RRRRR

World Journal of Advanced Research and Reviews W,

eISSN: 2581-9615 CODEN (USA): WIARAI R vanced

Cross Ref DOL: 10.30574/wjarr Begews
WJARR Journal homepage: https://wjarr.com/ o
(RESEARCH ARTICLE) W) Check for updates

Comparative Analysis of Classical and Quantum Cryptography: Assessing
Performance and Adaptability in a Simulated Environment

Teslim Aminu " and Ekene Adim

Department of Computer Science, Western Illinois University, Macomb, Illinois, USA.

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Publication history: Received on 23 October 2023; revised on 23 December 2023; accepted on 28 December 2023

Article DOI: https://doi.org/10.30574 /wjarr.2023.20.3.2472

Abstract

This research conducts a comprehensive comparative analysis of classical and quantum cryptographic algorithms,
assessing their strengths and weaknesses regarding speed (referring to the time taken for encryption and decryption)
and efficiency (effectiveness of a specific algorithm across the different inputs data provided). This research investigates
four classical cryptographic algorithms, including ChaCha20, Advanced Encryption Standard (AES), Lai-Massey, and
Blowfish, which were examined within the scope of this study. Employing a simulation framework, three distinct
scenarios are evaluated: (1) behavior with limited lines of plaintext, (2) performance with extensive text, and (3)
handling of both numerical and symbolic data. The primary objective of the research is to elucidate the adaptability and
resilience of classical and quantum cryptographic approach across various input types. The findings indicate that while
the classical approach maintains robustness and efficiency for small datasets, its performance varies when handling
larger volumes and diverse data types. While not entirely immune to vulnerabilities—such as implementation flaws,
channel noise, or side-channel attacks—the quantum approach demonstrates enhanced speed, depending on the key
size and the nature of the input data, including plain text, numerical, and symbolic content. This paper highlights the
contextual benefits of classical and quantum cryptographic approaches, stressing the importance of making well-
informed decisions in cryptographic applications as technology evolves.

Keywords: Quantum Computing; Cryptography; Shor's Algorithm; Quantum Key Distribution; Post-Quantum
Cryptography

1. Introduction

In the dynamic landscape of cryptography and data encryption, a transformative era unfolds, driven by relentless
progress in quantum computing [1]. In an age where information security is paramount, cryptography plays a pivotal
role in safeguarding sensitive data. As classical cryptographic foundations face unprecedented challenges posed by the
rapid advancement of quantum computing, the need for a smooth transition becomes increasingly evident. Quantum
theorists, such as Nielsen and Chuang [2], highlights this paradigm shift, prompting a critical evaluation of the synergy
between quantum computing and cryptography. This research, conducted within a meticulously designed simulated
environment, explores the intricate relationship between quantum computing and cryptography. Foundational works,
including Shor’s algorithm [3], have revealed critical vulnerabilities in widely adopted classical cryptographic systems,
challenging the long-held assumptions of their invulnerability. While prior research has focused extensively on the
theoretical threats posed by quantum computing, there remains a noticeable gap in empirical evaluations that simulate
how quantum cryptographic techniques perform in comparison to classical algorithms under varying data conditions.

This study addresses that gap by conducting a systematic exploration of the interaction between quantum computing
and cryptography within a rigorously constructed simulated environment. By analyzing classical encryption schemes

* Corresponding author: Teslim Aminu

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2023.20.3.2472
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.28.3.2472&domain=pdf

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

alongside quantum protocols under diverse input scenarios ranging from short plaintexts to symbol-rich datasets, this
research offers a practical perspective on the adaptability, efficiency, and limitations of both paradigms. In doing so, it
contributes to the ongoing discourse by not only reinforcing theoretical insights but also providing data-driven guidance
for the evolution of secure communication in the quantum era.

Businesses can use quantum computing to better optimize investment strategies, enhance encryption, find new goods,
but it comes at a high expense—the cost of quantum computing increased from $30 million in 2012 to $450 million in
2019 [4]. A different approach to comprehending these systems' features is offered by quantum simulators, which also
produce clean realizations of particular systems of interest, enabling accurate realizations of their properties [5]. A
simulated environment was chosen for this study because it is widely used in industry due to its cost-effectiveness and
flexibility. As classical cryptographic methods face increasing threats from quantum computing, this environment
provides a controlled space to explore alternatives. This research seeks to answer a pivotal question: what are the trade-
offs in performance and efficiency between classical and quantum cryptographic algorithms?

The motivation for conducting a comparative analysis of classical and quantum cryptography stems from the need to
provide a breakdown of their individual performance and efficiency across different use cases. This research serves as
an insight for future researchers, scientists, and businesses in sectors such as finance, healthcare, e-commerce, and
government, where the choice between classical and quantum cryptographic algorithms can significantly impact the
performance and efficiency of data encryption processes. This paper provides insights into these trade-offs, this study
aims to inform decisions on the usability of classical Cryptography or Quantum Cryptography for various projects. The
rest of the paper is organized as follows: Section 2 provides the literature review, Section 3 describes the experimental
setup and design, Section 4 presents the findings and results of the study, Section 5 examines the limitations and
challenges encountered, Section 6 outlines future work, and Section 7 concludes the paper.

2. Literature review

The convergence of quantum computing and cryptography has evolved into a central focus, compelling an in-depth
exploration of their applications and implications. This literature review amalgamates seminal research, pivotal
concepts, and noteworthy advancements, laying the foundation to address the research question. Shor's algorithm is a
quantum computing cornerstone [4] renowned for efficiently factoring large integers. This recognition underscores the
pressing need for quantum-resistant cryptographic solutions and forms a pivotal backdrop for our investigation. The
introduction of quantum cryptography principles [5] is a crucial pivot for secure key exchange in the quantum era
through quantum key distribution (QKD) protocols. QKD protocols, as highlighted in [4] and [5], play a critical role in
fortifying communications such as secure data transmission, email communication and encrypted file transfers against
quantum threats.

An essential reference point in our exploration is a comprehensive NIST report [6], which delves into quantum-safe
cryptographic approach, exploring lattice-based, code-based, and multivariate polynomial approach. This extensive
overview provides a roadmap for our investigation into quantum-resistant cryptographic solutions. Peikert's survey on
lattice-based cryptography [7] showcases the promise of lattice-based systems for post-quantum security, particularly
their resistance to Shor's algorithm. This survey forms a foundational layer in understanding potential cryptographic
approach. As highlighted by the NIST report, the resilience of hash-based cryptographic approach [8] is crucial in a
quantum-enabled world. This perspective offers valuable insights into securing digital communication. In-depth
exploration of code-based cryptographic approach [9], including McEliece-based encryption and its resistance to
quantum attacks, enriches the understanding of potential quantum-resistant strategies. Unruh's work [10] in quantum-
secure message authentication codes (MACs) accentuates the importance of safeguarding confidentiality and message
integrity in a quantum-empowered environment, aligning seamlessly with the researcher’s comprehensive security
goals.

Preskill's examination of the capabilities and limitations of near-term quantum computers [11] provides indispensable
insights into the evolving landscape of quantum-safe security measures. This work serves as a guiding beacon for
comprehending the broader implications. Skolnick's research on the potential of quantum computing in enhancing
money laundering detection [12] introduces real-world applications of quantum algorithms for pattern recognition,
aligning directly with the focus on practical implications. Yermack's exploration of digital currencies like Bitcoin [13]
intricately connects the technological landscape with regulatory challenges, emphasizing the pivotal role of
cryptography. In the realm of regulatory technology (RegTech), an exploration of cryptographic technologies [14]
becomes paramount. Their work highlights the potential for ensuring regulatory compliance, establishing a critical link
between cryptography and regulatory standards. In related work, Bernstein et al.'s emphasis on post-quantum
cryptography [15], Bennett and Brassard's secure cryptographic key exchange through QKD [16], and the exploration

2436

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

of quantum money and speedup by Wiesner and Zalka [17, 18] enrich the quantum computing landscape. Despite these
advancements, the practical implementation and broader implications of quantum computing for diverse cryptographic
protocols remain a critical frontier. In general, encryption techniques are an essential instrument for data security. They
support the preservation of privacy, guarantee data integrity, guard against cyberattacks, and guarantee adherence to
the law [19]. This research navigates quantum algorithms, providing practical guidance for secure digital information
handling in the quantum era within the confines of simulated environments. Through meticulous references, the paper
contributes valuable insights into the transformative potential of quantum computing for cryptography in simulated
environments, addressing the overarching question of its role as a savior in this era of rapid technological advancement.

