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Abstract 

Data center infrastructure management (DCIM) has traditionally prioritized operational metrics such as power usage 
effectiveness, availability, and cost optimization while treating carbon emissions as a secondary reporting metric. This 
paradigm is fundamentally misaligned with the urgent need for decarbonization in computing infrastructure, which 
currently accounts for approximately two percent of global electricity consumption. This paper introduces a novel 
carbon-intelligent DCIM framework that elevates real-time grid carbon intensity to a first-class control variable, 
enabling autonomous optimization of data center operations toward carbon-negative targets. Unlike conventional 
approaches that react to energy pricing signals or static sustainability reports, the proposed system integrates 
predictive carbon intensity forecasting, temporal workload orchestration, and adaptive infrastructure control into a 
unified decision engine. The framework employs machine learning models trained on multi-day grid carbon intensity 
patterns, weather correlations, and facility-specific thermal characteristics to anticipate low-carbon operational 
windows. Dynamic control loops modulate cooling system configurations, battery energy storage discharge schedules, 
and compute workload placements to align power consumption with periods of minimal grid carbon intensity. 
Validation through simulation across hyperscale compute scenarios demonstrates carbon emission reductions of thirty-
two percent while maintaining strict service level agreements for mission-critical workloads. The system achieves 
carbon-negative operation during renewable energy abundance periods by strategically timing compute-intensive 
operations and thermal storage utilization. This research establishes foundational principles for embedding 
decarbonization objectives directly into infrastructure control systems, transforming DCIM from a passive monitoring 
platform into an active participant in grid decarbonization strategies. The framework addresses critical gaps in 
autonomous sustainability management for AI training facilities, federal compute infrastructure, and energy-intensive 
manufacturing environments. 

Keywords: Carbon-Aware Computing; Data Center Infrastructure Management; Grid Decarbonization; Marginal 
Carbon Intensity; Autonomous Sustainability Optimization; Renewable Energy Integration; Temporal Load Balancing 

1. Introduction

Contemporary data center operations face an unprecedented convergence of challenges driven by exponential growth 
in artificial intelligence workloads, increasingly stringent sustainability mandates, and the imperative to maintain 
continuous availability for mission-critical applications. The computing industry's electricity consumption has reached 
approximately four hundred terawatt-hours annually, with projections indicating continued acceleration as generative 
AI and large language model training expand. This growth trajectory intersects with global decarbonization 
commitments, creating fundamental tensions between computational demand and environmental responsibility. 
Traditional data center management frameworks optimize around metrics including power usage effectiveness, cooling 
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efficiency, and infrastructure availability while treating carbon emissions as an external reporting requirement rather 
than an operational control parameter. 

The electrical grid supplying data centers exhibits significant temporal and spatial variability in carbon intensity, driven 
by the intermittent nature of renewable generation sources and the dispatch economics of fossil fuel peaking plants. 
Grid carbon intensity can vary by factors exceeding ten within single geographic regions across daily cycles as solar 
generation ramps and natural gas plants respond to demand fluctuations. This variability represents an untapped 
optimization opportunity where intelligent temporal alignment of computing workloads with low-carbon grid 
conditions could dramatically reduce emissions without requiring new infrastructure investment or curtailing 
computational capacity. However, existing DCIM platforms lack the architectural primitives and control mechanisms 
necessary to operationalize carbon intensity as a real-time optimization variable. 

1.1. Limitations of Existing Approaches 

Current data center sustainability strategies predominantly rely on post-hoc carbon accounting, renewable energy 
purchase agreements, and static efficiency improvements. These approaches share fundamental limitations that 
prevent real-time operational optimization. Power purchase agreements for renewable energy, while valuable for long-
term carbon accounting, do not address the temporal mismatch between when renewable energy is generated and when 
computing workloads consume power. A data center may claim one hundred percent renewable energy through 
purchase agreements while operationally drawing power from coal plants during evening hours when contractual solar 
generation is offline. 

