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Abstract 

This study embarks on developing predictive models for soil shear strength parameters, cohesion (c) and angle of 
internal friction (ϕ), in Bishoftu town, employing Artificial Neural Networks (ANN). It aims at offering a cost-effective 
and time-saving alternative to traditional, often expensive, and labor-intensive laboratory methods. The research 
utilizes soil index properties such as Sand %, Fines %, Liquid Limit, Plastic Limit, and Plasticity Index to construct 
separate ANN models for c and ϕ. These models use a multi-layer perceptron network with feed-forward back 
propagation, varying the number of hidden layers to optimize performance. The study's dataset comprises 316 soil test 
results, encompassing both primary and secondary data, conforming to ASTM Standards. Soil cohesion and internal 
friction angle were determined using the direct shear box method. The models demonstrated remarkable success in 
predicting shear strength parameters, evidenced by correlation values of approximately 0.99 for cohesion and 0.98 for 
internal friction angle, surpassing the capabilities of existing empirical methods. Further examination of the models 
included comparison with existing correlation techniques and cross-validation using primary soil test data. This 
validation process confirmed the ANN method's superior accuracy and fit for predicting shear strength parameters over 
selected empirical methods. This research substantiates the efficiency of ANN in geotechnical engineering, particularly 
for areas with limited resources for extensive soil testing. It establishes ANN as a powerful, efficient tool for estimating 
soil shear strength parameters, with significant implications for future planning, design, and construction projects in 
similar environments. 
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1. Introduction

In this study, we delve into the critical importance of soil shear strength parameters, cohesion, and internal friction 
angle, for urban development projects. These parameters are indispensable for foundation analysis and the stability of 
various structures. Traditional methods to determine these parameters, such as direct shear and triaxial compression 
tests, are often costly and labor-intensive [9, 10]. They also face challenges in acquiring accurate soil samples, 
particularly in developing countries. This has led to a reliance on empirical correlations in geotechnical practice, which, 
despite their utility, have limitations in predicting shear strength for diverse soil mixtures [17, 55]. 

The advent of Artificial Neural Networks (ANN) offers a promising alternative. With its capacity to model complex 
problems, ANN is transforming various fields, including engineering [1, 6]. This research proposes the use of ANN to 
predict shear strength parameters from soil index properties, a significant shift from conventional methodologies [29, 
30]. The aim is to provide a more efficient, cost-effective solution to traditional soil testing methods. By developing a 
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model that correlates soil index properties with shear strength parameters, this study seeks to minimize the time, effort, 
and expense typically involved in geotechnical engineering practices [19, 20]. 

The introduction of ANN into this field is not just a technical advancement; it represents a paradigm shift in how soil 
mechanics are approached and understood [11, 27]. This study's innovative approach promises to address the practical 
challenges of soil testing while enhancing the accuracy and efficiency of geotechnical design and analysis [21, 24]. The 
research stands at the intersection of traditional geotechnical methods and modern computational techniques, 
potentially revolutionizing the way soil shear strength is estimated and applied in real-world scenarios. 

This study not only contributes to the existing body of knowledge in geotechnical engineering but also opens new 
avenues for research and application. The findings could have far-reaching implications for the future of urban 
development, particularly in regions where resources for extensive soil testing are limited [26, 28]. By bridging the gap 
between conventional practices and advanced computational methods, this research aims to provide a robust, reliable, 
and accessible tool for engineers and practitioners in the field. 

2. Material and Methods 

In this study, the choice of Bishoftu, Ethiopia, as the study area is significant due to its unique geotechnical 
characteristics. Bishoftu, situated in the Oromia Region, is renowned for its distinct geological features, including a 
variety of soil types, notably Vertisols, which are key to this study [9, 29]. The region's geographical setting in the Great 
Rift Valley, coupled with its varied topography and climate, presents a unique opportunity to study the soil's behaviour 
under different conditions [10, 17]. The town's proximity to Addis Ababa, diverse land use, and presence of crater lakes 
add to its geotechnical interest, making it an ideal location for investigating soil shear strength parameters using 
advanced techniques like Artificial Neural Networks (ANN) [1, 6]. This setting provides a comprehensive backdrop for 
exploring soil mechanics in a context that combines urban development pressures with natural geological complexity. 