3. Experimental design

This research systematically investigates and compares classical and quantum cryptographic algorithms to address the
escalating concerns surrounding the security landscape in an era of advancing technologies. The experiment is designed
to highlight their strengths and weaknesses, specifically on security and efficiency. The motivation behind this study
arises from the imperative need to understand how these cryptographic approaches perform across various scenarios
and input types, ultimately guiding informed decisions in the evolving landscape of cryptographic applications. In the
subsequent sections, we’'d delve into the experimental design employed to assess the classical and quantum
cryptographic algorithms meticulously. In study, we maintain a default key size of 256 bits for all algorithms to eliminate
disparities in experimental results and ensure consistency in the comparison process between the algorithms.

Fig. 1 illustrates the algorithms, the default key sizes, and the references employed in this experimentation process,
which consists of two primary stages namely; Cryptographic Algorithms Stage and Encrypted/Decrypted
Communication.

3.1. Cryptographic Algorithms Stage

The research’s initial stage navigates the complex landscape of cryptographic algorithm selection. This involves a
thoughtful consideration not only of classical cryptographic algorithms such as ChaCha20, Advanced Encryption
Standard (AES), Lai Massey, and Blowfish but also extends its reach into the realm of quantum cryptographic algorithms.
This research aims to investigate and craft a robust and representative comparison that spans the classical and quantum
domains. Delving into the realm of classical cryptographic algorithms, the researchers’ focus is on four key contenders,
as seen in Table 1:

Table 1 Algorithms and their Features

Algorithm names | Default key used (bits) | References
ChaCha20 256 [24]
AES 256 [28]
Lai Massey 256 [35]
Blowfish 256 [27]

These selections as seen in Table 1 above, are not arbitrary but emerge from a meticulous process guided by specific
criteria, including but not limited to widespread adoption and availability of prior research work and resources, and the
ease of implementation, with a particular focus on utilizing a minimum key value for all algorithms. The criteria focus
on considerations such as widespread adoption, ensuring the chosen algorithms are embedded in real-world
cryptographic applications and industry standards. The versatility of each algorithm in different cryptographic
applications becomes a focal point, from symmetric key encryption to public-key cryptography, with AES, Blowfish, and
ChaCha20 supporting symmetric key encryption, and Lai-Massey supporting asymmetric or public key encryption.
These choices are also guided by a recognition of historical significance, with a preference for algorithms that have
demonstrated reliable performance and consistent use over time. Algorithm maturity, a crucial factor contributing to
stability and reliability, is also at the forefront of the researchers’ considerations. The selected algorithms have
weathered extensive scrutiny, analysis, and implementation, solidifying their place as mature and reliable
cryptographic tools.

In integrating the Advanced Encryption Standard (AES) into the cryptographic framework, its robust standing as a
widely embraced symmetric encryption algorithm was a deciding factor. Developed in 2001, AES has been a stalwart in

2437

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

protecting sensitive data. Its operational efficiency on fixed-size data blocks, supporting key sizes of 128, 192, or 256
bits, has made it the encryption standard of choice [20]. Widespread adoption underscores its significant role in
securing communications and protecting stored data across diverse applications. The Lai-Massey scheme is a significant
component in the realm of cryptographic alternatives, selected for its unique structure used in the design of block
ciphers. Introduced by Xuejia Lai with the assistance of James L. Massey, hence the scheme’s name, Lai-Massey [21]. It
has been widely used in the design of symmetric cryptographic algorithms [22]. Its unique structure and operation have
made it a popular choice across various security protocols, including IPsec and TLS, where secure and efficient
encryption is essential [23]. Proposed by Bruce Schneier, Blowfish aligns with the researchers’ consideration as a
dynamic symmetric key block cipher tailored for swift and secure data encryption. Unveiled in 1993, Blowfish supports
key sizes ranging from 32 to 448 bits and operates on variable-length blocks. While not as omnipresent as AES, Blowfish
finds its niche in diverse security protocols, such as SSH (Secure Shell) and VPN implementations, valued for its
simplicity and speed (referring to the time taken for encryption and decryption), offering a compelling alternative in
applications demanding robust data protection.

The inclusion of ChaCha20, a stream cipher in the cryptographic toolkit, is rooted in its seamless fusion of speed and
security in data encryption. Developed by Daniel J. Bernstein in 2008, ChaCha20 is often coupled with the Poly1305
authenticator to forge the resilient ChaCha20-Poly1305 encryption algorithm. Its popularity in securing internet
communications, especially in protocols such as TLS 1.3 and QUIC (used by HTTP/3)—attests to its prowess in
delivering secure encryption.

The exploration of each algorithm, including their respective release years, delves into nuanced attributes and distinct
strengths, focusing on a comprehensive understanding of their applications within the ever-evolving landscape of
cryptographic practices. This approach ensures a thorough examination that goes beyond surface-level characteristics,
providing valuable insights into the practical implications of each cryptographic tool.

Fig.1 describes an implementation of the ChaCha20 algorithm for encryption and decryption in Python using the
Crypto.Cipher module. ChaCha20 is a stream cipher designed for efficient and secure symmetric key encryption. In this
implementation:

from Crypto.Cipher import ChaCha2@
from Crypto.Random isport get random _bytes
import time

def encrypt_chacha28(key, plaintext, iterations=350):
encryption_time ~ @
for 1 in range(iterations):
start_time « time.time()
cipher = ChaCha2@.new(key=key)
nonce = get_random_bytes(16) # Generate a random nonce of 96 bits (12 bytes)

ciphertext = cipher.nonce + cipher.encrypt(plaintext)
end_time = time.time()
encryption time += end time - start time

Display ciphertext after each iteration
print(f"Iteration {1 + 1}:")
print("Ciphertext:", ciphertext. hex())

return ciphertext, encryption_time

def decrypt_chacha2@(key, ciphertext, iterations«350):

decryption time = ©

for i in range(iterations):
start_time = time.time()
nonce = ciphertext[:12] # Extract nonce from the ciphertext
cipher = ChaCha2®.new(key=key, nonce=nonce)

decrypted = cipher.decrypt(ciphertext[12:])
end_time = time.time()
decryption_time += end_time - start_time

Display decrypted ciphertext after each iteration
print(f"Iteration {i + 1}:")
print("Decrypted ciphertext:", decrypted)

return decrypted, decryption time
Example usage

key = get_random_bytes(32) # Generate a random 256-bit (32-byte) key
plaintext = b "@2%rL&SP | qS#BxGIZA*tH-3XcWs+oF"

Figure 1 Implementation of the CHAHA20 Algorithm

2438

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

To evaluate the security and efficiency of the ChaCha20 algorithm as part of this research, the following code was
implemented:

e A random 256-bit (32-byte) key is generated using the get random_bytes function to ensure strong
cryptographic security.
e The encrypt_chacha20 function:
[teratively encrypts the plaintext using the ChaCha20 algorithm and the generated key.
For each iteration, a new random 96-bit (12-byte) nonce is generated.
The plaintext is encrypted with the generated key and nonce.
The output ciphertext is a concatenation of the nonce and the encrypted message to support proper
decryption.
e The decrypt_chacha20 function:
o Iteratively decrypts the ciphertext using the ChaCha20 algorithm.
o Itextracts the nonce from the ciphertext and uses it with the provided key.
o The original plaintext is recovered by decrypting the encrypted portion of the ciphertext.

O O O O

This implementation allows for controlled testing of ChaCha20's performance under the conditions defined in this
study, especially with varied input sizes and data types.

The code measures the time taken for encryption and decryption over 350 iterations for each operation, allowing for
analysis of performance.

The ciphertext and decrypted plaintext are displayed after each iteration, along with their corresponding iteration
numbers.

Fig. 2 illustrates a Python implementation of AES symmetric-key encryption and decryption using CBC mode and
PKCS7 padding. The key processes are as follows:

e Encryption Process (aes_encrypt function):

Key validation is enforced to ensure compatibility with AES requirements (e.g., 16, 24, or 32 bytes).
A random Initialization Vector (IV) is generated to ensure ciphertext uniqueness.

PKCS7 padding is applied to the plaintext to align it with AES block size requirements.

The plaintext is encrypted using AES in CBC mode with the validated key and generated IV.
The resulting ciphertext includes the IV concatenated with the encrypted data.

o Decryption Process (aes_decrypt function):

The IV is extracted from the beginning of the ciphertext.

AES decryption is performed using the extracted IV and the provided key.

PKCS7 padding is removed to retrieve the original plaintext.

The function ensures that the key length matches AES specifications.

Implementation Features:

Emphasizes secure cryptographic practices, such as:

O 0O O O O

O
O
O
©)

oProper key handling and IV management.
oUse of standardized padding schemes (PKCS7).
¢ Performance metrics are collected for both encryption and decryption operations.
e Demonstrates the importance of confidentiality and integrity in the handling of sensitive data.