Static efficiency improvements through advanced cooling technologies and high-efficiency power distribution achieve 
diminishing returns as facilities approach theoretical thermodynamic limits. Contemporary hyperscale facilities already 
operate near power usage effectiveness values of one point one, leaving minimal headroom for further optimization 
through infrastructure upgrades alone. Energy cost optimization, a common DCIM objective, frequently produces 
outcomes misaligned with carbon reduction as the cheapest electricity often coincides with periods of high fossil fuel 
generation. Geographic load balancing approaches that route workloads to data centers in low-carbon regions introduce 
latency penalties and require stateless application architectures that limit applicability to mission-critical enterprise 
workloads. 

Existing carbon-aware computing research has primarily focused on deferrable batch workloads, leaving a critical gap 
for latency-sensitive and high-availability applications that constitute the majority of enterprise data center operations. 
The absence of predictive carbon intensity forecasting integrated with infrastructure control systems forces reactive 
rather than anticipatory optimization, missing opportunities to pre-cool facilities or pre-charge thermal storage during 
low-carbon periods in preparation for high-carbon intervals. 

1.2. Emerging Alternative Approaches 

Recent advances in grid digitalization and energy forecasting have created enabling conditions for carbon-intelligent 
infrastructure management. Machine learning models capable of multi-day carbon intensity prediction with acceptable 
accuracy have emerged, allowing anticipatory rather than purely reactive optimization strategies. Federated learning 
approaches enable training of carbon optimization models across geographically distributed data center portfolios 
while preserving operational confidentiality. Real-time marginal carbon intensity data streams from grid operators and 
specialized carbon intelligence services provide the observability necessary for closed-loop control systems. 

Temporal workload orchestration techniques developed for renewable energy integration in cloud computing 
demonstrate the feasibility of aligning computational demand with generation patterns without violating service level 
agreements. Advances in battery energy storage systems and thermal energy storage technologies provide controllable 
buffers that decouple instantaneous power consumption from grid carbon intensity. Containerized workload 
architectures and serverless computing paradigms enable granular control over when and where computation occurs, 
facilitating carbon-aware scheduling at unprecedented temporal resolution. 

1.3. Proposed Solution and Contribution Summary 

This research introduces a comprehensive carbon-intelligent DCIM architecture that autonomously orchestrates data 
center operations to minimize carbon emissions while preserving performance guarantees. The framework integrates 
four core subsystems: predictive carbon intensity forecasting, temporal workload orchestration, adaptive 
infrastructure control, and carbon-aware energy storage management. A novel multi-objective optimization engine 
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balances carbon minimization against latency constraints, availability requirements, and thermal limits through 
dynamic priority adjustment based on grid conditions and workload characteristics. 

The system employs deep learning models trained on historical grid carbon intensity patterns, weather forecasts, and 
facility-specific thermal response characteristics to predict carbon-optimal operational windows up to seventy-two 
hours in advance. This predictive capability enables proactive infrastructure adjustments including pre-cooling during 
low-carbon periods, strategic battery charging aligned with renewable generation peaks, and workload deferral 
scheduling that maintains aggregate throughput while minimizing carbon impact. A hierarchical control architecture 
ensures graceful degradation under prediction uncertainty, maintaining strict service level agreements even when 
carbon forecasts prove inaccurate. 

Key contributions include the formalization of carbon intensity as a first-class DCIM control variable, development of 
prediction-based anticipatory optimization algorithms, and demonstration of carbon-negative operational capability 
during renewable abundance periods. The framework establishes architectural patterns for embedding sustainability 
objectives directly into infrastructure control loops rather than treating them as external constraints. 

2. Related Work and Background 

2.1. Conventional Data Center Management Approaches 

Traditional DCIM platforms emerged to address the operational complexity of large-scale computing facilities through 
centralized monitoring and control of electrical, mechanical, and thermal subsystems. These systems optimize around 
power usage effectiveness as the primary sustainability metric, focusing on minimizing the ratio of total facility energy 
to IT equipment energy. Conventional optimization strategies include supply air temperature modulation based on 
server inlet temperature sensors, variable speed drive control for cooling system pumps and fans, and economizer 
utilization to exploit favorable outdoor air conditions. While these approaches successfully reduce energy waste, they 
operate independently of grid carbon intensity, missing opportunities for emission reduction through temporal load 
shifting. 

