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Abstract

This research conducts a comprehensive comparative analysis of classical and quantum cryptographic algorithms,
assessing their strengths and weaknesses regarding speed (referring to the time taken for encryption and decryption)
and efficiency (effectiveness of a specific algorithm across the different inputs data provided). This research investigates
four classical cryptographic algorithms, including ChaCha20, Advanced Encryption Standard (AES), Lai-Massey, and
Blowfish, which were examined within the scope of this study. Employing a simulation framework, three distinct
scenarios are evaluated: (1) behavior with limited lines of plaintext, (2) performance with extensive text, and (3)
handling of both numerical and symbolic data. The primary objective of the research is to elucidate the adaptability and
resilience of classical and quantum cryptographic approach across various input types. The findings indicate that while
the classical approach maintains robustness and efficiency for small datasets, its performance varies when handling
larger volumes and diverse data types. While not entirely immune to vulnerabilities—such as implementation flaws,
channel noise, or side-channel attacks—the quantum approach demonstrates enhanced speed, depending on the key
size and the nature of the input data, including plain text, numerical, and symbolic content. This paper highlights the
contextual benefits of classical and quantum cryptographic approaches, stressing the importance of making well-
informed decisions in cryptographic applications as technology evolves.

Keywords: Quantum Computing; Cryptography; Shor's Algorithm; Quantum Key Distribution; Post-Quantum
Cryptography

1. Introduction

In the dynamic landscape of cryptography and data encryption, a transformative era unfolds, driven by relentless
progress in quantum computing [1]. In an age where information security is paramount, cryptography plays a pivotal
role in safeguarding sensitive data. As classical cryptographic foundations face unprecedented challenges posed by the
rapid advancement of quantum computing, the need for a smooth transition becomes increasingly evident. Quantum
theorists, such as Nielsen and Chuang [2], highlights this paradigm shift, prompting a critical evaluation of the synergy
between quantum computing and cryptography. This research, conducted within a meticulously designed simulated
environment, explores the intricate relationship between quantum computing and cryptography. Foundational works,
including Shor’s algorithm [3], have revealed critical vulnerabilities in widely adopted classical cryptographic systems,
challenging the long-held assumptions of their invulnerability. While prior research has focused extensively on the
theoretical threats posed by quantum computing, there remains a noticeable gap in empirical evaluations that simulate
how quantum cryptographic techniques perform in comparison to classical algorithms under varying data conditions.

This study addresses that gap by conducting a systematic exploration of the interaction between quantum computing
and cryptography within a rigorously constructed simulated environment. By analyzing classical encryption schemes
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alongside quantum protocols under diverse input scenarios ranging from short plaintexts to symbol-rich datasets, this
research offers a practical perspective on the adaptability, efficiency, and limitations of both paradigms. In doing so, it
contributes to the ongoing discourse by not only reinforcing theoretical insights but also providing data-driven guidance
for the evolution of secure communication in the quantum era.

Businesses can use quantum computing to better optimize investment strategies, enhance encryption, find new goods,
but it comes at a high expense—the cost of quantum computing increased from $30 million in 2012 to $450 million in
2019 [4]. A different approach to comprehending these systems' features is offered by quantum simulators, which also
produce clean realizations of particular systems of interest, enabling accurate realizations of their properties [5]. A
simulated environment was chosen for this study because it is widely used in industry due to its cost-effectiveness and
flexibility. As classical cryptographic methods face increasing threats from quantum computing, this environment
provides a controlled space to explore alternatives. This research seeks to answer a pivotal question: what are the trade-
offs in performance and efficiency between classical and quantum cryptographic algorithms?

The motivation for conducting a comparative analysis of classical and quantum cryptography stems from the need to
provide a breakdown of their individual performance and efficiency across different use cases. This research serves as
an insight for future researchers, scientists, and businesses in sectors such as finance, healthcare, e-commerce, and
government, where the choice between classical and quantum cryptographic algorithms can significantly impact the
performance and efficiency of data encryption processes. This paper provides insights into these trade-offs, this study
aims to inform decisions on the usability of classical Cryptography or Quantum Cryptography for various projects. The
rest of the paper is organized as follows: Section 2 provides the literature review, Section 3 describes the experimental
setup and design, Section 4 presents the findings and results of the study, Section 5 examines the limitations and
challenges encountered, Section 6 outlines future work, and Section 7 concludes the paper.