2439

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

import os

import time

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

def aes_encrypt(plaintext, key):
key = key[:32] if len(key) > 32 else key.ljust(32, b"\x8@8")
iv = os.urandom(16&)
cipher = Cipher{algorithms.AES(key), modes.CBC(iv), backend=default_backend())
encryptor = cipher. encryptor()
padded_plaintext = PKCS7_pad{plaintext)
ciphertext = encryptor.updatelpadded_plaintext) + encryptor.finalize()
return iv # ciphertext

def aes_decrypt{ciphertext, key):
key = key[:32] if len(key) > 32 else key.ljust(32, b"\xB@")
iv = ciphertext[:16]
cipher = Cipher{algorithms.8ES({key), modes.CBC{iv), backend=default_backend(})
decryptor = cipher.decryptor()
tirys
decrypted_padded_plaintext = decryptor.update(ciphertext[16:]) + decryptor_finalize()
plaintext = PKCST_wnpad{decrypted_padded_plaintext)
return plaintext, None
excapt Exception as e:
return None, str{e)

def PECSY_pad{data, block_sizesi6):
padding length = block_size - (len(data) ¥ block_size)
padding = bytes([padding_length] * padding_length)
return data + padding

def PECST_unpad(data):
padding_length = data[-1]
return data[:-padding_length]

Example usage
key = os.urandom{32) # 32-byte key for AES-256 (256 bits)
plaintext = "@2HrL&5F|q5#8xG3I0* tH-IHcWroF "

Encrypt and Decrypt 309 times
total_encryption_time = @
total_decryption_time = @

Figure 2 Implementation Of the AES Algorithm

Fig. 3 illustrates a Python implementation of the Lai-Massey symmetric encryption algorithm, utilizing two keys for
added security. In lai_massey_encrypt, the plaintext message undergoes two rounds of AES encryption with ECB mode,
first with key1 and then with key2. Conversely, lai_massey_decrypt decrypts the ciphertext by reversing the encryption
process, using key?2 first followed by key1. This two-key approach enhances security against cryptographic attacks
compared to single-key schemes. Lai-Massey encryption maintains simplicity in implementation by employing
symmetric keys for both encryption and decryption. This implementation demonstrates a robust cryptographic
technique, offering heightened protection for sensitive data while ensuring efficient encryption and decryption

processes.

2440

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

import time

from cryptography.hazmat.primitives import padding
from cryptography.hazmat._primitives._ ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

def pad_key(key):
if len(key) « 32:
return key + b'\=88" * (32 - len(key))
elif len(key) > 32:
return key[:32]
elsa:
return key

def pad message(message)
padder = padding.PECST7(128).padder()
padded_message = padder.update(message)
padded_message += padder.finalize()
return padded_message

def lai_massey_encrypt{message, keyl, keyl):
keyl = pad_key(keyl)
key2 = pad_key(key2)

padded_message = pad_message(message)

cipherl = Cipher{algorithms. AES(keyl), modes.ECB(), backend=default_backend(})
encryptorl = cipherl_encryptor()
encrypted_messagel = encryptorl.update{padded_message) + encryptorl.finalize()

cipherd = Cipher{alpgorithms.AES(keyd), modes,ECB(), backend=default_backend(])
encryptor2 = cipher?.encryptor()
encrypted_message? = encryptorl.update{encrypted_messagel) + encryptorl.finalize()

return encrypted_messagel

def lai_massey_decrypt{encrypted_message, keyl, key2):
keyl = pad_key(keyl)
key2 = pad_key(key2)

cipher2 = Cipher{algorithms . AES(key2), modes.ECB(), backend=default_backend(])
decryptor? = cipher2_ decryptor()
decrypted_message2 = decryptor?.update{encrypted_message) + decryptor?.finalize()

cipherl = Cipher{algorithms.AES(keyl), modes.ECB(), backendsdefault_backend())
decryptorl = cipherl.decryptor()
decrypted_messagel = decryptorl.update{decrypted_messape?) + decryptorl.finalize()

Figure 3 Implementation of the Lai-Massey Algorithm

Fig.4 shows a Python implementation of the Blowfish algorithm, a symmetric-key encryption and decryption technique.
The “derive_blowfish_key" function is designed to derive a Blowfish key from a given password. Notably, Blowfish uses a
fixed key size of 56 bytes, and the derived key is obtained by generating random bytes. The “blowfish_encryption’
function showcases the encryption process using Blowfish in Electronic Codebook (ECB) mode, a block cipher mode
where each block of plaintext is independently encrypted. The plaintext is first padded using PKCS7 padding to ensure
compatibility with the block size of Blowfish. The elapsed time for the encryption process is recorded. Conversely, the
“blowfish_decryption function reverses the encryption process. It decrypts the ciphertext using Blowfish in ECB mode,
removes the padding, and decodes the result from UTF-8 encoding. The elapsed time for the decryption process is also
recorded. This implementation demonstrates the key derivation from a password, encryption, and subsequent message
decryption using the Blowfish algorithm and highlights Blowfish's reputation for speed and security.

Fig. 4 illustrates a Python script demonstrating Blowfish encryption and decryption with ECB mode and padding using
the Crypto.Cipher library. The derive_blowfish_key function generates a random 256-bit Blowfish key from a password.
blowfish_encryption encrypts plaintext iteratively for enhanced security, displaying ciphertext after each iteration.
Conversely, blowfish_decryption decrypts ciphertext and displays the decrypted text after each iteration. The
implementation emphasizes iterative encryption and decryption processeses. Blowfish encryption ensures data
confidentiality, while decryption reverses the process to retrieve the original plaintext. The code measures encryption
and decryption times for performance analysis. This showcases a robust encryption approach, providing secure data
transmission while highlighting Blowfish's efficiency and cryptographic strength.

2441

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

from Crypto.Cipher import Blowfish

from Crypto.Random import get random_bytes
from Crypto.Util.Padding import pad, unpad
import time

def derive blowfish key(password):
Derive a key from the password
return get random_bytes(32) # Blowfish key size is 32 bytes for 256 bits

def blowfish_encryption(plaintext, key):
Create a Blowfish cipher object
cipher = Blowfish.new(key, Blowfish.MODE_ECB)

Encrypt the plaintext

ciphertext = plaintext.encode("utf-8")

for 1 in range(350): # Encrypt 300 times
ciphertext = cipher.encrypt(pad(ciphertext, Blowfish.block size))
Display ciphertext after each iteration
print("Ciphertext after iteration", i, ":")
print(ciphertext.hex())

return ciphertext

def blowfish decryption(ciphertext, key):
Create a Blowfish cipher object
cipher = Blowfish.new(key, Blowfish.MODE_ECE)

Decrypt the ciphertext and remove padding
decrypted text = ciphertext
for 1 in range(350): # Decrypt 300 times
decrypted text = unpad(cipher.decrypt(decrypted text), Blowfish.block size)
Display decrypted ciphertext after each iteration
print("Decrypted Ciphertext after iteration", i, ":")
print(decrypted text)
return decrypted text.decode("utf-8")

Example usage
password = b"blowfish_password”
blowfish key = derive blowfish key(password)

Plaintext to be encrypted and decrypted
plaintext = "@2%rL&5P!qS#8xGOZO*tH-3%cl+oF"

Figure 4 Implementation of Blowfish Algorithm

3.2. Encrypted/Decrypted Communication:

This stage involves establishing a communication setup using the implemented classical cryptographic algorithms to
encrypt and decrypt messages.

3.3. Simulation Environment Stage

This section explains how the Qiskit environment was set up using Anaconda to support the quantum cryptographic
experiments. The experiments were executed within a Qiskit-simulated environment [24] crafted with Anaconda. This
strategic choice not only streamlined the management of dependencies but also ensured the creation of reproducible
and consistent experimental conditions. The Qiskit environment, meticulously configured through Anaconda, served as
the backbone for conducting quantum cryptographic analyses.

3.3.1. Step 1: Install Anaconda

Download Anaconda from https://www.anaconda.com/download/ and install it. Ensure compatibility by using
Anaconda version 2.5.1.

3.3.2. Step 2: Open Anaconda Navigator

After installation, open Anaconda Navigator in your applications or use the search function.

24472

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

3.3.3. Step 3: Create a New Environment

In Anaconda Navigator, go to the "Environments" tab.

Click "Create" to make a new environment named, for example, " proj_env_giskit."
Choose the Python version (usually the latest is suitable).

Select desired packages, including python, jupyter, and matplotlib.

3.3.4. Step 4: Install Qiskit

Once the environment is created, select it in the Navigator's "Home" tab.
Switch the dropdown menu from "Applications on" to the new environment's name.
Open the terminal by clicking "Launch"” under the "Home" tab.