2.1. Study Area Description 

Bishoftu, situated in Ethiopia's Oromia Region, is geographically positioned within the Great Rift Valley, about 47 
kilometers southeast of the capital city, Addis Ababa. The town is elevated at approximately 1,920 meters above sea 
level. Known for its remarkable crater lakes and hot springs, Bishoftu's climate is generally moderate, which aids in 
sustaining diverse flora and fauna. The soil predominantly comprises Vertisols, characterized by high clay content, 
which leads to significant shrink-swell behavior [55]. This soil type, along with the town's geological setting, makes it a 
focal point for studying soil mechanics and behaviors under varying environmental conditions [54]. The demographic 
composition and historical aspects of Bishoftu also add layers to understanding its environmental and geotechnical 
dynamics. 

2.2. Data Collection Methodology 

In this study, 316 soil samples were collected from Bishoftu, Ethiopia, to develop an Artificial Neural Network (ANN) 
model [30]. The selection of sampling sites, as detailed in Table 1 and Figure 1, was strategic to encompass a broad 
range of soil types present in urban, industrial, and newly developed areas. The primary data collection followed ASTM 
D 2488 standards, focusing on comprehensive field identification and characterization of the soil [19, 20]. The sample 
locations included diverse sites such as Sunshine, Babogaya, and the Indomie Factory area, ensuring a representative 
cross-section of the town's geotechnical profile. 

Table 1 Sample Location and Depth of Primary Data Soil Samples 

Locations Test pit number Latitude Longitude Sample depth(m) 

Sunshine Tp 1 8.734650 39.008535 1.5 

Sunshine Tp 2 8.73230 39.00991 1.5 

Babugaya Tp 3 8.7930 38.9909 1.5 

Airforce Tp 4 8.723886 38.992990 1.5 

Ude/ Denkaka Tp 5 8.681255 39.0345 1.5 

Kurkura Tp 6 8.7422873 38.9327956 1.5 
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Kurkura Tp 7 8.7560845 38.9600119 1.5 

Near Dukem Tp 8 8.7774865 38.9327956 1.5 

China sefer Tp 9 8.72073 39.01019 1.5 

Meda/Mesalemiya Tp 10 8.71691 39.01350 1.5 

Ashewa sefer Tp 11 8.70556 39.02229 1.5 

Indomie factory Tp 12 8.6937 39.0329 1.5 

TVET Tp 13 8.78728 38.99817 1.5 

Adis Sefer Tp 14 8.7508467 38.9634737 1.5 

Adis sefer Tp 15 8.758992 38.949442 1.5 

 

 

Figure 1 Google locations of sampling test pits 

Laboratory tests, crucial for data analysis, included grain size distribution and Atterberg limits, conducted according to 
the ASTM manual, as listed in Table 2. This methodical approach in data collection and testing was instrumental in 
obtaining a diverse and accurate dataset, essential for the effective training and validation of the ANN models. 

Table 2 ASTM Manual of Standard Test Methods 

Test Type ASTM Standard Manual 

Grain size distribution D 4318-00 

Atterberg limits D 1140-14 

Direct shear test D3080-04 

Field identification of soils D 2488-00 

Sample preserving and transporting D 4220-95 

 

In this study, the shear strength parameters of soil, specifically cohesion and internal friction angle, are the target output 
variables for the ANN models. The choice of appropriate input variables, closely correlated with these outputs, is crucial 
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for achieving accurate predictions. Historical research indicates that soil index properties, such as grain size distribution 
and Atterberg limits, are commonly used and effective input parameters for predicting soil shear strength in both ANN 
and regression analysis contexts [9, 17, 29]. These properties have been demonstrated to have a strong correlation with 
the shear strength parameters [54, 55]. In this study, similar input parameters are utilized. To validate the relationship 
between inputs and outputs, scatter plots and least square regression methods are employed, providing a visual and 
analytical representation of the correlation. 