2. Literature review

The convergence of quantum computing and cryptography has evolved into a central focus, compelling an in-depth
exploration of their applications and implications. This literature review amalgamates seminal research, pivotal
concepts, and noteworthy advancements, laying the foundation to address the research question. Shor's algorithm is a
quantum computing cornerstone [4] renowned for efficiently factoring large integers. This recognition underscores the
pressing need for quantum-resistant cryptographic solutions and forms a pivotal backdrop for our investigation. The
introduction of quantum cryptography principles [5] is a crucial pivot for secure key exchange in the quantum era
through quantum key distribution (QKD) protocols. QKD protocols, as highlighted in [4] and [5], play a critical role in
fortifying communications such as secure data transmission, email communication and encrypted file transfers against
quantum threats.

An essential reference point in our exploration is a comprehensive NIST report [6], which delves into quantum-safe
cryptographic approach, exploring lattice-based, code-based, and multivariate polynomial approach. This extensive
overview provides a roadmap for our investigation into quantum-resistant cryptographic solutions. Peikert's survey on
lattice-based cryptography [7] showcases the promise of lattice-based systems for post-quantum security, particularly
their resistance to Shor's algorithm. This survey forms a foundational layer in understanding potential cryptographic
approach. As highlighted by the NIST report, the resilience of hash-based cryptographic approach [8] is crucial in a
quantum-enabled world. This perspective offers valuable insights into securing digital communication. In-depth
exploration of code-based cryptographic approach [9], including McEliece-based encryption and its resistance to
quantum attacks, enriches the understanding of potential quantum-resistant strategies. Unruh's work [10] in quantum-
secure message authentication codes (MACs) accentuates the importance of safeguarding confidentiality and message
integrity in a quantum-empowered environment, aligning seamlessly with the researcher’s comprehensive security
goals.

Preskill's examination of the capabilities and limitations of near-term quantum computers [11] provides indispensable
insights into the evolving landscape of quantum-safe security measures. This work serves as a guiding beacon for
comprehending the broader implications. Skolnick's research on the potential of quantum computing in enhancing
money laundering detection [12] introduces real-world applications of quantum algorithms for pattern recognition,
aligning directly with the focus on practical implications. Yermack's exploration of digital currencies like Bitcoin [13]
intricately connects the technological landscape with regulatory challenges, emphasizing the pivotal role of
cryptography. In the realm of regulatory technology (RegTech), an exploration of cryptographic technologies [14]
becomes paramount. Their work highlights the potential for ensuring regulatory compliance, establishing a critical link
between cryptography and regulatory standards. In related work, Bernstein et al.'s emphasis on post-quantum
cryptography [15], Bennett and Brassard's secure cryptographic key exchange through QKD [16], and the exploration
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of quantum money and speedup by Wiesner and Zalka [17, 18] enrich the quantum computing landscape. Despite these
advancements, the practical implementation and broader implications of quantum computing for diverse cryptographic
protocols remain a critical frontier. In general, encryption techniques are an essential instrument for data security. They
support the preservation of privacy, guarantee data integrity, guard against cyberattacks, and guarantee adherence to
the law [19]. This research navigates quantum algorithms, providing practical guidance for secure digital information
handling in the quantum era within the confines of simulated environments. Through meticulous references, the paper
contributes valuable insights into the transformative potential of quantum computing for cryptography in simulated
environments, addressing the overarching question of its role as a savior in this era of rapid technological advancement.

3. Experimental design

This research systematically investigates and compares classical and quantum cryptographic algorithms to address the
escalating concerns surrounding the security landscape in an era of advancing technologies. The experiment is designed
to highlight their strengths and weaknesses, specifically on security and efficiency. The motivation behind this study
arises from the imperative need to understand how these cryptographic approaches perform across various scenarios
and input types, ultimately guiding informed decisions in the evolving landscape of cryptographic applications. In the
subsequent sections, we’'d delve into the experimental design employed to assess the classical and quantum
cryptographic algorithms meticulously. In study, we maintain a default key size of 256 bits for all algorithms to eliminate
disparities in experimental results and ensure consistency in the comparison process between the algorithms.

Fig. 1 illustrates the algorithms, the default key sizes, and the references employed in this experimentation process,
which consists of two primary stages namely; Cryptographic Algorithms Stage and Encrypted/Decrypted
Communication.