3.3.5. Step 5: Install Qiskit
In the terminal, type: pip install giskit

3.3.6. Step 6: Verify Installation

Verify the installation by launching a Python interpreter or a Jupyter notebook in the new environment and importing
Qiskit:

o From qiskit import quantumcircuit, Aer, transpile, assemble, execute
e From qiskit.visualization import plot_histogram

3.4. Run Simulation

This stage involves implementing quantum algorithms for cryptography and data encryption within the simulated
quantum environment. Quantum computing for cryptography and data encryption involves leveraging the principles of
quantum mechanics to perform computational tasks, including encryption and decryption. Unlike classical bits that can
exist in either a state of 0 or 1, quantum bits or qubits can simultaneously exist in a superposition of both states. This
property allows quantum computers to perform multiple calculations in parallel, providing a potential speedup for
certain types of computations, including those used in cryptography.

Figure 5 illustrates the implementation of a Python script demonstrating Quantum Key Distribution (QKD) combined
with ChaCha20-Poly1305 encryption and decryption. Quantum key distribution is achieved through quantum states’
manipulation, enabling secure key generation between parties. The ChaCha20-Poly1305 encryption function encrypts
plaintext using derived keys and nonces, ensuring data confidentiality. Conversely, decryption retrieves the original
plaintext using the same keys and nonces. Each encryption and decryption cycle are timed for performance evaluation.
The implementation highlights the integration of quantum principles for secure key establishment, coupled with
efficient symmetric encryption techniques for data protection. This approach highlights the synergy between quantum
computing and classical cryptography, offering robust security solutions for sensitive data transmission. The code's
comprehensive design facilitates experimentation and analysis of quantum-enabled cryptographic protocols,
contributing to advancements in secure communication paradigms.

2443

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

import gqiskit

fromgiskit import QuantumCircuit, transpile, Aer

from giskit.providers.aer import AerSimulator

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms
from cryptography.hazmat.primitives import hashes

import random

import time

import os

def derive_chacha2@_nonce() -> bytes:
return os.urandom(16) # Generate a random nonce of 16 bytes

def derive_chacha2@_key() = bytes:
kdf = PBKDF 2HMAC(
algorithm=hashes.SHA256(),
length=32,
salt=b"random_salt",

iterations=158,
return kdf.derive(b"password™)

Create a ChaCha28-Poly1385 encryption function (simplified for demonstration)
def chacha20_poly1305_encryption(plaintext, key, nonce):

Initialize the ChaCha2®-Poly1385 cipher

cipher = Cipher(algorithms.ChaCha28(key, nonce), mode=None)

encryptor = cipher.encryptor()
ciphertext = encryptor.update(plaintext.encode("utf-8")) + encryptor.finalize()

return ciphertext

Create a ChaCha28-Poly1385 decryption function (simplified for demonstration)
def chacha28_poly1305_decryption(ciphertext, key, nonce):

Initialize the ChaCha28-Poly1385 cipher

cipher = Cipher(algorithms.ChaCha28(key, nonce), mode=None)

decryptor = cipher.decryptor()
decrypted_text = decryptor.update(ciphertext) + decryptor.finalize()

return decrypted_text

Quantum key distribution function

def quantum_key_distribution():
Generate a random key and encode it using quantum states
key = derive_chacha2@_key()

Figure 5 Implementation of Quantum Computing Algorithm for Cryptography

3.5. Simulated Results

The quantum algorithm was executed on simulated quantum data, and the results were analyzed, comparing the
performance with classical cryptographic approach. Below is a snapshot of the simulation for both the classical
cryptographic approach and the quantum computing for cryptography.

Figures 6, 7, and 8 illustrate the outcomes obtained by simulating classical and quantum cryptographic algorithms.
These simulations focus on evaluating the efficiency and performance of both encryption and decryption processes.
Encryption time, representing the duration required for converting readable plaintext into encrypted ciphertext, is a
critical metric in assessing the computational cost of cryptographic operations. Concurrently, decryption time, the
duration needed to reverse the encryption process and obtain the original plaintext from the ciphertext, plays a
significant role in understanding the efficiency of decryption algorithms.

Plaintext, denoting the original and human-readable data before any cryptographic transformations, forms the basis of
information requiring secure transmission. Ciphertext, produced by applying encryption algorithms to plaintext,
transforms the information into an unreadable format without the corresponding decryption key or process. The
resulting Decrypted Text is the restored and readable form of data obtained using decryption algorithms on ciphertext.
This process transforms the encrypted data into its original, human-readable state.

2444

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Iteration 358:
Cipherte 2156548t 5 Telable2dS6leTrd3icll556TdTU2d39e52b3efellf1123503 icelaebdT
ypted Plain

Total Encryption Time: @.1197894917
Total Decryption Time: @. 88937342643

CTROREST2d TURd FTTITUOZF BfA531F9EE2FcaSclaSccabl

e2RYxd 1y xc@=Y W) valhxceh’yx

ption Time
ption Time 8

Figure 8 Results Obtained from Simulating the Quantum Computing Algorithm for Cryptography

4., Result

In the context of this study, a thorough comparison is undertaken to assess and analyze the relative strengths and
weaknesses of classical cryptographic algorithms as opposed to quantum cryptographic algorithms, with a specific focus
on aspects of speed and efficiency. The evaluation is conducted through a series of simulations that address three
distinct approaches. Notably, the simulation process was meticulously executed in different iterations, each measured
in seconds, to ensure accuracy and reliability in obtaining meaningful and consistent results. This iterative approach
enhances the robustness of the study by minimizing potential variability and providing a more precise understanding
of the performance metrics associated with classical and quantum cryptographic algorithms.

4.1. Behavior with Few Lines of Plaintext

When evaluating the performance of classical and quantum cryptographic algorithms with limited plaintext, notable
differences become apparent. Plaintext refers to the original, unencrypted data or message that is input into a
cryptographic algorithm for encryption. It is the readable form of information before any transformation or encoding is
applied to protect its confidentiality.

classical techniques such as Lai-Massey and ChaCha20 demonstrate robustness in securing small datasets, ensuring
both security and operational efficiency. However, quantum algorithms offer a novel perspective by exposing specific
vulnerabilities in classical cryptographic systems—particularly the use of short or static keys, and reliance on key
exchange protocols susceptible to quantum attacks.

While quantum methods may demonstrate superior computational power compared to classical counterparts, they also

highlight the urgent need for stronger key management and quantum-resistant encryption measures to address
emerging threats posed by advancements in quantum computing.

2445

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Crytograp Encryptio Decrytio

hic Plainte Decrgte n Time[=s] n Time[s]

Method =t Ciphertezt d Text Arx 50 Ar 50
Hello Hello

ChaChazo Sworld b'EtrdEvedetsZhinlcinel acd’ whorld 000225 [ERETNE=IN) |

ced

Encryption Hello Hello

Standard] "whorld bec2cazddciEict02Ed28bo12Fa2 FESIRE08 acE 29F04 Frd e la2 ke e World n.ozEey Qoovos
Hello Hello

Lai-F1a=i "whorld S0b3EValcEEd20150307arb5az2 231305 whorld oovE 00073
Hello

ElowFizh wharld 1b74ExcAFdTITIb4H =4 2F0dbE24E 33T Hella 'w'arl n.o0sss 0.a0s

Cluantum Hello

Computing Wworld b0l cd 3 0Essb P 3P wd hab ake 07 Hello 'w'arh 000154 0.000307

Crytograp Encryptio Decrytio

hic Flainte Decrgte n Time[=s)] n Time[s]

Method =t Ciphertext d Text Ar 150 At 150
Hello Hello

ChaChazl ‘world b'dftuSchecix 03 TRRA5wag" ‘whorld n.05E2 004746

AES[Aduan

ced Hella Hello

Encryption world 470614 T eabfF2E2ET4 2cdEeB3dIEe2e BbaBalZThibE4 525 deT2d20EF World 00395 0oo1e:
Hello Hello

Lai-Pa=i "whorld Td1Z226b VT ae FIFEETE4 2LEDEDCE2ZEIFE whorld n.0=703g 000135
Hello

ElowFish "whorld dcb4fb2Eb2 abe =552 a61d64 6264103 Hella "warh 002453 ooz593

Cluantum Hello

Computing wWorld (R ETE S b ST LB T = ET Hello worl n.oz41s 0.000671

Crytograp Encryptio Decrytio

hic Flainte Decrgte n Time[s)] n Time[s]

Method zt Ciphertext d Text Ak 250 At 250
Hello Hello

ChaChazl ‘warld bvuel frefGR e al’ ‘wharld 002013 0010z

SAES[Aduan

ced Hello Hello

Encryption Wworld 43 adFET e TebAFF SFFFE 3A0bES 2 3 3dF4 4 E1afF 035405295 0d aleebe World 0z7 000422
Hello Hello