2.3. ANN Modeling Procedure 

The ANN Modeling Procedure was carried out using established methodologies in the past [1, 6]. The procedure began 
with data preprocessing, which involved integrating, cleaning, and reducing data for quality assurance. This phase was 
crucial in handling the large and diverse dataset. MATLAB R2018a was utilized as the tool for model development [19, 
20]. The neural networks were modeled using custom scripts, allowing for greater flexibility in architecture and training 
methods. The model development phase included dividing data into training, validation, and testing sets, defining the 
neural network's architecture, and training it using the Levenberg-Marquardt algorithm [11, 27]. Cross-validation was 
conducted with primary soil data to assess the models' accuracy [21, 24]. The models' performance was evaluated using 
statistical measures like MSE and RMSE, and finally, the ANN model equations were derived, incorporating steps such 
as normalizing input variables, and calculating weighted sums. 

3. Results and discussion  

3.1. Laboratory Test Results 

Soil samples were analyzed to determine their index properties and shear strength parameters. Three key tests - grain 
size analysis, Atterberg limits, and direct shear tests - were conducted on 15 primary data samples. The results, essential 
for further analysis, are summarized in Table 3, showcasing data such as the percentage of sand and fines, liquid limit 
(LL), plastic limit (PL), plasticity index (PI), cohesion (c), and angle of internal friction (ϕ) for each test pit. 

Table 3 Summary of the Primary Data Soil Test Results 

Test Pit No. Grain size distribution Atterberg limits Shear strength parameters 

% Sand % Fine LL PL PI c ϕ 

TP 1 16.2 82.8 59.8 29.8 30 7 24 

TP 2 5 94.1 83.4 36.2 47.2 21 18 

TP 3 6 93.8 61.6 30.7 30.9 21 19 

TP 4 4 95.5 89 35 54 15 19 

TP 5 8 91.2 65.5 27 38.5 22 20 

TP 6 13 86.6 57.2 33.4 23.8 10 28 

TP 7 10.5 87.2 94.4 40.7 53.7 6 30 

TP 8 4.6 94.4 90 37.8 52.2 23 19 

TP 9 4 96 71 38 33 37 5 

TP 10 7 93 72 35 37 35 4 

TP 11 4 96 73 37 36 39 3 

TP 12 6 94 75 37 38 38 3 

TP 13 11 69 40.3 35.8 4.5 12 22 

TP 14 20 56 42.4 35.2 7.2 14 22 

TP 15 15 85 48.7 36.2 12.5 26 18 
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3.2. Secondary Data Analysis 

The secondary data analysis, detailed in Table 4, revealed that the median and mean values of various soil properties 
were closely aligned, suggesting a near-normal distribution of the soil experimental data. This observation was further 
supported by the skewness values ranging from -0.835 to 1.785. Notably, cohesion values averaged 23.8 kPa, with a 
standard deviation of 7.6 kPa, spanning a range from 2 kPa to 51 kPa. Similarly, friction angles showed a mean of 14.25°, 
ranging from 2° to 24°.  

Table 4 Descriptive Statistics of the Secondary Data Soil Test Results 

Parameter % Sand %Fine LL PL PI c ϕ 

Mean 18.596 76.732 54.449 29.791 24.680 23.830 14.255 

Standard error 0.635 0.716 0.943 0.578 0.667 0.438 0.239 

Median 16.77 75.32 52 33 23 24 15 

Standard deviation 11.024 12.424 16.372 10.029 11.579 7.604 4.153 

Sample variance 121.529 154.374 268.065 100.587 134.080 57.834 17.251 

Skewness 1.785 -0.835 1.194 -0.484 1.574 0.006 -0.008 

Range 72.14 68.09 89.81 42 71.32 49 22 

Minimum 1 30.91 29 8 3.2 2 2 

Maximum 73.14 99 118.81 50 74.52 51 24 

Count (N) 301 301 301 301 301 301 301 

 

The correlation matrix in Table 5 indicated a strong correlation between liquid limit and plasticity index, while other 
variable pairs showed less significant correlations. This lack of strong correlations among most variables suggests that 
using regression analysis for model predictions could be less effective than Artificial Neural Networks (ANNs) for these 
parameters. 

