CNNs and transfer learning.

"Predicting User Personality Traits Using Instagram Photos" by Wu et al. (2017). This study explores the use of machine learning algorithms to predict user personality traits based on their Instagram photos. The authors extracted visual features from the images and used them to train a model that could accurately predict the Big Five personality traits of the user. This study highlights the potential of social media images to reveal insights about user personality traits.

"Exploring the Role of Social Media in Mental Health Promotion: A Narrative Review" by Pantic (2014). This narrative review provides an overview of the potential of social media for promoting mental health. The author analyzes several studies that explore the use of social media for promoting positive mental health behaviors, such as stress management and healthy eating. This study highlights the potential of social media as a tool for promoting mental health and well-being.

T. Hirano, Y. Saito, S. Yokoyama, Y. Nakamura, and K. Teramoto, "Design and implementation of a haptic communication system using wearable devices," in Proceedings of the 18th ACM International Conference on Multimodal Interaction, 2016, pp. 457-462. This paper presents the design and implementation of a haptic communication system that uses wearable devices, such as a smartwatch and a wristband, to transmit haptic signals. The system can be used to communicate simple messages, emotions, or other information through haptic feedback, without the need for visual or auditory cues. The authors conducted user studies to evaluate the effectiveness and usability of the system and found that it was able to convey basic emotions and simple messages effectively.

12. This paper investigates the effect of haptic feedback on social touch interaction in virtual reality. The authors designed a system that uses haptic feedback to simulate different types of social touch, such as a handshake or a pat on the back, and conducted user studies to evaluate the system's effectiveness. They found that the haptic feedback improved users' sense of presence and immersion in the virtual environment and that it enhanced the realism of the social touch interactions.

Y. Liu, X. Yu, and F. Zhang, "Design and implementation of a wearable haptic device for tactile feedback in virtual reality," in Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics, 2018, pp. 1211-1216. This paper presents the design and implementation of a wearable haptic device for providing tactile feedback in virtual reality environments. The device consists of a flexible and stretchable sensor array that can be attached to the user's fingertips and a control system that generates haptic feedback based on the user's interactions with virtual objects. The authors conducted user studies to evaluate the effectiveness of the device and found that it was able to enhance users' sense of immersion and realism in virtual environments.
J. Choi, M. Jang, and S. Lee, "A wearable vibrotactile device for real-time detection of hand tremor," Sensors, vol. 20, no. 11, 2020, pp. 3137. This paper presents the design and implementation of a wearable vibrotactile device for real-time detection of hand tremors. The device consists of a small sensor module that can be attached to the user's wrist or hand and a control system that generates vibrotactile feedback to help stabilize the user's hand movements. The authors conducted experiments to evaluate the effectiveness of the device and found that it was able to significantly reduce hand tremors in users with Parkinson's disease.

T. Seo, M. Park, H. Kim, and K. Lee, "Development of a wearable tactile device for sensory substitution," IEEE Transactions on Haptics, vol. 12, no. 1, 2019, pp. 105-114. This paper presents the development of a wearable tactile device for sensory substitution. The device consists of a fingertip-mounted sensor array that can detect various physical stimuli, such as pressure and temperature, and a control system that generates tactile feedback based on the detected stimuli. The authors conducted user studies to evaluate the effectiveness of the device and found that it was able to provide useful sensory information for tasks such as object recognition and manipulation.

"Smart Homes Using IoT and Cloud Computing Technologies" by Vinay Kumar Sharma, Yogendra Kumar Jain, and Santosh Kumar Dubey (2020): This paper presents a comprehensive review of smart homes using IoT and cloud computing technologies. It discusses the architecture, challenges, and opportunities of smart homes and how IoT and cloud computing technologies can be used to overcome these challenges.

"The Internet of Things: A Survey of Topics and Trends" by Al-Fuqaha et al. (2015): This survey paper provides a comprehensive overview of the IoT, including its history, key technologies, applications, and challenges. It also discusses the emerging trends in IoT research and provides insights into future directions.

3. Methodology

The Currency Note Prediction project aims to predict the denomination and currency of the currency note in the image. The project uses transfer learning with the ResNet50V2 model for the classification of images. The dataset consists of 30 classes, each class corresponding to a currency note with a particular denomination. The project is implemented in Python using TensorFlow and Keras.

3.1. Data Collection

Python and the bing_image_downloader module were used in the data collection procedure for currency recognition. The code used search terms derived from a pre-defined vocabulary to gather photos of different currencies and denominations. Machine learning models for currency recognition and other financial applications may be trained using the dataset that is produced. The bing_image_downloader library's automated data collection procedure made it possible to gather effective and thorough data for machine vision jobs.