Lai-Pa=i "whorld S4FG0EEZThY 22T hae2e0Faa2 272245 whorld 0L0aze4 0.017e32
Hella

ElowFizh "whorld TFF23de2EcTIENA 126063 BF 41cd 2dE Hella "warh 005333 (U] et

Gluantum Hello

Computing wWorld bMsb S ndFab S T i latefbd’ Hello worl 0.02E95 ooz49:3

Crytograp Encryptio Decrytio

hic Plainte Decrgte n Time[s] n Time[s]

Method =t Ciphertezt d Text Ak 350 At 350
Hello Hello

ChaChaz0 “world bvidfatsfesimbORwce’ whorld 003143 002333

SAES[Aduan

ced Hello Hello

Encryption Wworld cabdddle134335chbbeccbde TEEEFIAE2b5e1aVdECOTOAF2ZF20b2cE World 012364 001327
Hello Hello

Lai-Fa=i whorld e34di4aboedc0ddibeb3d2 92650204 dA0 ‘whorld 01127 0L0sez
Hello

ElowFizh wharld Ocfcelecb24fFRET20bo21d4bE02142a Hella warh 00914 AZ39E

Gluantum Hello

Computing wWorld bvrccheb3wme FinbIwmedindd e dine atndeindb” Hello worl 003263 DLDEEE]

Figure 9 Results Achieved with Few Lines of Text (50 - 350 Iterations)

2446

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Encryption and Decryption Time at 350 Iterations

Nime (s

It a I
g ha 0 AES Lab-M arsl BiowFish [711 16T

Figure 10 Explains the encryption and decryption times of five cryptographic methods, showing ChaCha20 and
Quantum as fastest overall, while AES and BlowFish exhibit longer processing durations

4.2. Performance with Long Text

Expanding the scope to the encryption of longer textual data sets, classical cryptographic algorithms maintain their
reliability, albeit with a potential reduction in efficiency. On the contrary, quantum cryptographic algorithms present a
contrasting narrative. Leveraging the intrinsic parallelism facilitated by quantum properties like superposition and
entanglement, quantum algorithms showcase the potential for notable advantages in scenarios involving extensive text.
The simultaneous processing of multiple possibilities affords a quantum advantage, warranting a nuanced examination
of the extent of this quantum computational superiority.

2447

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Encryption
Crytographic Time(s) At 50 Decrytion Time(s)
Method Plaintext Ciphertext Decryted Text Iterations At 50 Iterations
Encryption is the b"t\wcl\xB4\w 7 b\ xa b\ cd\ wfc\ x84 NS\ xTe
process of Mo el \adER 8\ xd B\ xd ¥\ b B\xdf\wa2\xc Encryption is the
encoding a2\ 0N bV \ kB e f [\ TPW [\ F2R\uc T\ B9 process of
information or aq\xlb\xed o\ xd 6\ x9%\xBf\xdc| F\x7fF\%e encoding
data in such a Toalxe b e oG o ln\xfe\xaf\xce\xBd information or
way that only VB0 33\ w4\ ke 2 \aaw k30 xb1\xd5xb data in such a way
authorized e\ O xd e\xBb\xed\nidg\xbf\xcT\xbe that only
parties can bE\be‘\xedN\xba#R\xEE-\xldE‘\xedB\xe authorized parties
ChaCha2d accessit = Hcb\04a" fan access it 0.0061266 0.005734
process of fec38la5a%al5a8378caclible27d9026alel Encryption is the
encoding d3142d5e6804765bc49825630a5691655a6e8 process of
information or dc599d6d4 387946 2cB35db25f0722a%4 Tecct encoding
data in such a 9423b9B8417§2102b038d0dab3428ca45dcb1l information or
AES{Advanc |way that only 6d5191092e72222f0b4405adMed]16ddc3fde data in such a way
ed authorized e55bo661235ce28feebd02a0216cbcbeBdfcd that only
Encryption | parties can 1diedbalel25eb62244fa300fd 30930203961 authorized parties
Standard) |access it b29chbdedofelfd3042386acl765a fan access it 0.09086 0.08145
Encryption is the Encryption is the
process of afld70dfebb15cfeB059d21cf19597e2cd0ble process of
encading 43524515fffb4162c64f63d9b42168effaloc33 encoding
information or 6036004219518ale37aaeB85e5adbBBocdd? information or
data insuch a d939d538f20efdd1aa?Behcbb61752333d51 data in such a way
way that only 7d58e4f303d018fe3015d625ad 7fcfa360d750 that only
authorized 1369c9b6938f23b52114d1 2ce7002b157c1dl authorized parties
Lai-Masi parties can 5ledidebebdcd?decBbalddbbadadle £an access it 0.08639 0.00127
Encryption is the 8bbc320196b4ficccfE06f160bA004d63aTc54
process of docbbabcd1d73bb4389268546a49d 2216880 Encryption is the
encoding Occ5B8fad94aesbbde2abd2019011441bFf0054 process of
information or cd421bdcbfeelebBodddafedfccadbbecld0Ba? encoding
data in such a bf5e433cf9508c065ddE458d955b1090dalfl information or
way that only b8e6ed5adbbid0bbe5c3cebel3b80a8faBl8 data in such a way
authorized Todd3c404783100c6a0a2fcdd4d711ladlec2d that only
parties can BE6eB30fd0300d1a510c04e27f9ebBalfdfeb authorized parties
BlowFish access it Bbda09c7714a2 can access it 0.0118 0.00605
Encryption is the b'HiywfdW{\\<\xbodx01Wiile e 1\ 0ixfcx
process of ed\xed0K 14K~ wd 3 wd S wd 3 \x81bgh'w10 Encryption is the
encoding WufFdB\xeddj\xe b\ x4\ xadl I\ xbel\vac\xE process of
information or ek xe 2\ xedod \ B9 xd e\ k06 5 piwc3T encoding
data in such a #0264 xa e B3yl \xba\ N\l MRl 7R#x% information or
way that only Wardad e\ xBb\da w1\ wce e\ xBd w83, \xa3 data in such a way
authorized Wil ekt 2 Bt e 700N b 8 (W0 T\x that only
Quantum parties can Sa+\xb 1\ e 3 pB0C xa 2 ncl '\uBa ol x84, authorized parties
Computing access it HEf' £an access it 0.0011 0.00152

Figure 11 Result Achieved with Long Lines of Text (50 iterations)

2448

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Encryption
Crytographic Time(s) At 150 Decrytion Time(s)
Method Plaintext Ciphertext Decryted Text Iterations At 150 lterations
Encryption isthe b*t\xcO\x84\x71\xfb\xab\xcd\xfc\x84NS\xSe
process of MxbeC;\xf6R\x94\xd9\xd%\xb8\xdf3\xa2\xc Encryption is the
encoding d\xc2\ xS0\ xfoV\xBf\xef(\x7IW[\xf2R\xc7\x89 process of
information or aq\x1b\xed"\xfc\xd6\x39\x8f\xdc| f\x7fF\xe encoding
data in such a 7\xa0\x8b\xe1\xSM\xf7\xf1n\xfe\xaf\xc6\x8d information or
way that only 2\xB0\x93\x041\xe2]\xaaw\x30\xb1\xd5\xb data in such a way
authorized d\xc6\x8f\x8d e\ xSb\xec\x04g\xbf\xc7\xbe thatonly
parties can &T1\xbb\xb3\xedN\xb4R\x88\x1dC\xed8\xe authorized parties
ChaCha20 accessit e?\xdcb\x04" €an access it 0.03143 0.01562
Encryption is the f36b6ad4e21412ed22784926201e6ae40f321 Encryption is the
process of 8a1e7529542231258107011556301111658812a5 process of
encoding 2f100592269e97a56d4339e81805¢cee819f3¢c encoding
information or ¢57eb64da43106f0ae0518ceeabltb353180ea information or
AES(Advanc data insucha febe8fc55ebf0203060570158ba7be67a3fe8 data in such a way
ed way that only 8cd2136cd0031d53131392a69aee781588baal thatonly
Encryption authorized b7dd4acB854b8ec5940fcedd5fc600ab8cdabe authorized parties
Standard) parties can 557b08¢8113facb87ab8d 78915 €an access it 0.08562 0.00967
Encryption is the Encryption is the
process of 616f1437d8907323026a5d2a999004e82d3498 process of
encoding fb5d323¢4903ef076ec96450ac29fdc2f2787b encoding
information or 308def36ce0735602941d8fe821fae6978b537 information or
data in such 3 db5de0c37250¢f7c9006184951253c2feeac8b data in such a3 way
way that only Sd90cS1aec!585a28435694a7d16f506fbebec that only
authorized 140cb283865381bdb41ddaeee7bd2%9035235 authorized parties
Lai-Masi parties can 9d75e8bbieelef224830406584203 can access it 0.08674 0.01591
Encryption isthe 25dc¢562325570b75223125093fd34cf22¢62f2 Encryption is the
process of €318feaa086587dc98c713556¢ffa76f9d7df7a process of
encoding daBi558ebbc35f4d90f5492392e57bb18d07b2 encoding
information or 5e154d6936¢3¢55085b15¢c27511100217b052 information or
data insuch a 27242723d2430252b12e08289015¢c1bcee8] data in such a way
way that only 1c4a3e3d50229036bd6caf8fdde74bdf6ef2a that only
BlowFish authorized 93e5122251fc10c authorized parties 0.0369 0.02633
Encryption is the b™\xf8]\xf3\xdc\x90fu}\xb38\xal\xab\xab\x
process of 83\x9M\xa2\xd8F\x38\xb3\x85\}OfQTK\x92w Encryption is the
encoding i\x1d\x9e\xalqg(_- process of
information or T\x12\x05\xaa\xbf1\xad\x18\xbf\xb3\x39\x encoding
datainsucha edCye\xcd\xed\rU\L)Sd\x80\xd21\xeb\xe5Z\ information or
way that only XG0~ m; \xf\xf9\xd6\x83\xb6o\x16\xcb\x1c\ data in such a way
authorized xde)j#K\xadu\xf0]17\n\xbs\\?- that only
Quantum parties can >\x08*Bx\xc2\x86\\\xcfnil\xe5\xfdP\xb1G\x authorized parties
Computing access it 83\x00\xdc\x83\xdb" €an access it 0.00665 0.00626