Table 5 Pearson’s Correlation Matrix of the Variables 

Soil Parameters % Sand % Fine LL PL PI c ϕ 

% Sand 1       

% Fine -0.88483 1      

LL -0.06347 0.207216 1     

PL -0.01169 0.217839 0.715986 1    

PI -0.07885 0.105383 0.796042 0.148216 1   

C -0.04602 0.10268 -0.09233 0.142356 -0.25876 1  

ϕ 0.014105 0.285149 0.645335 0.670724 0.334024 -0.0767 1 

 

3.3. Primary Data Analysis 

The primary data analysis, outlined in Table 6, involved statistical evaluation of laboratory test results. Cohesion values 
varied between 6 kPa and 39 kPa, while friction angles ranged from 3° to 30°. The analysis provided detailed metrics 
such as mean, median, standard deviation, and range for various soil parameters, including sand percentage, fine 
percentage, liquid limit (LL), plastic limit (PL), plasticity index (PI), cohesion (c), and friction angle (ϕ). These statistics 
offer a comprehensive understanding of the soil properties under study. 
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Table 6 Descriptive Statistics of the Primary Data Set 

Parameters % Sand %Fine LL PL PI c ϕ 

Mean 8.953 87.64 68.22 34.986 33.233 21.8 15.666 

Standard error 1.317 2.918 4.355 0.907 4.091 2.900 2.375 

Median 7 93 71 35.8 36 21 19 

Standard deviation 5.101 11.304 16.868 3.515 15.846 11.232 9.201 

Sample variance 26.029 127.785 284.544 12.355 251.099 126.171 84.666 

Skewness 0.905 -2.017 -0.127 -0.901 -0.492 0.307 -0.267 

Range 16 40 54.1 13.7 49.5 33 27 

Minimum 4 56 40.3 27 4.5 6 3 

Maximum 20 96 94.4 40.7 54 39 30 

Count (N) 15 15 15 15 15 15 15 

3.4. ANN Prediction Model 

In the ANN Prediction Model section, extensive data analysis and neural network modeling were conducted. A total of 
301 secondary data points were categorized for training, testing, and validation purposes, adhering to a 70-15-15% 
distribution. The study's primary focus was on developing models to predict soil cohesion and internal friction angle. 
Two specific models, Model 7 for cohesion and Model 12 for internal friction angle, were highlighted for their superior 
performance and reliability. These models underwent rigorous evaluation based on various metrics like the correlation 
coefficient, mean squared error, and root mean squared error.  

The intricate network architecture and model characteristics, such as the number of neurons, layers, and learning 
methods, were comprehensively detailed in the relevant tables (Tables 7, 8, and 9) and visually represented through 
figures (Figures 2, 3, 4, and 5), which illustrated the neural network structures and regression plots. These models, 
especially Model 7 and 12, demonstrated high prediction accuracy, making them valuable tools for soil property 
analysis. 

Table 7 Summary of the Developed Neural Network Models Characteristics 

Parameters Descriptions 

Input parameters Sand%, Fine%, LL, PL, and PI 

Output parameters c, ϕ 

Number of hidden neurons Trial and error (from 6 to 20) 

Number of hidden layers 1 

Learning method Supervised learning 

Network type Feed forward Back propagation 

Architecture Multilayer Perceptron (MLP) 

Data division Random (dividerand) 

Hidden layer activation function Hyperbolic tangent Sigmoid function(tansig) 

Output layer activation function Linear function (purelin) 

Training function Levenberg-Marquardt (trainlm) 

Performance function MSE 
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Table 8 Prediction Models Developed for c 