Energy cost minimization represents another conventional optimization objective, leveraging time-of-use electricity 
pricing to defer flexible loads to off-peak periods. However, electricity pricing structures often inversely correlate with 
carbon intensity, as overnight hours with low pricing frequently coincide with base-load fossil generation replacing 
daytime renewable sources. Capacity planning approaches that right-size infrastructure for peak demand inadvertently 
lock in carbon emissions through fixed cooling plant configurations optimized for worst-case thermal conditions rather 
than carbon-optimal operating points. Geographic redundancy strategies distribute workloads across multiple facilities 
for availability but select locations based on latency, cost, and risk factors without considering regional grid carbon 
intensity differences. 

Strengths of conventional approaches include operational maturity, proven reliability under production conditions, and 
compatibility with existing data center architectures. Limitations include the absence of carbon awareness in 
optimization objectives, reactive rather than predictive control strategies, and inability to exploit temporal variability 
in grid emissions profiles. 

2.2. Modern Carbon-Aware Computing Approaches 

Recent research in sustainable computing has introduced carbon awareness as an explicit optimization objective, 
primarily focusing on cloud-scale workload scheduling and geographic load balancing. Carbon-aware batch job 
scheduling systems defer delay-tolerant workloads to periods of low grid carbon intensity, achieving emission 
reductions through temporal alignment with renewable generation patterns. These systems employ historical carbon 
intensity data to identify recurring low-carbon windows and schedule computationally intensive tasks accordingly. 
Geographic load balancing extends this concept spatially by routing requests to data centers in regions experiencing 
low carbon intensity, exploiting the near-zero cost of data transmission compared to energy transport. 

Federated learning for carbon optimization enables collaborative model training across distributed data center fleets 
while preserving operational confidentiality. Machine learning models predict grid carbon intensity based on weather 
forecasts, historical generation patterns, and electricity market signals, providing the anticipatory capability necessary 
for proactive optimization. Marginal carbon intensity has emerged as a preferred metric over average carbon intensity 
for decision-making regarding incremental load changes, as it more accurately captures the emissions impact of 
additional power consumption. 
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These modern approaches demonstrate significant carbon reduction potential but exhibit limitations when applied to 
enterprise data center contexts. Geographic load balancing requires stateless applications and introduces latency 
penalties that violate service level agreements for interactive workloads. Batch job scheduling addresses only 
deferrable computation, leaving continuous online services unoptimized. Existing research predominantly treats data 
center infrastructure as fixed rather than actively controllable, missing opportunities to exploit cooling system 
flexibility and thermal storage capabilities. 

2.3. Hybrid and Alternative Carbon Reduction Models 

Hybrid approaches combining temporal and spatial optimization show promise for balancing carbon reduction against 
performance requirements. Multi-objective optimization frameworks that jointly consider latency, availability, cost, and 
carbon emissions provide structured trade-off mechanisms, though practical implementations often struggle with 
objective weighting under dynamic conditions. Renewable energy integration strategies including on-site solar 
generation and battery energy storage create local carbon-free power sources, but their effectiveness depends critically 
on intelligent dispatch algorithms that account for grid carbon intensity when making charge-discharge decisions. 

Thermal energy storage systems represent an underexploited carbon reduction mechanism, enabling data centers to 
pre-cool using low-carbon electricity and coast through high-carbon periods on stored cooling capacity. Building 
thermal mass itself constitutes substantial passive thermal storage that could be leveraged through predictive control 
strategies. Demand response programs that compensate data centers for load reduction during grid stress events create 
economic incentives aligned with carbon reduction when high demand coincides with fossil fuel peaker plant operation. 
Workload-specific optimization that differentiates between latency-sensitive interactive traffic and throughput-
oriented analytics enables selective carbon optimization without compromising user experience. 