Figure 12 Result Achieved with Long Lines of Text (150 iterations)

2449

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Crytographic

Method

ChaCha20

AES(Advanc
ed
Encryption
Standard)

Lai-Masi

BlowFish

Quantum
Computing

Plaintext
Encryption is the
process of
encoding
information or
data insuch a
way that only
authorized
parties can
access it
Encryption is the
process of
encoding
information or
data insuch a
way that only
authorized

parties can
Encryption is the

process of
encoding
information or
data insuch a
way that only
authorized
parties can
Encryption is the
process of
encoding
information or
data insuch a
way that only
authorized
Encrypticn is the
process of
encoding
information or
data in such a
way that only
guthorized
parties can
access it

Ciphertext Decryted Text

b"g~ A\ BT\ el b0\ xes\ kBT \xa d\x10&\x0

BB e\ 0T\ B2 B by \ xd B\ xb5vindS\xde3 Encryption is the
\wee)wac\wEf\xe 5\ xdf P\ ub8\xeBwd1\xc 7\, process of
wldw\x@e\x8b\xada_<Sh\xd2\xB1\xac\xbc\x encoding

c\xb T\ B0\x02g \xfat\uca\ k0 e\ xed \xb2J951 information or
sbc\xae\xa T\ B\ xdThxc7) 6| \w00\x05 \xdeD data insuch a way
Yoy ede e xe 0T\ nd 6\ 3 1T ke that only

2%\ xod xS wll | Vil 8\ b3\ w22 T \xld \x authorized parties
ce' i xbe” £an access it
bd5406c33cc41d318f7bal5123bfdfff3055677 Encryption is the
341671bcddlea3cb54934c32ccc1381c4dadoc process of
fr2948981322de912d93b77db9301c15d37517 encoding
del7214b7810bfbl16d1fd54f7aclijaeeldb information ar
2ec0dfcelle2c8bl0fledofeaadafiSdloccdd? data in such a way
44ceb234304e631c4534c27b092e33bdB75F that only
MeBa7565f988d53727ee343e0b7f83e63aa76 authorized parties

2382a3102a4b540a2b12Bb373e can access it
Encryption is the

7b25b95a73%aecdBcd4bb7Bad2eelacfBile process of
9337028bBR0e57a4%eblclb2edac2 207641 encoding
afled49bl2d2aledfcbba7d519fa348851b81b information or
7dladcBaileacc35f5adac/BB1d93030454de data in such a way
5f90e4802432102853212be21470cd4022339 that only
14B75a644ed4608dRE6d 1548B46c202d48415a authorized parties
2alaBlceeecdddfae?’01074c5dbedcabed can access it
3aB5efol8a742bfbb7i8600=7f5183706cd580 Encryption is the
0df59cE3729a2bcce0011881d7540c49613654 process of
a208c2c2d23bf0d74d905ccacy 275d4b4RBal encoding
Sbdff53elcd156fcbicaclea2dbBa3dfB2e7b information or
32411eb3aBb4BB5TT6R45bTO744176b156104 data in such a way
cd117686ablla/afls4fd9be356RCEe3cdela that only
32108ebeeSd 28069 authorized parties
b"aed 1ecB\ x93 kb b\ x99 el xba' kB8 \xelb

008 b e\ 8 T\ ed a7 Pl 154 xa 0\ \sof Encryption is the
BK3\ufa2"g\xeB\xla'\x0f(15g\ k1P xec\ucd'\x® process of

G\ I we B\ w22\ k8 x0b\xaa\xcE\xfbe encoding

\aed alaed o e b 183 o\ xb o\ i eddt\x information or
d@Ba =\ ed oS *\wa 2;\wB2FM =\ \V\acNy data in such a way
e\ ned\xla\xb24\xdb | \xBb\x0el\xcxcl, that only

300313 wa o0V e Ml 3\ w0b\xbd'\x1dgf, authorized parties
w700 1T £an access it

Encryption

Time(s) At 250 Decrytion Time(s)
At 250 Iterations

Iterations

0.03511

0.10393

0.09547

0.04685

0.01353

0.02315

0.01676)

0.00851

0.07BO7S5

0.0096)

Figure 13 Result Achieved with Long Lines of Text (250 iterations)

2450

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

ChaCha20

AES(Advanc
ed
Encryption
Standard)

Lai-Masi

BlowFish

Quantum
Computing

Plaintext

Encryption is the
process of
encoding
information or
data in such a
way that only
authorized
parties can
access it
Encryption is the
process of
encoding
information or
data in such a
way that only
authorized
parties can
Encryption is the
process of
encoding
information or
data in such a
waythatonly
authorized
parties can
Encryption is the
process of
encoding
information or
data in such a
way that only
authorized
Encryption is the
process of
encoding
information or
data insuch a
waythat only
authorized
parties can
access it

Encryption
Time(s) At 350 Decrytion Time(s)
Ciphertext Decryted Text Iterations At 350 Iterations

b'\xa1\x0b\xcaB\xe2\xB6\x88T\x07KAG\x18\ Encryption is the

xf1\xcby\tm\x04\xe8\\\xbeF5\xa0\x23\xed(\ process of

xad\xd3M\xc5\x87\xb3\x0f k\xe7\x8f\xd3\x encoding

ef%\xaedS\xd9Z\x97\xdf\xdc\xd0"\xeeV\xd information or

04\xe3\B2SM\x1d\x0f \xf8JL\x13\x93\x0e\x data in such a way

18\xa6.Z\xed\x84*1\xb1\x93>\x18\x012\x8¢\ that only

xd0\xeaFPV\x01m\x85t\xe5(\x8b8H_>\xa8\x authorized parties

03\x0e\xc7\xb8u\xe2U\xfSp' can access it 0.04682 0.03124

2f54d422dee7259b3¢8b0fda9775a2d06cdde Encryption is the

890ff768859¢23022346a¢16f4dea11d960e20 process of

63f13d222c299e0a054a3d9130a537239d9%¢cf25 encoding

38345f1380848ad1d3df6841f0ebab5d6bf202 information or

ecl005fdclcd1d48eebalfa2b890e437¢cb75b2 data in such a way

€5738971963eb2ecale878bech79181dc1dc2 thatonly

ead7a78bfab86f325927892006c9140b81466¢ authorized parties

12babc0b6Selecabl7fbaaSled can access it 0.09434 0.03558
Encryption is the

74c10ca7b17e2613218c77d4b8a26fa051464 process of

146c2ae5da134173809421a77dc981f2d6945f encoding

92111da60788d4beab7e6e765f2435585db7 information or

21c7024395e00504526914ecas75a67283e82 data in such a way

9232ad2687f204221d63414¢a7aaldbb1182%b that only

91887630ecaeda3asBablc22251b834fda7a authorized parties

€731362117d8a6e81fb3ca25a05¢277bb03 can access it 0.107735 0.02889

65127fb36cb946b%eS65¢caef0elf4fcdS5c537e Encryption is the

9abB8e1971cffcd867b0b605331086362e02d17 process of

3202b9fbdc5416d94af63011c045fb0%9ef5448 encoding

02d63d071c2ebed32121fe68a8662a2a5d609 information or

53030f65641652e2e6b3ce7acda36107435aa data in such a way

690a3801107374cft1312c072651269d387c4ac8 that only

351123461712 authorized parties 0.09425 0.13408

b\ xae0\ xS 2x~\xbB\)17\xf1\"\xeb7\xfé\xd3\

xf3V\xBer\x880\x02v3\xc3\x1d\xddC&S\xfa2 Encryption is the

ULS7\xc7b\xSd\xecO\xSd\x15\xc8\x89\xfc\x process of

Sd\x17\xca\x89\x07\x39\x923\xbc\xebp>\x8 encoding

b\xbeg\xfb\xae\xSfQ\xB80\\:"\xaf\xa8\x81m information or

\xd1\xBd\xBe\xB84+1| wo'\xb6Z\xf3\xbc\xcbd data in such a way

\f2~\xe6\xcht\xc7\ "\ xal\x1b\x1a\xbf\x3b\x that only

93\xbe/U\xfa\x14\x8f)\xe1\xb2\x80- authorized parties

\xbe\xc2/F\x80' can access it 0.03336 0.01562

Figure 14 Result Achieved with Long Lines of Text (350 iterations)