 Correlation Coefficient, R  

Model No. Network Training Validation Test All MSE RMSE 

1 5-6-1 0.74746 0.69639 0.72504 0.73455 26.02 5.1 

2 5-7-1 0.95116 0.90815 0.68223 0.87421 8.48 2.91 

3 5-8-1 0.75302 0.79148 0.6953 0.7427 25.02 5.001 

4 5-9-1 0.96323 0.95851 0.88023 0.94954 3.99 1.99 

5 5-9-1 0.95935 0.91906 0.87589 0.93422 11.39 3.37 

6 5-10-1 0.95055 0.82408 0.82024 0.90464 22.01 4.69 

7 5-10-1 0.99929 0.99887 0.99725 0.99894 1.27 1.12 

8 5-10-1 0.94444 0.8826 0.8554 0.91624 10.83 3.29 

9 5-10-1 0.95755 0.96581 0.82193 0.93477 3.13 1.76 

10 5-11-1 0.93867 0.87302 0.84632 0.91207 12.58 3.54 

11 5-11-1 0.96586 0.94359 0.94144 0.95697 6.73 2.59 

12 5-12-1 0.996 0.98519 0.9752 0.99204 1.49 1.22 

13 5-13-1 0.70719 0.45864 0.78273 0.65523 71.50 8.45 

14 5-14-1 0.98559 0.92045 0.81711 0.9483 12.91 3.59 

15 5-15-1 0.98405 0.95711 0.94925 0.97723 4.09 2.02 

16 5-16-1 0.89291 0.82943 0.82372 0.87032 19.97 4.46 

17 5-17-1 0.88486 0.9134 0.61214 0.85491 9.47 3.07 

18 5-18-1 0.99209 0.93325 0.9297 0.97666 6.83 2.61 

19 5-19-1 0.99609 0.97199 0.97262 0.99007 2.25 1.5 

20 5-20-1 0.98204 0.85055 0.80104 0.92878 20.69 4.54 

 

 

Figure 2 Neural Network Architecture Sample of the Model 7 
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Figure 3 Regression Plot of Model 7 

Model 7 achieved high R values (0.99929 for training, 0.99887 for validation, 0.99725 for testing, and 0.99894 overall) 
and low MSE and RMSE (1.27 and 1.12 respectively). 

Table 9 Prediction Models Developed for ϕ 

 Correlation Coefficient, R  

Model No. Network Training Validation Test All MSE RMSE 

1 5-6-1 0.85878 0.74239 0.82233 0.8379 7.05 2.65 

2 5-7-1 0.97153 0.87693 0.90529 0.95109 3.34 1.82 

3 5-8-1 0.97133 0.98091 0.94532 0.96917 7.04 2.65 

4 5-9-1 0.92348 0.88956 0.91779 0.91841 3.63 1.90 

5 5-9-1 0.95282 0.74342 0.75285 0.88068 10.93 3.30 

6 5-10-1 0.86552 0.78924 0.87272 0.85309 17.55 4.18 

7 5-10-1 0.99066 0.98297 0.97752 0.98728 5.76 2.4 

8 5-10-1 0.9742 0.93777 0.92502 0.96188 2.30 1.51 

9 5-10-1 0.98775 0.96981 0.89589 0.97243 1.86 1.36 

10 5-11-1 0.98605 0.97526 0.97786 0.98311 7.57 2.75 

11 5-11-1 0.99271 0.94491 0.98311 0.98258 2.28 1.50 

12 5-11-1 0.98904 0.96517 0.94741 0.97941 1.15 1.07 

13 5-12-1 0.95195 0.80187 0.88126 0.91078 9.09 3.01 
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14 5-12-1 0.877 0.84375 0.87557 0.87004 6.07 2.46 

15 5-13-1 0.9751 0.89656 0.76492 0.92877 3.02 1.73 

16 5-14-1 0.5587 0.42432 0.53689 0.50061 40.99 6.40 

17 5-15-1 0.97206 0.71885 0.96158 0.93092 6.61 2.57 

18 5-16-1 0.66084 0.357 0.74773 0.51804 56.90 7.54 

19 5-17-1 0.9314 0.75582 0.88673 0.86934 12.89 3.59 

20 5-18-1 0.93978 0.69117 0.94289 0.84762 37.53 6.12 

 

 

Figure 4 Neural Network Architecture Sample of the Model 12 

 

Figure 5 Regression plot of Model 12 

Model 12 also showed impressive performance, with R values of 0.98904 for training, 0.96517 for validation, 0.94741 
for testing, and 0.97941 overall, and MSE and RMSE values of 1.15 and 1.07 respectively. 
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3.5. Model Validation and Performance Evaluation 

The cross-validation of the model for cohesion (c) prediction showed high accuracy, with an average difference of 1.8 
kPa, an R value of 0.98, and an RMSE of 1.49. This is evident from the data in Table 10 and Figure 6.  