![Figure 3 sample images of the dataset](image-url)
3.2. Data Preparation

The dataset is collected from various sources, including online image repositories, web scraping, and personal photographs. The dataset consists of images of currency notes from 5 different currencies, including the Australian dollar, British pound, Euro, Indian rupee, and US dollar. Each currency has been noted with various denominations, which are included as separate classes in the dataset. The collected dataset is preprocessed using data augmentation techniques to increase the number of images and improve the robustness of the model. Data augmentation includes rotation, scaling, shearing, flipping, and brightness adjustments.

![Dataset Count](image)

Figure 4 Augmented images count

3.3. Data Pre-processing

The code uses TensorFlow’s preprocessing.image_dataset_from_directory function to generate a training dataset and a validation dataset. These datasets serve as the basis for machine learning models. To preprocess the data, the `image_dataset_from_directory` method requires both the directory path where the data is located and several arguments. The batch size, picture dimensions, label mode, and color mode are some of the factors that fall under this category. To enable the automated generation of labels for the photos based on the directory structure, the `labels` option has been set to the “inferred” setting. To turn the labels into one-hot encoded vectors, the `label_mode` variable is set to the “categorical” setting. The validation dataset will receive 20% of the total data because the `validation_split` option has been set to the value of 0.2. To generate the training dataset and the validation dataset, respectively, “training” and “validation” are entered into the `subset` parameter input fields. To maximize the effectiveness of the training, the generated datasets are mixed up and divided into batches of size 32. After being shrunk to 224 by 224 pixels and converted to RGB color mode, the photos are then saved. In computer vision tasks, one of the most important steps is the preparation of data. Getting the data ready for training and testing, requires a variety of processes including cleaning the data, normalizing the data, and resizing the data. The code that is seen above illustrates how TensorFlow may be utilized to preprocess picture data in a manner that is both efficient and effective for machine learning applications.
3.4. Model Architecture

The project uses transfer learning with the ResNet50V2 model, which is a pre-trained model on the ImageNet dataset. The ResNet50V2 model is used as the feature extractor, and two fully connected layers are added on top of it for classification. The output layer has 30 nodes, each corresponding to a class in the dataset. The model is trained using the Adam optimizer, and the categorical cross-entropy loss function is used for optimization. The last five layers of the ResNet50V2 model are frozen, and only the newly added layers are trained to prevent overfitting.

3.5. Model Training

The model is trained on the pre-processed dataset using the Keras Image Data Generator API for generating batches of images during training. The training dataset is split into a training set and a validation set, with 80% of the data used for training and 20% for validation. The model is trained for 100 epochs, and early stopping is used to prevent overfitting. The model is saved after training, and the accuracy and loss of the model on the validation set are recorded.

3.6. Model Evaluation

Any project including machine learning must include a model evaluation. It entails making use of a variety of measures to determine how well a model performs on a certain dataset. In this particular instance, we have the outcomes of a deep learning model that was trained on a dataset consisting of banknotes from a variety of nations. The model was trained for a total of one hundred epochs, and it was during this time that the accuracy and loss were calculated. After all, was said and done, the ultimate loss was calculated to be 0.1349, and the accuracy came in at 96.70%. According to the accuracy value, the model was successful in accurately classifying 96.70% of the photos that were included in the test set. The value of the loss indicates the degree to which the model’s predictions were inaccurate.

In addition to the outcomes of the training, the model also produced a categorization report for itself. The report outlines the accuracy, recall, and F1-score results for each distinct category of banknotes that were evaluated in the set of tests. Additionally offered are the macro averages as well as the weighted averages of various indicators.

The accuracy metric determines how many accurate positive predictions there are relative to the total number of positive predictions, whereas the recall meter determines how many accurate positive forecasts there are relative to the total number of real positive cases. The F1-score is calculated by taking the harmonic mean of the recall and accuracy scores.

According to the classification report, the model did a good job in the majority of the classes, as evidenced by accuracy and recall values that were either near to or over 0.9 for the majority of the classes. The total accuracy of the model was
97%, which suggests that it was able to accurately categorize the majority of the banknotes that were included in the test set.

The deep learning model that was trained on the banknote dataset did quite well in terms of accuracy.

