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Abstract 

This paper provides a summary of the remote sensing analysis conducted, which utilized satellite images to model 
changes in land cover and their influence on Land Surface Temperature (LST). The primary determinant of surface 
overheating is identified as vegetation, with water bodies playing a significant role in LST regulation. Conversely, areas 
with bare soil and built-up infrastructure contribute to elevated LST levels. Therefore, it emphasizes the importance of 
implementing measures like urban forestry, creating water bodies, preserving existing ponds, and minimizing 
construction activities to prevent further increases in LST and mitigate ecological damage. Even in cases where tree 
planting isn't feasible, introducing shrub-type vegetation in barren urban areas is recommended as an effective means 
to resist soil heat buildup. Consequently, increasing vegetation cover is highlighted as a crucial factor in controlling LST 
within both urban and non-urban environments.  
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1. Introduction

The composition of land surfaces and the presence of water bodies have a significant impact on the local environment. 
Land Surface Temperature (LST) is important in hydrology, meteorology, and climatology because it plays a critical role 
in the physical processes of the local terrain. It is a key parameter in understanding the Earth's surface energy balance. 
LST is especially important in calculating the net radiation budget at the soil surface and in monitoring crop growth and 
vegetation dynamics. It also serves as an important indicator of interactions between local climate and ground 
conditions, such as the nursery effect. Variations in land surface characteristics, which include factors such as vegetation 
cover, land-use patterns, and surface impermeability, have a noticeable impact on LST (Uddin & Swapnil, 2021). The 
ongoing urbanization process has resulted in the expansion of urban areas, causing significant changes in land surface 
properties. In the context of global warming, LST emerges as a relevant indicator, with a strong relationship to factors 
such as vegetation, water bodies, and, most notably, urban development (Uddin & Mondal, 2020). LST is a valuable 
source of information about surface attributes and climate dynamics, making it useful in a variety of environmental 
scenarios (Weng & Yang, 2004). Ullah et.at (2023) and Shakil et al. (2013) find the best scenario of a job shop production 
which will be helpful for reducing step for the remote sensing work at the experiment. Hossain et al. (2023) also shows 
how electricity generation is done from moving vehicles which is very useful for this work as there are several works in 
remote sensing for land work. 

Land Surface Temperature (LST) assumes a pivotal role within the intricate energy dynamics and processes of 
evapotranspiration, encompassing dynamic energy interactions between the Earth's surface and the atmosphere 
(Alsultan et al., 2005). LST, distinct from Land Surface Air Temperature (LSAT), encompasses the complete spectrum of 
heating and cooling occurring at the Earth's surface and exhibits more rapid fluctuations compared to air surface 
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temperature. LSAT, conversely, represents the air temperature in immediate proximity to the Earth's surface, as 
recorded by meteorological stations, while LST characterizes the actual surface temperature of the land itself. 
Consequently, the phenomenon of land surface heating is intricate and regulated by a multitude of variables, including 
surface emissions, soil moisture content, surface material composition, and incident solar radiation (Liew & Cust, 2021; 
Rinner & Hussain, 2011). 

Nazma et. al (2014) and Rahman (2015) interpret how supplier selection may affect the Electronics sectors for an 
industry that plays significant role for Land surface remote sensing work. Rahman et. al (2023) considers the 
cryptocurrency system which is the most important factor for any sector for choosing mapping and materials for smooth 
operation running for remote sensing. Rahman et. al (2023) uses the machine learning algorithm which is very useful 
for this study specifically for the performance prediction of the surface image accuracy which will be generated from 
satellite when there will be big data. Sifat et al (2023) implements big data tool in his three different papers that we 
have included in this paper for MapReduce and Apace spark which is the future work for large volume of data sorting 
work for land surface image collection. Specifically, when the data size is more this research is very important. They use 
Multimode clusters with data compression methods and try to compare them which is significant for the expansion of 
our research when we select huge data. Syed at el. (2023) describes gently how Brain tumor classification with transfer 
learning across the multiple classes for healthcare purposes image processing which can be great source of our research 
specifically to sort out image from satellite image analysis using deep learning. Fayshal et al. (2024), Khalekuzzzaman et 

al (2023), Hasan et al (2023), and Adnan et al. (2023) describes gently how the effects of LST affect the world land surface in 

different manners. 