3.1. Cryptographic Algorithms Stage

The research’s initial stage navigates the complex landscape of cryptographic algorithm selection. This involves a
thoughtful consideration not only of classical cryptographic algorithms such as ChaCha20, Advanced Encryption
Standard (AES), Lai Massey, and Blowfish but also extends its reach into the realm of quantum cryptographic algorithms.
This research aims to investigate and craft a robust and representative comparison that spans the classical and quantum
domains. Delving into the realm of classical cryptographic algorithms, the researchers’ focus is on four key contenders,
as seen in Table 1:

Table 1 Algorithms and their Features

Algorithm names | Default key used (bits) | References
ChaCha20 256 [24]
AES 256 [28]
Lai Massey 256 [35]
Blowfish 256 [27]

These selections as seen in Table 1 above, are not arbitrary but emerge from a meticulous process guided by specific
criteria, including but not limited to widespread adoption and availability of prior research work and resources, and the
ease of implementation, with a particular focus on utilizing a minimum key value for all algorithms. The criteria focus
on considerations such as widespread adoption, ensuring the chosen algorithms are embedded in real-world
cryptographic applications and industry standards. The versatility of each algorithm in different cryptographic
applications becomes a focal point, from symmetric key encryption to public-key cryptography, with AES, Blowfish, and
ChaCha20 supporting symmetric key encryption, and Lai-Massey supporting asymmetric or public key encryption.
These choices are also guided by a recognition of historical significance, with a preference for algorithms that have
demonstrated reliable performance and consistent use over time. Algorithm maturity, a crucial factor contributing to
stability and reliability, is also at the forefront of the researchers’ considerations. The selected algorithms have
weathered extensive scrutiny, analysis, and implementation, solidifying their place as mature and reliable
cryptographic tools.

In integrating the Advanced Encryption Standard (AES) into the cryptographic framework, its robust standing as a
widely embraced symmetric encryption algorithm was a deciding factor. Developed in 2001, AES has been a stalwart in
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protecting sensitive data. Its operational efficiency on fixed-size data blocks, supporting key sizes of 128, 192, or 256
bits, has made it the encryption standard of choice [20]. Widespread adoption underscores its significant role in
securing communications and protecting stored data across diverse applications. The Lai-Massey scheme is a significant
component in the realm of cryptographic alternatives, selected for its unique structure used in the design of block
ciphers. Introduced by Xuejia Lai with the assistance of James L. Massey, hence the scheme’s name, Lai-Massey [21]. It
has been widely used in the design of symmetric cryptographic algorithms [22]. Its unique structure and operation have
made it a popular choice across various security protocols, including IPsec and TLS, where secure and efficient
encryption is essential [23]. Proposed by Bruce Schneier, Blowfish aligns with the researchers’ consideration as a
dynamic symmetric key block cipher tailored for swift and secure data encryption. Unveiled in 1993, Blowfish supports
key sizes ranging from 32 to 448 bits and operates on variable-length blocks. While not as omnipresent as AES, Blowfish
finds its niche in diverse security protocols, such as SSH (Secure Shell) and VPN implementations, valued for its
simplicity and speed (referring to the time taken for encryption and decryption), offering a compelling alternative in
applications demanding robust data protection.

The inclusion of ChaCha20, a stream cipher in the cryptographic toolkit, is rooted in its seamless fusion of speed and
security in data encryption. Developed by Daniel J. Bernstein in 2008, ChaCha20 is often coupled with the Poly1305
authenticator to forge the resilient ChaCha20-Poly1305 encryption algorithm. Its popularity in securing internet
communications, especially in protocols such as TLS 1.3 and QUIC (used by HTTP/3)—attests to its prowess in
delivering secure encryption.

The exploration of each algorithm, including their respective release years, delves into nuanced attributes and distinct
strengths, focusing on a comprehensive understanding of their applications within the ever-evolving landscape of
cryptographic practices. This approach ensures a thorough examination that goes beyond surface-level characteristics,
providing valuable insights into the practical implications of each cryptographic tool.

Fig.1 describes an implementation of the ChaCha20 algorithm for encryption and decryption in Python using the
Crypto.Cipher module. ChaCha20 is a stream cipher designed for efficient and secure symmetric key encryption. In this
implementation:

from Crypto.Cipher import ChaCha2@
from Crypto.Random isport get random _bytes
import time

def encrypt_chacha28(key, plaintext, iterations=350):
encryption_time ~ @
for 1 in range(iterations):
start_time « time.time()
cipher = ChaCha2@.new(key=key)
nonce = get_random_bytes(16) # Generate a random nonce of 96 bits (12 bytes)

ciphertext = cipher.nonce + cipher.encrypt(plaintext)
end_time = time.time()
encryption time += end time - start time

# Display ciphertext after each iteration
print(f"Iteration {1 + 1}:")
print("Ciphertext:", ciphertext. hex())

return ciphertext, encryption_time

def decrypt_chacha2@(key, ciphertext, iterations«350):

decryption time = ©

for i in range(iterations):
start_time = time.time()
nonce = ciphertext[:12] # Extract nonce from the ciphertext
cipher = ChaCha2®.new(key=key, nonce=nonce)

decrypted = cipher.decrypt(ciphertext[12:])
end_time = time.time()
decryption_time += end_time - start_time