3. Proposed Methodology 

The carbon-intelligent DCIM framework introduced in this research establishes a hierarchical control architecture that 
integrates predictive carbon intensity forecasting with autonomous infrastructure optimization while maintaining 
strict operational constraints. The methodology comprises four interconnected subsystems operating in coordinated 
fashion to minimize carbon emissions. The predictive subsystem generates multi-day forecasts of grid carbon intensity 
using ensemble machine learning models trained on historical emissions data, weather patterns, and electricity market 
signals. The orchestration subsystem translates carbon intensity predictions into optimal operational strategies 
spanning workload scheduling, cooling system configuration, and energy storage dispatch. The infrastructure control 
subsystem executes these strategies through dynamic adjustment of cooling plant setpoints, compute resource 
allocation, and power distribution. The validation subsystem continuously monitors actual carbon impact and 
operational metrics, feeding performance data back into the prediction models to improve forecast accuracy over time. 

Central to the methodology is the formalization of carbon intensity as a control variable with equal priority to traditional 
metrics including availability and performance. The optimization engine employs a dynamic weighting scheme that 
adjusts the relative importance of carbon reduction versus latency minimization based on current grid conditions, 
workload characteristics, and service level agreement requirements. During periods of extreme carbon intensity, the 
system prioritizes emission reduction through aggressive workload deferral and infrastructure optimization. 
Conversely, when grid carbon intensity remains uniformly high across the forecast horizon, the system relaxes carbon 
constraints to prevent unnecessary performance degradation. This adaptive prioritization ensures that carbon 
optimization yields tangible emission reductions without creating operational risk during periods when carbon-optimal 
strategies would require unacceptable compromises. 

The framework implements temporal optimization across three-time scales to balance responsiveness with stability. 
Strategic optimization operates on a twenty-four-to-seventy-two-hour horizon, using carbon intensity forecasts to plan 
major operational mode changes including deep cooling cycles, battery charging schedules, and deferrable workload 
execution windows. Tactical optimization operates on a one-to-four-hour horizon, making fine-grained adjustments to 
cooling system efficiency, workload placement, and energy storage utilization as forecast confidence increases and 
actual conditions materialize. Reactive optimization operates on a sub-minute timescale, ensuring system stability and 
service level agreement compliance through rapid response to unexpected events including forecast errors, equipment 
failures, or workload surges. 
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Figure 1 Carbon-Intelligent DCIM Framework 

Thermal management optimization exploits the substantial thermal inertia present in data center buildings and cooling 
systems as a form of carbon-free energy storage. The system pre-cools facilities during low-carbon periods by operating 
chillers at maximum efficiency and lowering supply air temperatures below normal setpoints, storing cooling capacity 
in building thermal mass, chilled water storage tanks, and cooled air volumes. During subsequent high-carbon periods, 
the system coasts on stored cooling capacity by raising supply air temperatures and reducing chiller power 
consumption, effectively decoupling cooling energy consumption from computing workload timing. This approach 
requires predictive control to avoid violating thermal limits, necessitating accurate forecasts of both carbon intensity 
and facility thermal response. 

The methodology diagram illustrates the interconnected architecture of the carbon-intelligent DCIM framework, 
emphasizing the central role of the multi-objective optimization engine in coordinating subsystem activities. The 
predictive carbon intensity forecasting component receives inputs from external grid carbon intensity data sources and 
internal facility sensor telemetry, generating forward-looking emissions predictions that inform all optimization 
decisions. This forecast data flows into the optimization engine alongside inputs from the temporal workload 
orchestration engine, which analyzes compute job characteristics and service level requirements to identify deferral 
opportunities. The adaptive infrastructure control system contributes real-time facility operational constraints 
including current thermal states and equipment limitations. The energy storage management component provides 
battery state-of-charge information and thermal storage capacity availability. The optimization engine synthesizes 
these diverse inputs to generate coordinated control commands that flow through the DCIM platform integration layer 
to physical infrastructure systems. The real-time monitoring and validation subsystem closes the control loop by 
measuring actual carbon impact and operational performance, feeding this data back to the forecasting models to 
continuously improve prediction accuracy. 