LST has a negative impact on both ecosystems and the atmosphere, influencing factors like increased terrestrial 
radiation and changes in heat flux exchanges within the atmosphere (Alsultan et al., 2005). LST is a valuable resource 
for understanding diverse land surface dynamics, making it important in a variety of fields such as climate studies, 
ecology, hydrology, vegetation monitoring, soil moisture estimation, and geology (Tang et al., 2008; Wan & Dozier, 
1996). Hence, LST stands as a pivotal factor in the evaluation of exchanges of energy at both the Earth's surface and 
within the atmosphere, facilitating the examination of environmental alterations spanning local, regional, and global 
scales (Lo & Quattrochi, 2003; Wan & Dozier, 1996). The realm of satellite-based remote sensing is increasingly 
recognized as an indispensable instrument, providing data across various spatial and temporal resolutions, which 
proves indispensable for research endeavors in fields such as climatology, geography, ecology, and hydrology. In this 
context, Thermal Infrared Remote Sensing (TIR) emerges as a robust and potent technique, enabling the acquisition of 
data pertaining to the physical attributes of the Earth's surface through the assessment of energy reflection, radiation, 
and emission levels (Dousset & Gourmelon, 2003; Kiage et al., 2007). Consequently, remote sensing has garnered 
widespread acceptance and has evolved into a valuable monitoring tool across various scientific applications, including 
meteorological studies and beyond. 

Land Surface Temperature (LST), which is typically measured in Kelvin or Celsius (Rajeshwari & Mani, 2014), is facing 
heightened challenges as greenhouse gas levels in the atmosphere rise. This rise in LST has dreadful consequences, 
contributing to the thawing of glaciers and ice masses in Arctic regions, and triggering events such as floods, sea level 
rise, and other natural disasters. Furthermore, LST surges disrupt tropical climatic equilibrium, resulting in irregular 
precipitation patterns (Rahman & Dedieu, 1994; Ullah et al., 2019). This rising LST has a significant impact on the Earth's 
vegetation cover, with a strong reliance on factors such as vegetation health, land use characteristics (including 
urbanization or barren areas), and the presence of water bodies. Estimating LST across large areas was historically 
difficult before the advent of Earth Observation Satellites (EOS) (Khandelwal et al., 2018). LST was typically calculated 
at specific sample points and then interpolated to generate isotherms for converting point-based data into larger spatial 
datasets (Mallick et al., 2008). Most isothermic LST maps were created using spatial interpolation techniques and data 
collected at specific observation sites. Satellite imagery is an important tool for obtaining detailed information about 
land cover types and patterns, including vegetation, water bodies, and bare soil. Furthermore, satellite data helps to 
improve understanding of how topography influences surface conditions (Zhao et al., 2019). Kamal et. al (2019) gives 
empirical evidence by using RFID technology for warehouse management by android application which has great 
impact on land surface sensing as we can apply this technology for detection purpose. Parvez et. al (2022) gives a Great 
discussion on ergonomics factor in his two different research paper of students from which we consider the human 
working posture for the efficiency measurement of worker in the land surface because ergonomics factors are one of 
the most crucial matters for their camera and sensing purpose based on which data can be changed greatly. Ullah et al. 
(2023) describes very gently in his three different papers regarding manufacturing excellence, scheduling operation 
and equipment efficiency from which we can consider the Equipment and component selection for the Land surface 
remote sensing during measurement as everywhere there is efficiency of human and machines. Shakil et. al (2013) 
interprets the process flow chart for a jute mill which is very informative for our research though this field is different, 
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but we have analyzed that process flow is very helpful for any types of measurement and analysis work. Ullah et.at 
(2023) finds the best scenario of a job shop production which will be helpful for land surface image processing. 