# Display decrypted ciphertext after each iteration
print(f"Iteration {i + 1}:")
print("Decrypted ciphertext:", decrypted)

return decrypted, decryption time
# Example usage

key = get_random_bytes(32) # Generate a random 256-bit (32-byte) key
plaintext = b "@2%rL&SP | qS#BxGIZA*tH-3XcWs+oF"

Figure 1 Implementation of the CHAHA20 Algorithm
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To evaluate the security and efficiency of the ChaCha20 algorithm as part of this research, the following code was
implemented:

e A random 256-bit (32-byte) key is generated using the get random_bytes function to ensure strong
cryptographic security.
e The encrypt_chacha20 function:
[teratively encrypts the plaintext using the ChaCha20 algorithm and the generated key.
For each iteration, a new random 96-bit (12-byte) nonce is generated.
The plaintext is encrypted with the generated key and nonce.
The output ciphertext is a concatenation of the nonce and the encrypted message to support proper
decryption.
e The decrypt_chacha20 function:
o  Iteratively decrypts the ciphertext using the ChaCha20 algorithm.
o  Itextracts the nonce from the ciphertext and uses it with the provided key.
o  The original plaintext is recovered by decrypting the encrypted portion of the ciphertext.

O O O O

This implementation allows for controlled testing of ChaCha20's performance under the conditions defined in this
study, especially with varied input sizes and data types.

The code measures the time taken for encryption and decryption over 350 iterations for each operation, allowing for
analysis of performance.

The ciphertext and decrypted plaintext are displayed after each iteration, along with their corresponding iteration
numbers.

Fig. 2 illustrates a Python implementation of AES symmetric-key encryption and decryption using CBC mode and
PKCS7 padding. The key processes are as follows:

e Encryption Process (aes_encrypt function):

Key validation is enforced to ensure compatibility with AES requirements (e.g., 16, 24, or 32 bytes).
A random Initialization Vector (IV) is generated to ensure ciphertext uniqueness.

PKCS7 padding is applied to the plaintext to align it with AES block size requirements.

The plaintext is encrypted using AES in CBC mode with the validated key and generated IV.
The resulting ciphertext includes the IV concatenated with the encrypted data.

o Decryption Process (aes_decrypt function):

The IV is extracted from the beginning of the ciphertext.

AES decryption is performed using the extracted IV and the provided key.

PKCS7 padding is removed to retrieve the original plaintext.

The function ensures that the key length matches AES specifications.

Implementation Features:

Emphasizes secure cryptographic practices, such as:

O 0O O O O

O
O
O
©)

oProper key handling and IV management.
oUse of standardized padding schemes (PKCS7).
¢ Performance metrics are collected for both encryption and decryption operations.
e Demonstrates the importance of confidentiality and integrity in the handling of sensitive data.
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import os

import time

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

def aes_encrypt(plaintext, key):
key = key[:32] if len(key) > 32 else key.ljust(32, b"\x8@8")
iv = os.urandom(16&)
cipher = Cipher{algorithms.AES(key), modes.CBC(iv), backend=default_backend())
encryptor = cipher. encryptor()
padded_plaintext = PKCS7_pad{plaintext)
ciphertext = encryptor.updatelpadded_plaintext) + encryptor.finalize()
return iv # ciphertext

def aes_decrypt{ciphertext, key):
key = key[:32] if len(key) > 32 else key.ljust(32, b"\xB@")
iv = ciphertext[:16]
cipher = Cipher{algorithms.8ES({key ), modes.CBC{iv), backend=default_backend(})
decryptor = cipher.decryptor()
tirys
decrypted_padded_plaintext = decryptor.update(ciphertext[16:]) + decryptor_finalize()
plaintext = PKCST_wnpad{decrypted_padded_plaintext)
return plaintext, None
excapt Exception as e:
return None, str{e)

def PECSY_pad{data, block_sizesi6):
padding length = block_size - (len(data) ¥ block_size)
padding = bytes([padding_length] * padding_length)
return data + padding

def PECST_unpad(data):
padding_length = data[-1]
return data[ :-padding_length]