The hierarchical organization depicted in the diagram reflects the temporal separation of optimization decisions, with 
strategic forecasting informing tactical orchestration, which in turn guides reactive infrastructure control. This 
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separation enables the framework to maintain responsiveness to immediate operational needs while pursuing longer-
term carbon optimization objectives. The bidirectional arrows between the optimization engine and various 
subsystems represent the iterative nature of the optimization process, where preliminary control strategies may be 
refined based on constraint violations or updated predictions. The feedback path from monitoring to forecasting 
establishes continuous learning, allowing the system to adapt to facility-specific thermal characteristics and local grid 
emission patterns over time. 

4. Technical Implementation 

The technical implementation of the carbon-intelligent DCIM framework leverages a distributed computing architecture 
designed for real-time data processing, predictive analytics, and autonomous control in mission-critical environments. 
The implementation employs a microservices approach where specialized components handle distinct responsibilities 
including data ingestion, model inference, optimization, and actuation, communicating through a high-performance 
message bus to ensure loose coupling and independent scalability. The core technology stack combines Python-based 
machine learning frameworks for predictive modeling, time-series databases for telemetry storage, and containerized 
deployment on Kubernetes clusters for operational resilience. 

Data ingestion pipelines continuously acquire grid carbon intensity measurements from multiple sources including 
regional transmission operators, commercial carbon intelligence services, and renewable energy forecasting platforms. 
These streams undergo validation, normalization, and temporal alignment to create a unified carbon intensity time 
series with five-minute granularity. Facility telemetry collection systems gather operational data from building 
management systems, power distribution units, cooling plants, and compute infrastructure at sub-minute intervals. This 
telemetry encompasses power consumption measurements, thermal sensor readings, equipment operational states, 
and workload execution metrics. The combined dataset provides comprehensive observability into both external grid 
conditions and internal facility dynamics necessary for effective optimization. 

Preprocessing transforms raw telemetry into engineered features suitable for machine learning models. Temporal 
feature extraction creates lagged variables, rolling statistics, and rate-of-change indicators that capture short-term 
dynamics and seasonal patterns. Weather data integration augments carbon intensity forecasts by incorporating 
temperature, cloud cover, wind speed, and precipitation measurements that influence renewable generation output. 
Facility thermal modeling translates historical sensor data into estimated building thermal mass capacity and cooling 
system response characteristics through system identification techniques. Workload profiling algorithms analyze 
compute job execution patterns to identify deferrable operations, estimate completion time distributions, and classify 
service level agreement requirements. 

The carbon intensity forecasting subsystem implements an ensemble approach combining gradient boosted decision 
trees for short-term prediction, long short-term memory recurrent neural networks for capturing daily and weekly 
seasonality, and physics-informed models that incorporate renewable generation capacity and weather forecasts. 
Training data spans multiple years of historical carbon intensity measurements aligned with weather observations and 
grid generation mix records. The ensemble combines individual model predictions through a learned weighting scheme 
that adapts to forecast horizon and seasonal conditions. Online learning mechanisms continuously retrain models using 
recent data to adapt to evolving grid characteristics including new renewable installations and generation retirement. 

The multi-objective optimization engine formulates infrastructure control decisions as a constrained optimization 
problem solved via sequential quadratic programming with warm-start initialization from previous solutions. Decision 
variables include cooling plant power consumption, supply air temperature setpoints, battery charge and discharge 
rates, thermal storage utilization, and deferrable workload start times. Objective function components quantify 
predicted carbon emissions, service level agreement violation risk, thermal limit proximity, and infrastructure wear 
costs. Constraints enforce physical limits on cooling capacity, thermal bounds on equipment, battery cycling restrictions, 
and minimum service guarantees. The optimization executes on a rolling horizon basis, updating decisions every fifteen 
minutes as new carbon intensity forecasts and facility measurements arrive. 
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Figure 2 Carbon-Intelligent DCIM system - Technical Implementation 

The technical implementation diagram traces the flow of data and control signals through the carbon-intelligent DCIM 
system from raw measurements to autonomous infrastructure actuation. The data acquisition layer interfaces with 
diverse external sources including grid carbon intensity application programming interfaces that provide real-time 
marginal emissions data, weather forecast services delivering meteorological predictions, facility building management 
systems reporting thermal and power telemetry, and compute infrastructure reporting workload execution metrics. 
These heterogeneous data streams converge at the data validation and normalization component, which enforces data 
quality standards, handles missing values, and aligns timestamps across sources with different update frequencies. 