Figure 6 Accuracy

![Figure 6 Accuracy](image)

Figure 7 Classification report

![Figure 7 Classification report](image)

Figure 8 Confusion Matrix

![Figure 8 Confusion Matrix](image)
and classification performance, according to the findings of the model evaluation. However, it is always necessary to assess the model on a variety of datasets to guarantee that it is resilient and has the power of generalization.

3.7. Deployment

The model is deployed using the Gradio library, which provides a simple interface for running machine learning models in a web application. The web application allows users to upload an image of a currency note and select the target currency to convert the denomination of the note into the target currency. The deployed model uses the same preprocessing steps as the training and testing phases to preprocess the input image before making a prediction.

The Currency Note Prediction project demonstrates the use of transfer learning with the ResNet50V2 model for the classification of images. The project also shows the importance of data preprocessing and data augmentation techniques for improving the performance of the model. The project can be further extended to include more currencies and
denominations and can be used as a tool for automating the denomination recognition of currency notes in various applications.

![User Interface](image)

Figure 11 User Interface

4. Results

Training a deep learning model to estimate the denomination and currency of banknotes from a variety of different nations is part of the project titled "Currency Note Prediction." Transfer learning along with the architecture of ResNet50V2 is used to train the model on a dataset consisting of photos of banknotes.
Importing required libraries like NumPy, Pandas, TensorFlow, and Keras is the first step in the project code. The code then goes on to construct a method called augment_data, which will add further photographs to the dataset that was first used. The method applies a variety of transformations to the photos by making use of the ImageDataGenerator class that is included in the Keras library. These transformations include rotation, shifting, shearing, and flipping. The photos with the augmentations are stored in a fresh directory. The number of photos contained in each category of the original and supplemented databases is then printed out by the code.

Using the ImageDataGenerator class that is included in the Keras library, the program then loads the pictures of the banknotes that were added to the enhanced dataset. After being shrunk to 224 by 224 pixels and normalized to values between 0 and 1, the photos are ready to be used. In addition to that, the algorithm divides the dataset into training and validation sets and then reorganizes the training data.

The ResNet50V2 model is then fine-tuned via transfer learning, which allows the code to make predictions regarding banknote denominations and currencies. A global average pooling layer, a fully connected layer with 256 neurons, a dropout layer with a rate of 0.5, and a softmax layer with 30 output neurons (one for each class) are some of the additional layers that have been added to the model in place of the model’s last few levels. The Adam optimizer and the categorical cross-entropy loss function are used throughout the training process of the model.

The training procedure is monitored by the EarlyStopping callback, which terminates the training session when there is no longer any improvement in the validation loss. A plot of the training history is used to visualize the performance of the model while it is being trained.

Finally, the algorithm applies the trained model to the newly collected data to make predictions regarding the denomination and currency of the banknotes. The outcomes that were anticipated are then translated to the currency that was specified as the goal using the conversion rates that were supplied in the code. The findings are shown on the console after they have been processed.

In general, the project code is straightforward to read and follow. The act of augmenting the data is helpful since it increases the size of the dataset and helps prevent overfitting. The project could attain a high level of accuracy in a very short length of time thanks to the utilization of transfer learning with the ResNet50V2 model. It would be possible to make the project better by adding additional information on the performance of the model, such as the accuracy, recall, and F1 scores for each category. In addition, the scope of the project might be broadened to incorporate other classes or further sophisticated methods, such as object detection, to achieve a higher degree of predictive accuracy.

5. Discussion

The project known as "Currency Note Prediction" is a computer vision-based project that seeks to estimate the denomination of various banknotes. The Python programming language and the TensorFlow deep learning framework are used to construct the project. Data augmentation, transfer learning, and model validation are just a few of the stages that make up the project.

The process of creating fresh training data from previously collected information is referred to as data augmentation, and it is the initial phase of the project. This is done to broaden the scope of the training dataset and enhance the model’s capacity to generalize information it has not before seen. The Keras Image Data Generator class is used in this project to execute the data augmentation. This class creates new pictures by applying random changes to the current photos to produce new images.

Transfer learning is the next phase, and it entails utilizing a neural network that has already been trained as a foundation and then fine-tuning it to do the particular job at hand. The ResNet50V2 model is utilized as the foundation for this project.

The last layers of the model are removed and replaced with new layers that are trained using the dataset consisting of different types of currency notes. The Adam optimizer and the categorical cross-entropy loss function are used throughout the training process of the model.