# Example usage
key = os.urandom{32) # 32-byte key for AES-256 (256 bits)
plaintext = "@2HrL&5F|q5#8xG3I0* tH-IHcWroF "

# Encrypt and Decrypt 309 times
total_encryption_time = @
total_decryption_time = @

Figure 2 Implementation Of the AES Algorithm

Fig. 3 illustrates a Python implementation of the Lai-Massey symmetric encryption algorithm, utilizing two keys for
added security. In lai_massey_encrypt, the plaintext message undergoes two rounds of AES encryption with ECB mode,
first with key1 and then with key2. Conversely, lai_massey_decrypt decrypts the ciphertext by reversing the encryption
process, using key?2 first followed by key1. This two-key approach enhances security against cryptographic attacks
compared to single-key schemes. Lai-Massey encryption maintains simplicity in implementation by employing
symmetric keys for both encryption and decryption. This implementation demonstrates a robust cryptographic
technique, offering heightened protection for sensitive data while ensuring efficient encryption and decryption

processes.
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import time

from cryptography.hazmat.primitives import padding
from cryptography.hazmat._primitives._ ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

def pad_key(key):
if len(key) « 32:
return key + b'\=88" * (32 - len(key))
elif len(key) > 32:
return key[ :32]
elsa:
return key

def pad message(message)
padder = padding.PECST7(128).padder()
padded_message = padder.update(message)
padded_message += padder.finalize()
return padded_message

def lai_massey_encrypt{message, keyl, keyl):
keyl = pad_key(keyl)
key2 = pad_key(key2)

padded_message = pad_message(message)

cipherl = Cipher{algorithms. AES(keyl), modes.ECB(), backend=default_backend(})
encryptorl = cipherl_encryptor()
encrypted_messagel = encryptorl.update{padded_message) + encryptorl.finalize()

cipherd = Cipher{alpgorithms.AES(keyd), modes,ECB(), backend=default_backend(])
encryptor2 = cipher?.encryptor()
encrypted_message? = encryptorl.update{encrypted_messagel) + encryptorl.finalize()

return encrypted_messagel

def lai_massey_decrypt{encrypted_message, keyl, key2):
keyl = pad_key(keyl)
key2 = pad_key(key2)

cipher2 = Cipher{algorithms . AES(key2), modes.ECB(), backend=default_backend(])
decryptor? = cipher2_ decryptor()
decrypted_message2 = decryptor?.update{encrypted_message) + decryptor?.finalize()

cipherl = Cipher{algorithms.AES(keyl), modes.ECB(), backendsdefault_backend())
decryptorl = cipherl.decryptor()
decrypted_messagel = decryptorl.update{decrypted_messape?) + decryptorl.finalize()

Figure 3 Implementation of the Lai-Massey Algorithm

Fig.4 shows a Python implementation of the Blowfish algorithm, a symmetric-key encryption and decryption technique.
The “derive_blowfish_key" function is designed to derive a Blowfish key from a given password. Notably, Blowfish uses a
fixed key size of 56 bytes, and the derived key is obtained by generating random bytes. The “blowfish_encryption’
function showcases the encryption process using Blowfish in Electronic Codebook (ECB) mode, a block cipher mode
where each block of plaintext is independently encrypted. The plaintext is first padded using PKCS7 padding to ensure
compatibility with the block size of Blowfish. The elapsed time for the encryption process is recorded. Conversely, the
“blowfish_decryption function reverses the encryption process. It decrypts the ciphertext using Blowfish in ECB mode,
removes the padding, and decodes the result from UTF-8 encoding. The elapsed time for the decryption process is also
recorded. This implementation demonstrates the key derivation from a password, encryption, and subsequent message
decryption using the Blowfish algorithm and highlights Blowfish's reputation for speed and security.

Fig. 4 illustrates a Python script demonstrating Blowfish encryption and decryption with ECB mode and padding using
the Crypto.Cipher library. The derive_blowfish_key function generates a random 256-bit Blowfish key from a password.
blowfish_encryption encrypts plaintext iteratively for enhanced security, displaying ciphertext after each iteration.
Conversely, blowfish_decryption decrypts ciphertext and displays the decrypted text after each iteration. The
implementation emphasizes iterative encryption and decryption processeses. Blowfish encryption ensures data
confidentiality, while decryption reverses the process to retrieve the original plaintext. The code measures encryption
and decryption times for performance analysis. This showcases a robust encryption approach, providing secure data
transmission while highlighting Blowfish's efficiency and cryptographic strength.
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from Crypto.Cipher import Blowfish

from Crypto.Random import get random_bytes
from Crypto.Util.Padding import pad, unpad
import time

def derive blowfish key(password):
# Derive a key from the password
return get random_bytes(32) # Blowfish key size is 32 bytes for 256 bits

def blowfish_encryption(plaintext, key):
# Create a Blowfish cipher object
cipher = Blowfish.new(key, Blowfish.MODE_ECB)

# Encrypt the plaintext

ciphertext = plaintext.encode("utf-8")

for 1 in range(350): # Encrypt 300 times
ciphertext = cipher.encrypt(pad(ciphertext, Blowfish.block size))
# Display ciphertext after each iteration
print("Ciphertext after iteration", i, ":")
print(ciphertext.hex())

return ciphertext

def blowfish decryption(ciphertext, key):
# Create a Blowfish cipher object
cipher = Blowfish.new(key, Blowfish.MODE_ECE)