Validated data flows into the time-series database, which provides efficient storage and retrieval of historical 
measurements necessary for model training and trend analysis. The feature engineering service queries this database 
to construct input variables for machine learning models, computing derived quantities including rolling averages, 
temporal derivatives, and correlation features. These engineered features feed three specialized machine learning 
services: carbon intensity forecasting models that predict future grid emissions, thermal response identification 
algorithms that characterize facility thermal dynamics, and workload classification systems that analyze compute job 
patterns. The outputs from these machine learning services provide essential inputs to the multi-objective solver, which 
formulates and solves the optimization problem balancing carbon reduction against operational constraints. 

The optimization engine generates control commands that flow through the DCIM integration adapter, which translates 
high-level optimization decisions into specific setpoint adjustments and operational mode changes for physical systems. 
Separate controllers manage cooling system configuration, energy storage charge and discharge scheduling, and 
workload scheduler interfaces. These controllers execute the optimized strategies while continuously monitoring for 
constraint violations or unexpected conditions that might require optimization re-computation. The real-time carbon 
accounting system measures actual emissions by combining power consumption telemetry with grid carbon intensity 
measurements, enabling comparison between predicted and achieved carbon reduction. Performance metrics flow to 
both the monitoring dashboard for operator visibility and the model performance evaluation service, which identifies 
prediction errors and triggers model retraining when accuracy degrades. 

The technology stack comprises Python 3.9 for machine learning model development using scikit-learn for ensemble 
methods and TensorFlow for deep learning components. InfluxDB provides time-series data storage with Grafana for 
visualization. Apache Kafka serves as the message bus enabling asynchronous communication between microservices. 
Docker containers package individual services with Kubernetes orchestrating deployment and scaling. The optimization 
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engine employs CVXPY for convex optimization formulation with commercial solvers including Gurobi for mixed-
integer programming when discrete control decisions require optimization. REST APIs built using FastAPI enable 
integration with existing DCIM platforms and building management systems. Prometheus collects operational metrics 
with Alertmanager providing anomaly detection and operator notification. 

5. Results and Comparative Analysis 

Validation of the carbon-intelligent DCIM framework employed simulation-based evaluation using historical data from 
a representative enterprise data center with twenty-megawatt peak IT load, conventional chilled water cooling, and one 
megawatt-hour battery energy storage capacity. Simulation scenarios spanned a full calendar year with hourly 
timesteps, incorporating actual grid carbon intensity measurements from the facility's regional transmission operator, 
historical workload traces from production systems, and measured facility thermal response characteristics. Baseline 
comparisons included conventional DCIM operating with static cooling setpoints and no carbon awareness, energy cost 
optimization using time-of-use electricity pricing, and simple carbon-aware scheduling that defers batch workloads to 
overnight hours without infrastructure optimization. 

Table 1 Annual Carbon Emissions Comparison Across Optimization Strategies 

Strategy Total Emissions 
(Metric Tons CO2e) 

Reduction vs 
Baseline 

Average Daily 
Emissions (Tons) 

Peak Daily 
Emissions (Tons) 

Baseline DCIM 18,740 0.0% 51.3 68.2 

Energy Cost 
Optimization 

18,120 3.3% 49.6 66.8 

Simple Carbon-Aware 
Scheduling 

15,890 15.2% 43.5 62.1 

Proposed Carbon-
Intelligent DCIM 

12,750 32.0% 34.9 54.7 

 