Satellite technology advancements and the deployment of high-resolution sensors have transformed the spatial 
monitoring of Land Surface Temperature (LST). With the use of thermal ultraviolet bands from satellites such as 
Landsat, it is now possible to estimate LST across large areas in a single operation. Numerous researchers have relied 
on Landsat imagery to create land use and land cover images. Nonetheless, due to the vast diversity of land surfaces and 
the complexities associated with eliminating atmospheric interferences, remotely sensing land surface temperatures 
remains a difficult task. LST has been widely used in a variety of scientific studies (Crago et al., 1995; Diak & Whipple, 
1995). It is essential for calculating surface urban heat, forecasting building energy consumption, and assessing heat-
related risks (Deng & Wu, 2013; Hu & Brunsell, 2012; Mathew et al., 2016). In the current context of rapid global 
industrialization and urbanization, LST has received considerable attention as the world grapples with the 
consequences of global warming. LST data is an important indicator of how the Earth's surface temperatures have 
changed over time. As a result, it provides a valuable tool for estimating the extent of climate change and assessing 
global greenhouse gas emissions in this critical context. 

2. History of LST 

Over the years, a multitude of research initiatives have been launched to enhance our comprehension of how alterations 
in land surface characteristics influence Land Surface Temperature (LST). Beginning as early as the 1960s, scientists 
have harnessed the potential of remotely sensed data to derive and simulate various vegetation-related biophysical 
factors, with the Normalized Difference Vegetation Index (NDVI) standing out as a prominent and widely employed 
parameter in this endeavor. An intriguing revelation stemming from these investigations is the inverse correlation 
discerned between LST and NDVI, signifying that the presence of vegetation exerts a cooling influence on surface 
temperatures (Weng, 2001). Recent advancements in remote sensing technology, coupled with strides in computational 
techniques, have catapulted the study of LST dynamics to new heights. These progressions have been further buoyed 
by the escalating availability of data from a diverse array of sensors. Remarkably, researchers have been able to 
establish a robust and consistent linear relationship spanning various seasons, linking LST to the percentage of 
impervious surface area (%ISA) (Yuan & Bauer, 2007). This discovery augments our understanding of how urbanization 
and changes in land surface properties can significantly impact LST across different climatic conditions and temporal 
contexts. 

In an investigative foray across diverse vegetation types in the region of Gujarat, India, an interesting pattern emerged: 
desert-based agriculture exhibited the highest surface temperatures, followed by rain-fed agriculture, irrigated 
agriculture, and forests. This intriguing discovery implies that fluctuations in vegetation cover play a more significant 
role in determining surface temperatures than the rapid shifts induced by climatic factors (J. Sobrino & Caselles, 1990). 
This insight underscores the notion that when examining Land Surface Temperature (LST), which exhibits both 
temporal variability and spatial heterogeneity, it is imperative to consider its interaction with stable environmental 
features such as terrain characteristics and land cover (Fan et al., 2014). This interplay between vegetation, land cover, 
and LST adds a layer of complexity to our understanding of the Earth's surface temperature dynamics, particularly in 
regions with diverse land use and vegetation patterns. LST, along with near-surface air temperature, is a key variable in 
studies ranging from hydrology to biodiversity to energy balance to climate change (J. A. Sobrino et al., 1996). 
Vegetation, soil moisture, elevation, solar zenith angle, and topographic effects all have a significant impact on their 
interrelationship (Lai et al., 2013). 

Thermal remote sensing data has proven to be a valuable tool in scrutinizing the response of topsoil characteristics to 
changes in Land Surface Temperature (LST) over time, particularly in arid environments. One intriguing observation 
that has surfaced is that specific land surface features exhibit consistent LST patterns during one time period but 
undergo significant variations in another, contingent upon the dynamics of the seasons (Ali & Shalaby, 2012). This 
insight highlights the intricate interplay between LST and the temporal variability in topsoil attributes, shedding light 
on how these environmental factors influence each other in arid regions. Furthermore, it's widely acknowledged that 
within the troposphere, for a stationary atmosphere, air temperature exhibits a decline with increasing altitude. This 
fundamental meteorological principle is referred to as the environmental lapse rate (J. A. Sobrino & Raissouni, 2000). 
The environmental lapse rate signifies the rate of temperature decrease per unit increase in height within a vertical 
column of air above the Earth's surface. Notably, the exact magnitude of this rate, ranging from 50 to 100 degrees Celsius 
per 1000 meters, is contingent upon prevailing moisture conditions. This understanding of the environmental lapse rate 
is pivotal in comprehending how temperature gradients change with altitude in the atmosphere and is a crucial factor 
for various scientific studies, particularly those focusing on atmospheric and environmental dynamics. 
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Many LST studies cover large areas ranging from a few square kilometers to several thousand square kilometers, with 
significant elevation variations across such vast areas (Zhang, 2009). The impact of settlements on the surrounding 
meteorological components, regardless of size, has long been a source of concern, particularly in urban climates (Oke, 
1982). In recent years, remote sensing research into the Urban Heat Island (UHI) phenomenon has accelerated, owing 
to significant advances in image precision and cost-effectiveness (Jin et al., 2005b). 