# Decrypt the ciphertext and remove padding
decrypted text = ciphertext
for 1 in range(350): # Decrypt 300 times
decrypted text = unpad(cipher.decrypt(decrypted text), Blowfish.block size)
# Display decrypted ciphertext after each iteration
print("Decrypted Ciphertext after iteration", i, ":")
print(decrypted text)
return decrypted text.decode("utf-8")

# Example usage
password = b"blowfish_password”
blowfish key = derive blowfish key(password)

# Plaintext to be encrypted and decrypted
plaintext = "@2%rL&5P!qS#8xGOZO*tH-3%cl+oF"

Figure 4 Implementation of Blowfish Algorithm

3.2. Encrypted/Decrypted Communication:

This stage involves establishing a communication setup using the implemented classical cryptographic algorithms to
encrypt and decrypt messages.

3.3. Simulation Environment Stage

This section explains how the Qiskit environment was set up using Anaconda to support the quantum cryptographic
experiments. The experiments were executed within a Qiskit-simulated environment [24] crafted with Anaconda. This
strategic choice not only streamlined the management of dependencies but also ensured the creation of reproducible
and consistent experimental conditions. The Qiskit environment, meticulously configured through Anaconda, served as
the backbone for conducting quantum cryptographic analyses.

3.3.1. Step 1: Install Anaconda

Download Anaconda from https://www.anaconda.com/download/ and install it. Ensure compatibility by using
Anaconda version 2.5.1.

3.3.2. Step 2: Open Anaconda Navigator

After installation, open Anaconda Navigator in your applications or use the search function.
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3.3.3. Step 3: Create a New Environment

In Anaconda Navigator, go to the "Environments" tab.

Click "Create" to make a new environment named, for example, " proj_env_giskit."
Choose the Python version (usually the latest is suitable).

Select desired packages, including python, jupyter, and matplotlib.

3.3.4. Step 4: Install Qiskit

Once the environment is created, select it in the Navigator's "Home" tab.
Switch the dropdown menu from "Applications on" to the new environment's name.
Open the terminal by clicking "Launch"” under the "Home" tab.

3.3.5. Step 5: Install Qiskit
In the terminal, type: pip install giskit

3.3.6. Step 6: Verify Installation

Verify the installation by launching a Python interpreter or a Jupyter notebook in the new environment and importing
Qiskit:

o From qiskit import quantumcircuit, Aer, transpile, assemble, execute
e From qiskit.visualization import plot_histogram

3.4. Run Simulation

This stage involves implementing quantum algorithms for cryptography and data encryption within the simulated
quantum environment. Quantum computing for cryptography and data encryption involves leveraging the principles of
quantum mechanics to perform computational tasks, including encryption and decryption. Unlike classical bits that can
exist in either a state of 0 or 1, quantum bits or qubits can simultaneously exist in a superposition of both states. This
property allows quantum computers to perform multiple calculations in parallel, providing a potential speedup for
certain types of computations, including those used in cryptography.

Figure 5 illustrates the implementation of a Python script demonstrating Quantum Key Distribution (QKD) combined
with ChaCha20-Poly1305 encryption and decryption. Quantum key distribution is achieved through quantum states’
manipulation, enabling secure key generation between parties. The ChaCha20-Poly1305 encryption function encrypts
plaintext using derived keys and nonces, ensuring data confidentiality. Conversely, decryption retrieves the original
plaintext using the same keys and nonces. Each encryption and decryption cycle are timed for performance evaluation.
The implementation highlights the integration of quantum principles for secure key establishment, coupled with
efficient symmetric encryption techniques for data protection. This approach highlights the synergy between quantum
computing and classical cryptography, offering robust security solutions for sensitive data transmission. The code's
comprehensive design facilitates experimentation and analysis of quantum-enabled cryptographic protocols,
contributing to advancements in secure communication paradigms.
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import gqiskit

fromgiskit import QuantumCircuit, transpile, Aer

from giskit.providers.aer import AerSimulator

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms
from cryptography.hazmat.primitives import hashes

import random

import time

import os

def derive_chacha2@_nonce() -> bytes:
return os.urandom(16) # Generate a random nonce of 16 bytes

def derive_chacha2@_key() = bytes:
kdf = PBKDF 2HMAC(
algorithm=hashes.SHA256(),
length=32,
salt=b"random_salt",

iterations=158,
return kdf.derive(b"password™)

# Create a ChaCha28-Poly1385 encryption function (simplified for demonstration)
def chacha20_poly1305_encryption(plaintext, key, nonce):