Table 10 Experimental and Predicted Values of c for Primary Data Set 

Experimental c (kPa) Predicted c(kPa) Difference (kPa) 

7 5.8 -1.2 

21 21.6 0.6 

21 18.3 -2.7 

15 19.2 4.2 

22 21.8 -0.2 

10 11.1 1.1 

6 6.1 0.1 

23 25 2 

37 36.7 -0.3 

35 34.9 -0.1 

39 38.3 -0.7 

38 37.7 -0.3 

12 10.4 -1.6 

14 15 1 

26 25.9 -0.1 

Average difference (kPa) = 1.8 

 

 

Figure 6 Regression Plot of Prediction of c Value for Primary Data Set 
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For internal friction angle (ϕ) prediction, the model also performed well, showing an average difference of 1.5°, an R 
value of 0.98, and an RMSE of 1.86. The maximum difference in ϕ prediction was 3.6°, indicating some instances of 
deviation, but overall, the model maintained high accuracy and reliability in predictions. These results are detailed in 
Table 11 and Figure 7. 

Table 11 Experimental and Predicted Values of ϕ for Primary Data Set 

Experimental ϕ (°) Predictedϕ (°) Difference ϕ (°) 

24 24.6 0.6 

18 15.5 -2.5 

19 19.4 0.4 

19 18.4 -0.6 

20 20.1 0.1 

28 24.4 -3.6 

30 31.1 1.1 

19 19.5 0.5 

5 6.5 1.5 

4 5 1 

3 4.2 1.2 

3 4.5 1.5 

22 20.8 -1.2 

22 21.8 -0.2 

18 19.7 1.7 

Average difference (°) 1.5 

 

 

 

Figure 7 Regression Plot of Prediction of ϕ Value for Primary Data Set 
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The Artificial Neural Network (ANN) models for predicting cohesion (c) and internal friction angle (ϕ) displayed high 
accuracy. Model 7, designated for c prediction, achieved an impressive correlation coefficient (R value) of 0.99, both in 
testing and combined datasets, as illustrated in Figure 8. The error histogram (Figure 9) further supported the model's 
precision.  

 

Figure 8 Comparison of Measured and Predicted c Value of Model 7 

 

Figure 9 Error Histogram of Model 7 for Prediction of c 

Similarly, Model 12, aimed at ϕ prediction, showed R values of 0.98 and 0.97, respectively, signifying strong correlation 
and accuracy, as depicted in Figure 10. The error distribution, observed in Figure 11, indicated minimal deviation 
between predicted and actual values. 
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Figure 10 Comparison of measured and predicted ϕ value of model 12 

 

Figure 11 Error histogram of model 12 for ϕ prediction 

3.6. ANN Model Equations and Performance Evaluation 

In this study, the application of a sigmoid function, specifically the hyperbolic tangent sigmoid function (tansig), was 
central to the development of Artificial Neural Network (ANN) models. This function, pivotal in enabling the ANN 
models to map complex nonlinear input-output relationships, is represented by Equation 1: 

𝑇ℎ =  𝐹𝑡𝑎𝑛𝑠𝑖𝑔 = 𝑓(𝑥) = 2/(1 + 𝑒(−2𝑥)) − 1     Equation 1 

 

For predicting cohesion (c), Model 7, based on a 5-10-1 network architecture, emerged as the most effective. The 
model's details, including weights and biases, were outlined in Table 12.  

Table 12 Weights and Biases of Model 7 (Network 5-10-1) for c Prediction 

 Connection Weights (wih)  Biases 

h LL(x1) PL(X2) PI(X3) Sand%(x4) Fine%(x5) Vh bh bo 

1 -1.636 -0.484 -0.907 -0.367 1.028 2.162 -0.345 -0.345 

2 0.307 -1.630 2.698 0.954 0.935 3.013 0.869  

3 -0.601 0.405 -1.337 3.741 -2.501 3.880 0.683  

4 -1.173 0.187 1.106 0.386 -1.019 0.115 -2.002  
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5 1.139 -2.006 1.164 -2.646 0.356 -1.989 0.479  

6 -1.187 -1.834 -0.386 0.804 2.504 -0.031 -0.314  

7 1.793 0.116 0.897 0.221 -2.406 2.799 1.810  

8 -0.922 1.537 1.220 1.734 4.21 -0.351 -1.109  

9 -0.314 2.165 -2.354 3.775 1.461 -2.273 0.337  

10 -0.684 0.589 2.638 -2.005 -3.821 1.971 -2.478  

 The model utilized Equation 2 for calculating the weighted sum (wh) for each hidden neuron:  

𝑤ℎ = 𝑏ℎ + 𝛴(𝑤𝑖ℎ ∗ 𝑥𝑖)       Equation 2 

from i=1 to p 

The xi values in this equation, representing normalized input variables, were computed using Equation 3:  

xi =
(Xnorm,max−Xnorm,min)

Xmax−Xmin
(x − xmin) + Xnorm, min    Equation 3 

These calculated values were then fed into the sigmoid function (Equation 4) to obtain the normalized c value, which 
was subsequently converted to real values using Equation 6. 