2.1. Impacts OF LST on climate change 

Extreme temperatures and heatwaves are inherent natural events that can yield severe repercussions for both human 
societies and the natural environment. Large urban areas, owing to their high population densities and concentration 
of valuable assets, stand particularly exposed to the perils associated with elevated temperatures. A glaring illustration 
of this vulnerability is the European heatwave experienced in August 2003, which exacted a devastating toll with an 
estimated 35,000 to 50,000 casualties within the cities of the continent, as reported by the United Nations Human 
Settlements Program in 2007. In a global context, the European heatwave of July, during the same year, held the dubious 
distinction of ranking fifth among the top ten natural disasters of 2007, causing the loss of 567 lives across southern 
Europe and the Balkans. Over the course of recent decades, extensive research endeavors have been dedicated to 
delving into various facets of the Urban Heat Island (UHI) phenomenon, which characterizes localized urban areas 
experiencing elevated temperatures compared to their surrounding regions. Notably, contemporary technologies such 
as Geographic Information Systems (GIS) and remote sensing have played pivotal roles in unraveling the intricacies of 
urban climates (Fayshal et al., 2023). These advancements have facilitated significant progress in the field, as 
exemplified by the capacity to monitor and study heatwave events within urban settings (Jin et al., 2005a). 

Land Surface Temperature (LST), a significant parameter within the Earth's surface energy equilibrium, holds extensive 
utility across the domains of hydrology, meteorology, and climatology (Khalekuzzaman et al., 2024). LST plays a pivotal 
role in the determination of the net radiation budget at the Earth's surface, the surveillance of crop and vegetation 
conditions, and serves as a vital gauge for comprehending the greenhouse effect and the reciprocal exchange of energy 
between the Earth's surface and the atmosphere. The assessment of Land Surface Temperature represents a potent 
approach for forging connections between seasonal variations and shifting weather patterns. This temperature data 
yields indispensable insights into the physical attributes and climatic attributes of the Earth's surface, both of which are 
pivotal factors in a multitude of environmental processes (Dousset & Gourmelon, 2003; Lu & Weng, 2007). 

2.2. Role of remote sensing in land surface temperature retrieval and application 

Remote sensing is the practice of acquiring information about an object or a phenomenon without direct physical 
contact, a concept that aligns with the definition by (Kiefer et al., 2004), who describe remote sensing as the art of 
collecting data about an object or event from a distance. In essence, remote sensing involves the retrieval of data 
concerning a target object or phenomenon from a significant distance, a process highly esteemed by geographers 
(Rahman et al., 2023). Consequently, remote sensing stands as a pivotal technology, especially in environmental 
monitoring endeavors, offering a wealth of environmental information. In contemporary GIS analysis, remote sensing 
has proven to be an indispensable tool (Mizan et al., 2023). In terms of efficacy, research trends and findings consistently 
demonstrate that remote sensing surpasses traditional methods like field-based surveys. It's noteworthy, however, that 
some studies have brought attention to the limitations of remote sensing. For instance, in the realm of GIS analysis, 
(Carver et al., 1995) have advocated for field-based surveys as an alternative to remote sensing, particularly in 
environmental classification, modeling, and evaluation support. Concerns have also arisen regarding the high costs 
associated with acquiring remotely sensed data, a point raised by Osborne et al., (2001) and Raup et al., (2007). 
Bastiaanssen et al., (2000) have also emphasized the scarcity of experts as a hindrance to the widespread adoption of 
remote sensing technology. 