# Initialize the ChaCha2®-Poly1385 cipher

cipher = Cipher(algorithms.ChaCha28(key, nonce), mode=None)

encryptor = cipher.encryptor()
ciphertext = encryptor.update(plaintext.encode("utf-8")) + encryptor.finalize()

return ciphertext

# Create a ChaCha28-Poly1385 decryption function (simplified for demonstration)
def chacha28_poly1305_decryption(ciphertext, key, nonce):

# Initialize the ChaCha28-Poly1385 cipher

cipher = Cipher(algorithms.ChaCha28(key, nonce), mode=None)

decryptor = cipher.decryptor()
decrypted_text = decryptor.update(ciphertext) + decryptor.finalize()

return decrypted_text

# Quantum key distribution function

def quantum_key_distribution():
# Generate a random key and encode it using quantum states
key = derive_chacha2@_key()

Figure 5 Implementation of Quantum Computing Algorithm for Cryptography

3.5. Simulated Results

The quantum algorithm was executed on simulated quantum data, and the results were analyzed, comparing the
performance with classical cryptographic approach. Below is a snapshot of the simulation for both the classical
cryptographic approach and the quantum computing for cryptography.

Figures 6, 7, and 8 illustrate the outcomes obtained by simulating classical and quantum cryptographic algorithms.
These simulations focus on evaluating the efficiency and performance of both encryption and decryption processes.
Encryption time, representing the duration required for converting readable plaintext into encrypted ciphertext, is a
critical metric in assessing the computational cost of cryptographic operations. Concurrently, decryption time, the
duration needed to reverse the encryption process and obtain the original plaintext from the ciphertext, plays a
significant role in understanding the efficiency of decryption algorithms.

Plaintext, denoting the original and human-readable data before any cryptographic transformations, forms the basis of
information requiring secure transmission. Ciphertext, produced by applying encryption algorithms to plaintext,
transforms the information into an unreadable format without the corresponding decryption key or process. The
resulting Decrypted Text is the restored and readable form of data obtained using decryption algorithms on ciphertext.
This process transforms the encrypted data into its original, human-readable state.
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Figure 8 Results Obtained from Simulating the Quantum Computing Algorithm for Cryptography

4., Result

In the context of this study, a thorough comparison is undertaken to assess and analyze the relative strengths and
weaknesses of classical cryptographic algorithms as opposed to quantum cryptographic algorithms, with a specific focus
on aspects of speed and efficiency. The evaluation is conducted through a series of simulations that address three
distinct approaches. Notably, the simulation process was meticulously executed in different iterations, each measured
in seconds, to ensure accuracy and reliability in obtaining meaningful and consistent results. This iterative approach
enhances the robustness of the study by minimizing potential variability and providing a more precise understanding
of the performance metrics associated with classical and quantum cryptographic algorithms.

4.1. Behavior with Few Lines of Plaintext

When evaluating the performance of classical and quantum cryptographic algorithms with limited plaintext, notable
differences become apparent. Plaintext refers to the original, unencrypted data or message that is input into a
cryptographic algorithm for encryption. It is the readable form of information before any transformation or encoding is
applied to protect its confidentiality.

classical techniques such as Lai-Massey and ChaCha20 demonstrate robustness in securing small datasets, ensuring
both security and operational efficiency. However, quantum algorithms offer a novel perspective by exposing specific
vulnerabilities in classical cryptographic systems—particularly the use of short or static keys, and reliance on key
exchange protocols susceptible to quantum attacks.

While quantum methods may demonstrate superior computational power compared to classical counterparts, they also

highlight the urgent need for stronger key management and quantum-resistant encryption measures to address
emerging threats posed by advancements in quantum computing.
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Figure 9 Results Achieved with Few Lines of Text (50 - 350 Iterations)
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Encryption and Decryption Time at 350 Iterations
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Figure 10 Explains the encryption and decryption times of five cryptographic methods, showing ChaCha20 and
Quantum as fastest overall, while AES and BlowFish exhibit longer processing durations

4.2. Performance with Long Text

Expanding the scope to the encryption of longer textual data sets, classical cryptographic algorithms maintain their
reliability, albeit with a potential reduction in efficiency. On the contrary, quantum cryptographic algorithms present a
contrasting narrative. Leveraging the intrinsic parallelism facilitated by quantum properties like superposition and
entanglement, quantum algorithms showcase the potential for notable advantages in scenarios involving extensive text.
The simultaneous processing of multiple possibilities affords a quantum advantage, warranting a nuanced examination
of the extent of this quantum computational superiority.
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Figure 11 Result Achieved with Long Lines of Text (50 iterations)
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Figure 12 Result Achieved with Long Lines of Text (150 iterations)
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Figure 13 Result Achieved with Long Lines of Text (250 iterations)
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Figure 14 Result Achieved with Long Lines of Text (350 iterations)
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&3 Encryption and Decryption Time at 350 Iterations (Detailed Input)
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Figure 15 Explains the encryption and decryption times of five cryptographic methods, showing Quantum as fastest,
while Blowfish again shows the slowest decryption performance despite moderate encryption speed