The annual carbon emissions comparison demonstrates substantial emission reductions achieved through the 
proposed carbon-intelligent DCIM framework. The baseline DCIM configuration operating without carbon awareness 
generated 18,740 metric tons of carbon dioxide equivalent emissions over the simulated year. Energy cost optimization, 
which defers flexible loads to low-price periods, achieved modest three percent emission reduction, illustrating the 
misalignment between electricity pricing and carbon intensity noted in prior research. Simple carbon-aware scheduling 
that moves batch workloads to overnight hours achieved fifteen percent reduction, demonstrating the value of temporal 
load shifting but leaving substantial optimization potential unrealized by neglecting infrastructure control 
opportunities. The proposed framework achieved thirty-two percent emission reduction through combined workload 
orchestration and infrastructure optimization, including thermal mass utilization and predictive cooling strategies. Peak 
daily emissions decreased by twenty percent in the proposed system compared to baseline, indicating more uniform 
carbon impact across time despite variable grid conditions. 

Table 2 Service Level Agreement Compliance and Performance Metrics 

Strategy SLA Violations 
(%) 

Average Response 
Time (ms) 

95th Percentile 
Latency (ms) 

Compute 
Availability (%) 

Baseline DCIM 0.12 142 218 99.97 

Energy Cost 
Optimization 

0.18 146 225 99.96 

Simple Carbon-Aware 
Scheduling 

0.31 151 237 99.94 

Proposed Carbon-
Intelligent DCIM 

0.15 145 223 99.96 

 



World Journal of Advanced Research and Reviews, 2024, 21(01), 3008-3318 

3316 

Service level agreement compliance metrics validate that the proposed carbon-intelligent DCIM achieves substantial 
emission reductions without degrading application performance or availability. The baseline system exhibited 0.12 
percent service level agreement violations primarily due to equipment failures and capacity constraints unrelated to 
carbon optimization. The proposed system maintained comparable violation rates at 0.15 percent, well within 
acceptable thresholds for enterprise production environments. Average response times increased by a negligible three 
milliseconds compared to baseline, attributable to selective deferral of non-interactive workloads during high-carbon 
periods. The ninety-fifth percentile latency metric, critical for user experience in interactive applications, remained 
within five milliseconds of baseline performance. Compute availability, measuring the percentage of time when 
sufficient resources were available to accept new workload submissions, matched the baseline at 99.96 percent. These 
results demonstrate that carbon optimization can be pursued aggressively while honoring strict performance 
guarantees through intelligent differentiation between latency-sensitive and deferrable workloads. 

Table 3 Thermal Management and Infrastructure Optimization Performance 

Metric Baseline DCIM Proposed System Improvement 

Average Cooling Power (kW) 2,340 1,980 15.4% reduction 

Pre-cooling Cycles Executed 0 287 N/A 

Thermal Limit Violations 3 4 -33% (acceptable) 

Chiller Operating Hours 8,532 7,216 15.4% reduction 

Average PUE 1.42 1.38 2.8% improvement 

Battery Cycling (full equivalent) 124 358 189% increase 

Renewable Energy Utilization (%) 31.2 43.7 40% increase 

 

The thermal management performance table reveals how the proposed system exploits cooling system flexibility and 
thermal storage to reduce carbon emissions. Average cooling power consumption decreased by fifteen percent through 
strategic modulation aligned with grid carbon intensity, operating chillers at higher power during low-carbon periods 
to pre-cool the facility and reducing cooling during high-carbon intervals. The system executed 287 pre-cooling cycles 
over the year, each representing a multi-hour period of intentional cooling below normal setpoints to store thermal 
capacity. Thermal limit violations, defined as instances where any server inlet temperature exceeded design thresholds, 
increased marginally from three to four incidents annually, remaining well within acceptable operational bounds. 
Chiller operating hours decreased proportionally with average power consumption, reducing mechanical wear and 
maintenance requirements. Power usage effectiveness improved from 1.42 to 1.38 despite increased thermal variation, 
indicating that carbon-optimal operating strategies often align with efficiency optimization. Battery cycling increased 
substantially as the system actively charged batteries during low-carbon periods for discharge during high-carbon 
peaks, effectively time-shifting energy consumption. Renewable energy utilization, measured as the fraction of total 
facility energy consumption occurring during hours when grid renewable generation exceeded fifty percent, increased 
by forty percent through intelligent temporal alignment of deferrable workloads with solar and wind generation peaks. 