Nonetheless, remote sensing outperforms field surveys consistently. (Foody and Curran & Blackburn, 1994) cited a 
variety of applications, including environmental classification, terrestrial global environment research, monitoring 
changes in land cover, assessing regenerative states in tropical forests, monitoring snow cover, assessing urban land 
use, and a variety of other uses. (Clevers, 1997) emphasized its advantages in fields such as agriculture, where the timely 
and quantitative presentation of information was widely accepted. Furthermore, the cost of accessing satellite data has 
steadily declined in recent years. Indeed, organizations such as the USGS have made Landsat ETM+, TM, and MSS data 
freely available (NASA 2013), lowering the cost of research. Governments worldwide are heavily investing in satellite 
services to acquire remotely sensed data for national development purposes. Major investors include India (Indian 
Space Research Organization 2008), the United States, China, and Russia, all contributing to a projected surge in the 
number of remote sensing professionals to meet the growing demand 
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2.2.1. ARCGIS 

ESRI's ArcGIS software system is a comprehensive GIS software system. This integrated platform is intended for the 
development of operational GIS solutions and includes a number of components. It contains a geographic information 
model for simulating real-world phenomena as well as tools for storing and managing geographic data in files and 
databases. ArcGIS includes a collection of pre-built applications for data creation, editing, manipulation, mapping, 
analysis, and dissemination. It also provides web services, which deliver content and functionality to networked 
software clients. ArcGIS can run on a variety of platforms, including mobile devices, laptops, desktop computers, and 
servers. This versatile software simplifies a wide range of geographic tasks, from data production and editing to 
integration, management, modification, analysis, mapping, and reporting, making it user-friendly. Furthermore, ArcGIS 
Online extends its capabilities with web services that are accessible via web-enabled devices, browsers, and applications 
(Maguire, 2008). 

2.2.2. Landsat mission 

The Landsat program, originating from the launch of the Earth Resources Technology Satellite on July 23, 1972, stands 
as the world's most enduring initiative for acquiring satellite images. This program underwent changes and 
advancements, culminating in the latest addition, Landsat 8, launched on February 11, 2013. Throughout the years, 
Landsat satellites have amassed a vast collection of images, stored both in the United States and at various Landsat 
receiving stations globally. These images serve a multitude of purposes, encompassing applications in global change 
research, agriculture, cartography, geology, forestry, regional planning, surveillance, and education. Landsat 7 data 
comprises eight spectral bands and is conveniently accessible through the USGS's 'Earth Explorer' website, offering 
spatial resolutions spanning from 15 to 60 meters and a temporal resolution of 16 days. To facilitate retrieval, Landsat 
images are commonly grouped into scenes, each spanning approximately 115 miles in length and width (or 100 nautical 
miles, or 185 kilometers). Various sensors have been deployed as part of the Landsat program, including the 
Multispectral Scanner (MSS) on Landsat I through 5, the Thematic Mapper (TM) on Landsat 4 and 5, and the Enhanced 
Thematic Mapper Plus (ETM+) on Landsat 7. The Operational Land Imager (OLI) for optical bands and the Thermal 
Infrared Sensor (TIRS) for thermal bands are used by Landsat 8. The band designations, band passes, and pixel sizes for 
the Landsat instruments are- 

Table 1 Landsat 1-5 Multispectral Scanner (MSS)  

Landsat 1-5 MSS Landsat 4-5 Wavelength Resolution 

  MSS (micro-meters) (meters) 

Band 4 - Green Band I - Green 0.5 - 0 6 60 

Band 5 - Red Band 2 - Red 0.6 - 0 7 60 

Band 6 - Near Infrared NIR Band 3 - NIR 0.7 - 0 8 60 

Band 7 - NIR Band 4 - NIR 0.8 - 1 1 60 

 

Table 2 Landsat 4-5 Thematic Mapper (TM) 

Bands Wavelength (micro-meters) Resolution (meters) 

Band 1 - Blue 0.45 -0 52 30 

Band 2 - Green 0.52 -0 60 30 

Band 3 - Red 0.63 - 0 69 30 

Band 4 - NIR 0.77 -0 90 30 

Band 5 - SWIR 1 1.55 - 1 75 30 

Band 6 - Thermal 10.40 - 12.50 60*(30) 

Band 7 - SWIR 2 2.09-2 35 30 

Band 8 - Panchromatic 0.52 - 0 90 15 
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Table 3 Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

Bands Wavelength (micro-meters) Resolution(meters) 

Band I - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - NIR 0.76-0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 120*(30) 

Band 7 - SWIR 2 2.08-2.35 30 

* TM Band 6 was acquired at 120-meter resolution, but products are resampled to 30meter pixels.  