2451

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

&3 Encryption and Decryption Time at 350 Iterations (Detailed Input)
4
Encryption Time
mm Decrypton Time
0.12
0.10
- 0,08
s
F 0.06
0.04
| . l I
0.00 ChaCha20 AES Lai-Masi Quantum
Cryptographic Method

Figure 15 Explains the encryption and decryption times of five cryptographic methods, showing Quantum as fastest,
while Blowfish again shows the slowest decryption performance despite moderate encryption speed

4.3. Handling Numbers and Symbols:

In the realm of numerical and symbolic data encryption, Quantum cryptographic algorithms emerge as superior
contenders compared to their classical counterparts. While classical algorithms have traditionally shown efficacy,
quantum cryptography offers enhanced capabilities in handling diverse data types. Whether processing numerical
values, symbols, or their combination, quantum algorithms excel with a versatility that surpasses the capabilities of
classical approach. This superiority positions quantum cryptography as the preferred choice for ensuring efficient
encryption of various data types within the cryptographic domain.

2452

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Encryption Decrytion
Crytographic Time(s) At50 Time(s) At 50
Method Plaintext Ciphertext Decryted Text Iterations Iterations
@25rL&5PgSH#3xG @25rL&5PIqSH#ExG
ChaCha20 9Z0*tH-3%cW+oF b"\xca\x16\xf2\xal\xaeP(\x8e0.\xc58\x1c\xa2\x 9Z0*tH-3%cW+oF 0.01562 0.0138
AES(Advanced
Encryption @25rL&5P!gS#8xG @25rL&SPIgS#8xG
Standard) 9Z0*tH-3%cW+oF a015d5dchb59eebbhb394e6f0682347f898600dd06: 920*tH-3%cW+oF 0.08639 0.0947
@25rL&SPgS#3xG @25rL&SPIgSHExG
Lai-Masi 9Z0*tH-3%cW+oF 52d79f2f799c989c6b77c65faschad945dbl8ed21b0 920*tH-3%cW+oF 0.08853 0.0947
@25rL&5PgSH#3xG @25rL&5PIqSH#ExG
BlowFish 970%tH-3%cW+oF 4535555b6fcfe28611c246434ca1b291141bdd0a432 920%tH-3%cW+oF 0.01561 0.0209
Quantum @25rL&SP!gSH#HEXG @25rL&SPIgSH#HEXG
Computing 9Z0*tH-3%cW+oF b"\xc7\xa6T\xdc\xca-e\xf2k\x17\x93\xFd\x8d)\xl 9Z0*tH-3%c\W+oF 0.0013 0.0026
Encryption Decrytion
Crytographic Time(s) At 150 Time(s) At 150
Method Plaintext Ciphertext Decryted Text Iterations Iterations
@25rL&5PgSH#3xG @25rL&5PIqSHExG
ChatChazo 9Z0*tH-3%cW+oF b\\\xfE\xb8\x1e)\x16\x97\xf7z-\xaf\xbd\x8e\x(9Z0*tH-3%cW+oF 0.0169 0.0174
AES(Advanced
Encryption @25rL&SP!gSH#HEXG @25rL&SPIgSH#HEXG
Standard) 9Z0*tH-3%cW+oF B08f052cbe5970f6bel8b76896a70046aee5407748, 920%tH-3%cW+oF 0.10363 0.1301
@25rL&5P!gS#8xG @25rL&SPIgS#8xG
Lai-Masi 9Z0*tH-3%cW+oF bf584b1428bdaab478fb96ae528d3aeecd950e9815 920 tH-3%cW+oF 0.09357 0.05015
@25rL&SPgS#3xG @25rL&SPIgSHExG
BlowFish 9Z0%tH-3%cW+oF 174f34de9703111a92753312f1b9f736ech42e6149k 920*tH-3%cW+oF 0.0218 0.02682
Quantum @25rL&5PgSH#3xG @25rL&5PIqSH#ExG
Computing 9Z0*tH-3%cW+oF b"\x9dda8\xfd\xb2\xe5\x 1R\ x8d\x0c)\xc0\xc6,\x 9Z0*tH-3%cW+oF 0.0104 0.0199
Figure 16 Result achieved with Symbols and Numbers (50 - 150 iterations)
Encryption Decrytion
Crytographic Time(s) At 250 Time(s) At 250
Method Plaintext Ciphertext Decryted Text Iterations Iterations
@25rL&SPIgS#8xG @25rL85P1qS#8xG
ChaCha20 920*tH-3%cW+of b"\xad\xb3Q\x8eT\x8f\xbf\x98'K\xb5\xdb\x9b\» 920*tH-3%cW+oF 0.0324 0.0602
AES{Advanced
Encryption @25rL&5P1qS#8xG @25rL85P1q5#8xG
Standard) 920*tH-3%cW+oF 0550e5556e27f844190dc0alea75b9d9dcaBe07543 920 tH-3%cW+oF 0.11043 0.0514
@25rL&SPIqSHEXG @25rL&5P1qSHEXG
Lai-Masi SZ0*tH-3%cW+oF 9cb758ef45988ba9648b59244a0630b086bA 785165 9Z0*tH-3%cW+oF 0.09641 0.01559
@25rL&5PIGSHEXG @25rL85P1qSHEXG
BlowFish 9Z0*tH-3%cW+oF df24327044bd6b1aSb1acd85500f4fb9a5d5251f9ffi SZ0*tH-3%cW+oF 0.05364 0.05687
Quantum @25rL&5P1qS#8xG @25rL85P1qS#8xG
Computing 9Z0*tH-3%cWeoF b"w\x8a\t\x84\xf0"\xe6\x96\xe5\xdfz\xa3\xd5\» 920*tH-3%cW+oF 0.01981 0.00128
Encryption Decrytion
Crytographic Time(s) At 350 Time(s) At 350
Method Plaintext Ciphertext Decryted Text Iterations Iterations
@25rL&5P1qS#8xG @®25rL8SP1qS#8xG
ChaCha20 920*tH-3%cW+oF b"\xad\xb3Q\x8eT\x8f\xbf\x98'K\xb5\xdb\x9b\» 9Z0*tH-3%cW+oF 0.02981 0.02699
AES{Advanced
Encryption @25rLE&SPIqS#8xG @25rL8S5P1qS#8xG
Standard) 9Z0*tH-3%cWeoF 229056839¢402866ac20d8ea93320b04795566¢323(9Z0*tH-3%cW+oF 0.13563 0.01562
@25rL&SPIGSH8XG @25rL&5P1qSH8XG
Lai-Masi 920*tH-3%cW+oF 929f95e044ec73905c00e2d0a7a0a0cd9a4dd69331: 9Z0*tH-3%cW+oF 0.12675 0.01998
@25rL&5PIqSHEXG @2501&5P1qSHEXG
BlowFish SZ0™tH-3%CcW+oF 823df5709bc215f8fe8e5a5115¢c950ff6295125a714 9Z0™tH-3%cW+oF 0.11006 0.12526
Quantum @25rL&S5P1qS#8xG @25rL_SP!qS#8xG
Computing 9Z0*tH-3%cW+oF b"-\xc0\xda\xfO\xebe\x0c\x94\x06\xd5\x1em"\x 9Z0*tH- 3% cW+oF 0.02254 0.00216

Figure 17 Result achieved with Symbols and Numbers (250 - 350 iterations)

2453

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Encryption and Decryption Time at 350 Iterations

[SN L. — A - - y N
ChaChal0 AES Lai-Masi BlowfFist Quantury

Cryptographic Method

Figure 18 Encryption and decryption times of five cryptographic methods

5. Limitations and challenges

This investigation does not explore the detailed technical aspects of quantum computing hardware. Instead, it relies on
simulated environments for experimentation, acknowledging that outcomes may vary when applied to actual quantum
systems compared to simulated ones. It is essential to recognize that the study's conclusions are contingent on the
availability and advancement of practical quantum computing technology. As quantum computing evolves, its potential
impact on encryption approach may change. Periodic updates to the research may be necessary to ensure its continued
relevance, considering the dynamic nature of advancements in quantum technology. The use of simulated environments
underscores the preliminary nature of the findings and emphasizes the need for real-world validations as quantum
computing technology progresses.