Table 4 Carbon-Negative Operation Windows and Seasonal Variation 

Season Carbon-
Negative Hours 

Total Emission 
Reduction (Tons) 

Avoided Renewable 
Curtailment (MWh) 

Average Grid CI During 
Operations (gCO2e/kWh) 

Winter 284 412 1,820 187 

Spring 612 1,340 4,560 94 

Summer 518 1,180 3,920 112 

Fall 397 890 2,710 143 

Annual 1,811 3,822 13,010 124 
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The seasonal carbon performance analysis quantifies periods when the data center achieved net-negative carbon 
impact by consuming electricity that would otherwise have been curtailed due to renewable generation exceeding grid 
demand. Spring exhibited the longest duration of carbon-negative operation with 612 hours annually, corresponding to 
periods of high solar generation combined with moderate cooling loads enabling aggressive load shifting. The proposed 
system achieved total emission reductions of 3,822 metric tons through strategic operation during these favorable 
conditions, with spring contributing thirty-five percent of annual carbon savings despite representing twenty-five 
percent of calendar time. Avoided renewable curtailment reached 13,010 megawatt-hours annually, representing green 
energy that would have been wasted absent intelligent load timing. Average grid carbon intensity during facility 
operation decreased to 124 grams carbon dioxide equivalent per kilowatt-hour compared to the regional grid average 
of 312 grams, demonstrating successful temporal alignment with low-carbon periods. Winter showed the least carbon-
negative operation due to reduced solar generation and increased heating-related grid demand, though still achieving 
284 hours of beneficial operation. These results validate the framework's ability to opportunistically exploit renewable 
generation abundance while maintaining operational requirements during less favorable carbon conditions. 

6. Conclusion 

This research establishes carbon-intelligent DCIM as a viable pathway to substantial emission reductions in data center 
operations without requiring infrastructure replacement or curtailing computational capacity. The proposed 
framework demonstrates that elevating grid carbon intensity to a first-class control variable enables autonomous 
optimization achieving thirty-two percent annual emission reduction while maintaining strict service level agreements 
and operational reliability. The integration of predictive carbon intensity forecasting with adaptive infrastructure 
control creates a self-optimizing system that anticipates and exploits temporal variations in grid emissions, 
fundamentally transforming data center infrastructure from passive energy consumers into active participants in grid 
decarbonization. Validation across representative enterprise workloads confirms that carbon optimization and 
performance excellence constitute complementary rather than competing objectives when pursued through intelligent 
orchestration of thermal management, workload scheduling, and energy storage utilization. The practical implications 
of this work extend beyond individual facility optimization to inform broader sustainability strategies for the computing 
industry. Demonstration of carbon-negative operational windows during renewable abundance periods reveals 
opportunities to accelerate decarbonization through intelligent demand response rather than solely through renewable 
procurement or capacity reduction. The framework's ability to reduce emissions by thirty-two percent using existing 
infrastructure provides immediate actionable pathways for organizations facing stringent sustainability commitments 
but constrained by long capital equipment lifecycles. The architectural patterns established for integrating carbon 
awareness into DCIM platforms create reusable foundations applicable to diverse facility types including hyperscale 
cloud data centers, enterprise colocation facilities, and edge computing deployments. Quantification of thermal mass as 
carbon-free energy storage motivates reconsideration of data center design practices to maximize thermal inertia and 
cooling system flexibility as sustainability enablers. 

Future research directions include extension to multi-site optimization where workload migration across 
geographically distributed facilities could amplify carbon reductions through exploitation of spatial carbon intensity 
variations. Integration with on-site renewable generation and advanced energy storage technologies including flow 
batteries and thermal ice storage would expand the solution space for carbon optimization.  
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