 

Table 4 Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) 

Bands Wavelength (micro-meters) Resolution (meters) 

Band I - Ultra Blue (coastal/aerosol) 0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 

Band 3 - Green 0.533 - 0.590 30 

Band 4 - Red 0.636 - 0.673 30 

Band 5 - NIR 0.851 -0.879 30 

Band 6 - SWIR 1 1.566 - 1.651 30 

Band 7 - SWIR2 2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 

Band 9 - Cirrus 1.363 - 1.384 30 

Band 10 - Thermal I 10.600 - 11.190 100* (30) 

Band 11 - Thermal 2 11.500 - 12.510 100* (30) 

* ETM+ Band 6 is acquired at 60-meter resolution, but products are resampled to 30-meter pixels.  

A fused silica minor epoxy, approximately the size of a dinner plate at 230 mm (9 inches), was affixed to three invar 
tangent bars connected to a base made of Ni/Au brazed Invar. This assembly was part of a Serrurier truss configuration 
featuring four "Hobbs Links," a concept developed by Dr. Gregg Hobbs. The ingenious design ensured that the secondary 
mirror could only oscillate along the primary optic axis, maintaining focus even when the 360 mm (14 inches) beryllium 
scan mirror vibrated (Dhara et al., 2023). This engineering innovation allowed the United States to develop LANDSAT 
several years ahead of the French SPOT satellite, which was the first to use CCD arrays for direct imaging without a 
scanner. However, by 1984, LANDSAT data costs had surged due to the commercialization efforts initiated under the 
Carter administration, later realized under the Reagan administration. Consequently, SPOT data became a more cost-
effective choice for satellite imaging. The Multispectral Scanner's Focal Plane Array (FPA) was a 4x6 array consisting of 
24 square optical fibers, each extruded to an incredibly small 0.005 mm (0.0002 inches) square fiber tip. While orbiting 
in a 1.5-hour polar path, these fibers underwent a sweeping scan spanning degrees, requiring a launch from Vandenberg 
Air Force Base. The fiber optic bundle was embedded within a fiber optic plate, connected to a relay optic device, and 
then routed to six photodiodes and 18 photomultiplier tubes arranged on a 7.6 mm (0.30 inches) thick aluminum tool 
plate. This entire apparatus was counterbalanced against the 230 mm telescope on the opposite side and incorporated 
into a frame, which was then securely fastened to the silver-loaded magnesium housing 
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The scan monitor, strategically positioned beneath the magnesium housing, was critical to the multispectral scanner's 
effectiveness. This component was made up of a diode-based light source and a sensor that was strategically placed at 
the ends of four flat mirrors. These mirrors were set at angles that required the light beam to reflect 14 times as it passed 
through the three mirrors. During its journey, the beam collided with the beryllium scan mirror eight times and bounced 
off the flat mirrors eight times. The sensor only collected data from three locations: the scan ends and the midpoint. 
Remarkably, these minimal data points sufficed to determine the multispectral scanner's precise direction by 
interpolation between them. The information gathered by the scan monitor was instrumental in calibrating the scanning 
data for accurate mapping display. 

Landsat-7 ETM+ images began to show Scan Line Corrector (SLC) failures after May 31, 2003. The SLC, which consisted 
of two small mirrors synchronized with the movement of the main ETM+ scan mirror, was designed to compensate for 
the spacecraft's forward motion, ensuring that scans ran in parallel. Without the SLC, imaging would take place in a zig-
zag pattern, with some regions duplicated while others remained unimaged. Approximately 22% of the data in scenes 
captured without a functional SLC was missing. The USGS, NASA, and Hughes Santa Barbara Remote Sensing formed an 
Anomaly Response Team (ART) to investigate potential causes, the majority of which pointed to a mechanical SLC issue. 
Given the lack of a backup SLC, this implied that the situation was likely permanent (Uddin et al., 2023). Although an 
electrical failure was deemed unlikely, on September 3, 2003, the USGS approved a conversion to the spacecraft's 
redundant electrical harness. However, this did not solve the SLC issue, necessitating a return to the primary electrical 
harness. The ART ultimately determined the SLC issue to be mechanical and permanent (Fayshal et al., 2023). Landsat 
7 continued collecting data, with missing data in the products being supplemented using additional Landsat 7 data 
selected by users. Landsat 8 joined the mission in 2013.  