Ftansig(wh) =
2

1+ 𝑒(−2𝑊ℎ) − 1      Equation 4 

𝑐 𝑛𝑜𝑟𝑚 =  𝑏0 +   ∑ 𝑛ℎ=1 (𝑣ℎ × 𝑇ℎ)     Equation 5 

𝑐 𝑛𝑜𝑟𝑚 =  
𝐶𝑛𝑜𝑟𝑚−𝑌𝑛𝑜𝑟𝑚𝑚𝑖𝑛     

(
𝑌𝑛𝑜𝑟𝑚,𝑚𝑎𝑥−𝑌𝑛𝑜𝑟𝑚,𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
)
 +  𝑌𝑚𝑖𝑛    Equation 6 

 
The prediction of the internal friction angle (ϕ) was conducted using Model 12, following a 5-11-1 network architecture, 
with details presented in Table 13. The approach for calculating ϕ was like that of the cohesion model, utilizing 
Equations 2 to 5.  

Table 13 Weights and Biases of Model 12 (Network 5-11-1) for ϕ Prediction 

 Connection Weights (wih)  Biases 

h LL(x1) PL(X2) PI(X3) Sand%(x4) Fine%(x5) Vh bh bo 

1 -0.950 -2.303 0.533 -1.468 0.772 1.723 -0.411 1.551 

2 1.009 -1.397 1.498 -1.269 1.087 -1.284 0.070  

3 0.933 -1.210 0.506 0.707 -0.248 1.794 -1.650  

4 0.985 -2.457 1.954 -2.256 -0.208 0.211 0.800  

5 -0.823 -0.660 -0.159 -3.117 1.275 2.285 1.189  

6 0.388 -0.385 -0.732 1.794 0.959 -0.144 2.107  

7 0.544 -0.538 1.220 0.778 1.613 0.631 -0.450  

8 0.145 -0.280 2.029 -0.103 -0.599 1.104 0.617  

9 1.691 3.098 -0.853 0.802 0.241 3.589 0.314  

10 1.421 1.551 1.317 1.007 0.682 1.172 0.503  

11 0.443 1.249 -1.516 -0.644 -1.224 2.058 -0.435  
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The normalized ϕ values obtained were then transformed into real values using Equation 7. 

ϕ =  
ϕnorm−Ynormmin   

(
𝑌𝑛𝑜𝑟𝑚,𝑚𝑎𝑥−𝑌𝑛𝑜𝑟𝑚,𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
)
 +  𝑌𝑚𝑖𝑛    Equation 7 

 
A critical component of the research was a comparative analysis with conventional regression models. This involved 
employing a multivariable linear least square regression (LLSR) approach. Key influencing variables for c and ϕ were 
identified using a stepwise regression technique, leading to the development of regression models detailed in Equations 
8 and 9. 

𝐶 =  20 +  2.18𝐿𝐿 − 2.05𝑃𝐿 − 2.36𝑃𝐼 + 0.06𝐹 + Ɛ   Equation 8 

ϕ =  −29.51 + 0.45𝐹 + 0.46𝑆 + Ɛ     Equation 9 
 

The multiple regression (R) values for both c and ϕ are 0.35 and 0.64 respectively. The R2 values are 0.12 and 0.41 for 
c and ϕ respectively. The ANN models were then compared against existing literature models, as seen in Tables 14 and 
15. This comparison highlighted the superior accuracy of the ANN models in predicting cohesion and internal friction 
angle. 