6. Future work

Investigate the implementation of the quantum key distribution (QKD) algorithm on actual quantum hardware. This
involves testing the algorithm on quantum computers to assess its performance, robustness, and security in a real-world
setting. Considering the evolving nature of quantum computing and cryptography, this direction advances our
applicability, robustness, and real-world impact.

7. Conclusion

Through data analysis, this study underscores the advantages of quantum cryptography over classical approach,
particularly in handling larger datasets efficiently. While classical techniques demonstrate resilience in encrypting small
datasets and proficiency with numerical and symbolic data, they falter when confronted with increased data volumes,
leading to diminished efficiency. Classical encryption algorithms exhibit a linear relationship between iteration count
and processing time, resulting in longer durations for larger operations due to their sequential nature. In contrast,
quantum cryptographic approach leverage principles like quantum entanglement and superposition to maintain faster
processing times, irrespective of operation size. By exploiting parallelism, quantum algorithms facilitate faster
computations, thus overcoming the scalability limitations inherent in classical approach. This fundamental difference
in computational paradigm positions quantum cryptography as a superior solution for efficient data encryption and
decryption across diverse datasets.

2454

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

[1]
[2]

[10]

[11]
[12]

[13]
[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

Yati, Maneesh. (2020). Quantum Cryptography. 10.13140/RG.2.2.34447.61601.

Naina Emmanuel (October, 2023). Quantum Cryptography: The Future of Encryption [Online]. Available:
https://hackernoon.com/quantum-cryptography-the-future-of-encryption

Marcin Frackiewicz (July, 2023). Exploring the World of Quantum Logic Gates [Online]. Available:
https://ts2.space/en/exploring-the-world-of-quantum-logic-gates/

P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," in Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, 1994, pp. 124-134.

C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings
of IEEE International Conference on Computers, Systems and Signal Processing, 1984, pp. 175-179.

National Institute of Standards and Technology (NIST), "Report on post-quantum cryptography,” July 2022.
[Online]. Available: https://csrc.nist.gov/publications/detail /nistir/8105/final

C. Peikert, "Lattice cryptography for the Internet," in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2016, pp. 197-219.

National Institute of Standards and Technology (NIST), "Hash-based cryptography,” February 2023. [Online].
Available: https://csrc.nist.gov/publications/detail /nistir/8108/final

J. Buchmann and E. Dahmen, "Post-quantum cryptography: Code-based," in Post-Quantum Cryptography - Third
International Workshop, 2011, pp. 117-129.

M. Unruh, "Quantum-secure message authentication codes," in Advances in Cryptology - EUROCRYPT 2016,
2016, pp. 476-506.

J. Preskill, "Quantum computing in the NISQ era and beyond," Quantum, vol. 2, 2018, p. 79.

R. Skolnick, "Quantum algorithms for money laundering detection," Journal of Quantum Crime Detection, vol. 6,
no. 2, pp- 112-127, 2022.

D. Yermack, "Bitcoin: The New Gold Rush?" Brookings Papers on Economic Activity, 2015, pp. 389-412.

W. Wiesner and S. Zalka, "Quantum money," International Journal of Modern Physics C, vol. 2, no. 3, pp. 553-559,
1991.

A. Author, "Cryptographic technologies in regulatory technology (RegTech),” Journal of Financial Compliance,
vol. 17, no. 4, pp. 380-397, 2021.

D.]. Bernstein, "ChaCha, a variant of Salsa20," in Workshop on Selected Areas in Cryptography (SAC), 2008.
J. Daemen and V. Rijmen, "The Design of Rijndael: AES - The Advanced Encryption Standard," Springer, 2002.

R. L. Rivest, A. Shamir, and L. Adleman, "A Approach for Obtaining Digital Signatures and Public-Key
Cryptosystems," Communications of the ACM, 1978.

B. Schneier, "Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish)," in Fast Software
Encryption, 1994.

Ruane,]., McAfee, A., & William , 0. (2021, December 14). Quantum computing for Business Leaders. Harvard
Business Review. https://hbr.org/2022/01/quantum-computing-for-business-leaders

How, M.-L., & Cheah, S.-M. (2023). Business renaissance: Opportunities and challenges at the dawn of the
Quantum Computing Era. Businesses, 3(4), 585-605. https://doi.org/10.3390/businesses3040036

Xu, D., & Zheng, W. (2022). Application of data encryption technology in network information security sharing.
Security and Communication Networks, 2022, 1-6. https://doi.org/10.1155/2022 /2745334

2455

https://hackernoon.com/quantum-cryptography-the-future-of-encryption
https://ts2.space/en/exploring-the-world-of-quantum-logic-gates/

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

World Journal of Advanced Research and Reviews, 2023, 20(03), 2435-2456

He, Y, Ye, N, & Zhang, R. (2021). Analysis of data encryption algorithms for Telecommunication Network-
Computer Network Communication Security. Wireless Communications and Mobile Computing, 2021, 1-19.
https://doi.org/10.1155/2021/2295130

Kebande, V. R. (2023). Extended-chacha20 stream cipher with enhanced quarter round function. IEEE Access, 11,
114220-114237. https://doi.org/10.1109/access.2023.3324612

Ubaidullah, M., & Makki, Q. (2016). A review on symmetric key encryption techniques in cryptography.
International Journal of Computer Applications, 147(10), 43-48. https://doi.org/10.5120/ijca2016911203

Pavani, K., & Sriramya, P. (2021). Enhancing public key cryptography using RSA, RSA-CRT and N-prime RSA with
multiple keys. 2021 Third International Conference on Intelligent Communication Technologies and Virtual
Mobile Networks (ICICV). https://doi.org/10.1109/icicv50876.2021.9388621

Adeniyi, A. E, Misra, S, Daniel, E., & Bokolo, A. (2022). Computational complexity of modified Blowfish
cryptographic algorithm on Video Data. Algorithms, 15(10), 373. https://doi.org/10.3390/a15100373

Nechvatal,], Barker, E., Bassham, L. Burr, W., Dworkin, M., Foti,], & Roback, E. (2001). Report on the
development of the Advanced Encryption Standard (AES). Journal of Research of the National Institute of
Standards and Technology, 106(3), 511. https://doi.org/10.6028/jres.106.023

De Santis, F., Schauer, A, & Sigl, G. (2017). Chacha20-Poly1305 authenticated encryption for high-speed
embedded 10T applications. Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. https://doi.org/10.23919/date.2017.7927078

Tariq, U., Ahmed, L., Bashir, A. K., & Shaukat, K. (2023). A critical cybersecurity analysis and future research
directions for the internet of things: A comprehensive review. Sensors, 23(8), 4117.
https://doi.org/10.3390/s23084117

Tudorache, A.-G. (2023). Graph generation for quantum states using Qiskit and its application for Quantum
Neural Networks. Mathematics, 11(6), 1484. https://doi.org/10.3390/math11061484

Bloom, Y. Fields, 1., Maslennikov, A, & Rozenman, G. G. (2022). Quantum cryptography—a simplified
undergraduate experiment and Simulation. Physics, 4(1), 104-123. https://doi.org/10.3390/physics4010009

Diirmuth, M., Golla, M., Markert, P., May, A., & Schlieper, L. (2021). Towards quantum large-scale password
guessing on real-world distributions. Cryptology and Network Security, 412-431. https://doi.org/10.1007 /978-
3-030-92548-2_22

Wikipedia contributors. (2024). Lai-Massey scheme. Wikipedia, The Free Encyclopedia
https://en.wikipedia.org/wiki/Lai%E2%80%93Massey_scheme

Zhang, Z., Wu, W, Sui, H., & Wang, B. (2023). Post-quantum security on the Lai-Massey scheme. Designs, Codes
and Cryptography, 91 (8), 2687-2704. https://doi.org/10.1007 /s10623-023-01225-5

Chauhan, A. K,, & Sanadhya, S. (2022). Quantum Security of FOX Construction based on the Lai-Massey Scheme.
Cryptology ePrint Archive, Paper 2022/1001. https://eprint.iacr.org/2022/1001

2456

https://doi.org/10.1007/978-3-030-92548-2_22
https://doi.org/10.1007/978-3-030-92548-2_22
https://en.wikipedia.org/wiki/Lai%E2%80%93Massey_scheme
https://doi.org/10.1007/s10623-023-01225-5