2.3. Important indices 

Here is the definition of some important indices that are used in this study 

2.3.1. NORMALIZED Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is a widely used tool for assessing vegetation, particularly due to 
its simplicity in handling complex multispectral imagery. NDVI's popularity is attributed to its compatibility with most 
multispectral sensors equipped with visible and near-infrared ranges. These sensors can be mounted on various 
platforms, including satellites, aircraft, and unmanned aerial vehicles (UAVs). 

NDVI calculates vegetation levels by comparing near-infrared light (highly reflected by vegetation) to red light 
(absorbed by vegetation). NDVI values always range from -1 to +1. While specific thresholds for different land covers 
don't exist, negative values typically indicate water, values near +1 indicate lush greenery, values near zero signify urban 
areas devoid of green vegetation, values between 0.2 and 0.4 often represent shrubs and grasslands, and values between 
0.6 and 0.9 correspond to dense vegetation like temperate and tropical forests or robust crop growth. However, despite 
its utility, NDVI's widespread use, especially in UAV applications, raises concerns of potential misapplication by users 
without remote sensing expertise.  

2.3.2. NORMALIZED Difference Water Index (NDWI) 

The Normalised Difference Water Index (NDWI) is a tool for detecting and tracking changes in the content of surface 
water. It highlights water features by utilizing reflected near-infrared radiation and visible green light while minimizing 
the influence of soil and terrestrial vegetation. NDWI can also provide estimates of water turbidity based on remotely 
captured digital data. NDWI enhances the visibility of water-related characteristics while simultaneously reducing the 
prominence of vegetation and soil through zero or negative values by leveraging green band wavelengths to maximize 
water reflection and absorbing near-infrared wavelengths to minimize reflectivity. NDWI values, like NDVI, range from 
1 to -1, with readings above 0.5 indicating the presence of a water body (Uddin et al., 2022). 

2.3.3. LAND Surface Emissivity (LSE) 

Land surface emissivity (LSE) is a fundamental property of natural materials that is frequently used to determine 
material composition, particularly for silicate minerals, even though its value varies depending on viewing angle and 
surface roughness. As a result, LSE is critical in a wide range of applications, including soil formation research, erosion 
assessment, estimation of sparse vegetative cover, monitoring changes in such cover, bedrock mapping, resource 
exploration, and precise estimation of surface energy budgets (Fayshal et al., 23). 
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2.3.4. Normalized Difference Built-up Index (NDBI) 

Remote sensing images are valuable for monitoring urban land cover changes due to their ability to offer comprehensive 
and up-to-date insights. The Normalized Difference Built-up Index (NDBI) is a commonly used method for automating 
the mapping of built-up areas. It effectively identifies these areas by applying mathematical operations to recalibrated 
Normalized Difference Vegetation Index (NDVI) and Normalized Difference Vegetation Index (NDBI) images derived 
from Thematic Mapper (TM) data, producing NDBI values that range from -1 to 1. However, despite its usefulness in 
mapping urban built-up regions, the NDBI has certain limitations.  

3. Conclusion 

The paper focuses on analyzing the spatial distribution of Land Surface Temperature (LST) with a specific emphasis on 
its relevance in urban heat island research, climate change investigations, and evapotranspiration studies. It 
underscores the importance of considering elevation changes and establishing LST-elevation relationships across 
various seasons in a particular region. The study area's semi-arid climate is highlighted, making it clear that the findings 
might not be directly transferable to other climatic conditions. The challenges posed by cloud cover in satellite imagery 
during the monsoon season are addressed, stressing the need for selecting cloud-free images for accurate LST 
measurements. While recognizing the value of statistical data in enhancing the reliability of LST measurements, the 
study highlights the extensive efforts undertaken to achieve precision in the results. Moreover, it anticipates that this 
research will serve as a valuable guideline for future studies aiming to attain pinpoint accuracy in LST measurement 
and analysis. 
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