Table 14 Comparison of ANN Model and Existing Correlations for c Prediction 

Existing Models Equation for c R MSE RMSE 

Roy, (2014) 𝑐 =  224.032 −  2.272 𝑃𝐿 −  2.485 𝑃𝐼 0.036 72.65 8.52 

Ersoy et al., (2013) 𝑐 = 0.265(𝑃𝐼/𝐿𝐿)2.78 0.108 134.50 11.60 

Goktepe et al., (2008) 𝑐 =  1.61 −  0.03 𝜔 −  0.01𝑃𝐼 0.592 94.17 9.70 

Current Regression 20 + 2.18𝐿𝐿 − 2.05𝑃𝐿 − 2.36𝑃𝐼 + 0.06𝐹 0.35 50.471 7.104 

Current ANN ANN 0.982 1.27 1.12 

 

Table 15 Comparison of ANN Model and Existing Correlations for Φ Prediction 

Existing Models Equation for ϕ R MSE RMSE 

Roy, (2014) ϕ =  −29.604 +  34.220 𝐵𝐷 0.296 175.92 13.26 

Ersoy et al., (2013) ϕ =  −204.5(𝑃𝐼/𝐿𝐿)  +  56.3(𝑃𝐼/𝐿𝐿)  + 31 0.309 123.52 11.11 

Goktepe et al., (2008) ϕ =  −6.38 +  0.58 𝜔 +  0.05 𝑃𝐼 0.503 295.93 17.20 

Current Regression model −29.51 +  0.45 𝐹 +  0.46 𝑆 0.64 10.173 3.189 

Current ANN model ANN 0.987 1.15 1.07 

 

Table 16 Comparison of existing ANN models with the current model for c prediction 

ANN Models No. of datasets Soil types R MSE RMSE 

Lyeke et al., (2016) 83 Tropical lateritic soil 0.861 MAE=6.08 8.33 

Kiran & Lal, (2016) 200 Sandy silt 0.942 3.97 11.68 

Yoseph, (2022) 284 Fine grained 0.974 2.82 1.68 

Current model 316 Black cotton soil 0.982 1.27 1.12 
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Further, the study compared the current ANN models with existing ANN models, focusing on the impact of dataset size 
on model accuracy. Tables 16 and 17 illustrated this comparison, indicating that the current models, which had the 
largest dataset, exhibited the highest accuracy for predicting soil shear strength parameters. 

Table 17 Comparison of existing ANN models with the current model for ϕ 

ANN Models No. of datasets Soil types R MSE RMSE 

Lyeke et al., (2016) 83 Tropical lateritic soil 0.805 MAE=4.34 4.77 

Kiran & Lal, (2016) 200 Sandy silt 0.981 5.65 6.04 

Yoseph, (2022) 284 Fine grained 0.965 1.72 1.31 

Current model 316 Black cotton soil 0.987 1.15 1.07 

 
In summary, the study effectively demonstrated the superiority of the developed ANN models over traditional 
regression models and existing ANN models. The detailed mathematical framework, including the crucial role played 
by various equations, was pivotal in achieving high accuracy and reliability in predicting soil shear strength parameters. 

4. Conclusion  
In conclusion, the study's pivotal accomplishment was the development of Artificial Neural Network (ANN) models 
aimed at estimating soil shear strength parameters, specifically cohesion (c) and internal friction angle (ϕ), based on 
soil index properties. A comprehensive analysis of 316 soil test results led to the determination of optimal ANN 
configurations: for cohesion, a 5-10-1 network (five inputs, ten hidden layer nodes, and one output node) was identified, 
yielding a high correlation coefficient (R) of 0.99 for testing data and a Mean Squared Error (MSE) of 1.27. Similarly, for 
the internal friction angle, a 5-11-1 network was found most effective, with an R value of 0.98 and an MSE of 1.15 for 
testing data. These results are significant as they demonstrate the models' precision and robustness. The R values, being 
close to 1, indicate an excellent fit between the predicted and actual data, affirming the accuracy of the ANN approach. 
Concurrently, the minimal MSE values underscore the models' reliability in predicting soil shear strength with minimal 
error. Particularly relevant for soils akin to those in Bishoftu, Ethiopia, these models offer substantial improvements 
over traditional empirical methods. For future research, the study suggests broadening the dataset to include a variety 
of soil types and incorporating other influential factors such as organic content and stress history. This expansion would 
not only enhance the accuracy and applicability of the models across different regions and soil conditions but also 
advance the capability of ANN models in predicting soil shear strength with greater precision and reliability. 
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