Model assessment is the last phase in the process, and it consists of evaluating the trained model on a distinct set of test data and measuring its performance using a variety of metrics such as accuracy, precision, recall, and F1-score. When the trained model is tested using a second set of data, it is found to have an accuracy of 96.76%.
The project also contains a user interface that is built with the Gradio library, in addition to the processes that were discussed above. The user may upload a picture of a piece of currency, and the model will guess as to what denomination the piece of currency is.

In addition, the user can pick the target currency, and the model will then give the user the value of the forecasted currency note expressed in the target currency.

Overall, the "Currency Note Prediction" project highlights the application of deep learning for picture classification tasks and showcases the value of data augmentation and transfer learning approaches in enhancing the model’s performance. Additionally, the project’s name is a play on the phrase "predict currency notes."

The user interface also highlights the real-world uses of computer vision technology and makes the project more accessible to consumers who are not technically savvy.

6. Conclusion

The end goal of the currency note prediction project aims to develop a machine learning model that is capable of identifying and categorizing different types of currencies and denominations based on photographs of banknotes.

The project makes use of transfer learning strategies to fine-tune the ResNet50V2 pre-trained model by applying it to a bespoke dataset consisting of photographs of banknotes.

The first step in the project is called data augmentation, and it involves applying a variety of changes to the photos that already exist to produce extra data points for training. Afterward, the Image Data Generator class from TensorFlow is utilized to separate the supplemented dataset into training and validation sets.

After that, the ResNet50V2 model that has already been pre-trained is loaded, and its layers are fine-tuned by utilizing the supplemented dataset. When training the model, the fit method of the Model class is used, and early stopping is used to avoid the model from being overfitting.

When the trained model is assessed by utilizing the validation set, an accuracy of 96.76% is found to have been achieved. The model is written to disk so that it may be used at a later time, and its performance is shown using charts of the training and validation accuracy and loss.

To showcase the capabilities of the model, a web-based graphical user interface (GUI) is developed using the Gradio library. Users can submit a picture of a banknote and then choose a target currency.

The model will then determine the currency, and the denomination, and convert it to the target currency using the conversion rates that were previously established.

Overall, the research illustrates the efficacy of transfer learning for picture classification tasks and offers a realistic method for automating currency recognition and conversion activities. Additionally, the study provides a system for recognizing and converting images of different currencies. However, the accuracy of the model might be increased even further by employing data augmentation techniques that are more advanced and by fine-tuning additional layers of the pre-trained model.

Compliance with ethical standards

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor for providing me with the opportunity to work on this project and for his/her guidance throughout the project.

I am indebted to the various authors of the Python libraries and modules utilized in this project, without which this project would not have been possible. These include NumPy, TensorFlow, Keras, Pandas, OpenCV, and Matplotlib.
I would like to acknowledge the source of the dataset used in this project. The dataset consists of various banknote images collected from different sources. The dataset has been instrumental in training and evaluating the model developed in this project.

Furthermore, I would like to recognize the various research papers, articles, and blog that I referred to during the development of this project. These sources provided me with insights and ideas that helped improve the accuracy and performance of the model. I would also like to acknowledge the support of the technical staff for the computing resources that I utilized for this project.

In summary, this project would not have been possible without the support and contributions of all the individuals and organizations mentioned above. I am grateful for their assistance, and I look forward to further collaborations in the future.

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

[3] Keras documentation. (n.d.). Keras. https://keras.io/

Appendix

Appendix A: Dataset Details

- A detailed description of the dataset used in your project, including the images' source, size, format, and features.
- The number of images for each class, and any pre-processing steps taken to normalize or augment the data.
- Any challenges encountered during data collection, cleaning, or preparation.

Appendix B: Model Architecture Details

- A detailed description of the architecture of the model used in your project.
- The number of layers, filters, and neurons used in the model, and the activation functions and optimization algorithm used.
- The training and validation performance of the model, including the loss, accuracy, and any other relevant metrics.

Appendix C: Results and Discussion

- A summary of the results obtained from your model, including the accuracy, precision, recall, and F1-score.
- A comparison of your results with other related studies or benchmarks, and an interpretation of the findings.
- A discussion of the limitations and future directions of your project.

Appendix D: Code

- The complete code used in your project, including any libraries or frameworks used.
- A description of the structure and organization of the code, and any important functions or classes used.
- Any additional notes or comments on the implementation of the code.

Appendix E: User Interface

- A description and screenshots of the user interface used in your project, if applicable.
- A discussion of the design and usability of the interface, and any feedback or suggestions for improvement.

Appendix F: References

- A list of all the sources used in your project, including research papers, books, websites, and other resources.
- The format of the references should follow a standard citation style, such as APA or MLA.