4.3. Handling Numbers and Symbols:

In the realm of numerical and symbolic data encryption, Quantum cryptographic algorithms emerge as superior
contenders compared to their classical counterparts. While classical algorithms have traditionally shown efficacy,
quantum cryptography offers enhanced capabilities in handling diverse data types. Whether processing numerical
values, symbols, or their combination, quantum algorithms excel with a versatility that surpasses the capabilities of
classical approach. This superiority positions quantum cryptography as the preferred choice for ensuring efficient
encryption of various data types within the cryptographic domain.
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Encryption Decrytion
Crytographic Time(s) At50 Time(s) At 50
Method Plaintext Ciphertext Decryted Text Iterations Iterations
@25rL&5PgSH#3xG @25rL&5PIqSH#ExG
ChaCha20 9Z0*tH-3%cW+oF  b"\xca\x16\xf2\xal\xaeP(\x8e0.\xc58\x1c\xa2\x 9Z0*tH-3%cW+oF 0.01562 0.0138
AES(Advanced
Encryption @25rL&5P!gS#8xG @25rL&SPIgS#8xG
Standard) 9Z0*tH-3%cW+oF  a015d5dchb59eebbhb394e6f0682347f898600dd06: 920*tH-3%cW+oF 0.08639 0.0947
@25rL&SPgS#3xG @25rL&SPIgSHExG
Lai-Masi 9Z0*tH-3%cW+oF  52d79f2f799c989c6b77c65faschad945dbl8ed21b0 920*tH-3%cW+oF 0.08853 0.0947
@25rL&5PgSH#3xG @25rL&5PIqSH#ExG
BlowFish 970%tH-3%cW+oF  4535555b6fcfe28611c246434ca1b291141bdd0a432 920%tH-3%cW+oF 0.01561 0.0209
Quantum @25rL&SP!gSH#HEXG @25rL&SPIgSH#HEXG
Computing 9Z0*tH-3%cW+oF  b"\xc7\xa6T\xdc\xca-e\xf2k\x17\x93\xFd\x8d)\xl 9Z0*tH-3%c\W+oF 0.0013 0.0026
Encryption Decrytion
Crytographic Time(s) At 150 Time(s) At 150
Method Plaintext Ciphertext Decryted Text Iterations Iterations
@25rL&5PgSH#3xG @25rL&5PIqSHExG
ChatChazo 9Z0*tH-3%cW+oF  b\\\xfE\xb8\x1e)\x16\x97\xf7z-\xaf\xbd\x8e\x( 9Z0*tH-3%cW+oF 0.0169 0.0174
AES(Advanced
Encryption @25rL&SP!gSH#HEXG @25rL&SPIgSH#HEXG
Standard) 9Z0*tH-3%cW+oF  B08f052cbe5970f6bel8b76896a70046aee5407748, 920%tH-3%cW+oF 0.10363 0.1301
@25rL&5P!gS#8xG @25rL&SPIgS#8xG
Lai-Masi 9Z0*tH-3%cW+oF  bf584b1428bdaab478fb96ae528d3aeecd950e9815 920 tH-3%cW+oF 0.09357 0.05015
@25rL&SPgS#3xG @25rL&SPIgSHExG
BlowFish 9Z0%tH-3%cW+oF  174f34de9703111a92753312f1b9f736ech42e6149k 920*tH-3%cW+oF 0.0218 0.02682
Quantum @25rL&5PgSH#3xG @25rL&5PIqSH#ExG
Computing 9Z0*tH-3%cW+oF  b"\x9dda8\xfd\xb2\xe5\x 1R\ x8d\x0c)\xc0\xc6,\x 9Z0*tH-3%cW+oF 0.0104 0.0199
Figure 16 Result achieved with Symbols and Numbers (50 - 150 iterations)
Encryption Decrytion
Crytographic Time(s) At 250 Time(s) At 250
Method Plaintext Ciphertext Decryted Text Iterations Iterations
@25rL&SPIgS#8xG @25rL85P1qS#8xG
ChaCha20 920*tH-3%cW+of  b"\xad\xb3Q\x8eT\x8f\xbf\x98'K\xb5\xdb\x9b\» 920*tH-3%cW+oF 0.0324 0.0602
AES{Advanced
Encryption @25rL&5P1qS#8xG @25rL85P1q5#8xG
Standard) 920*tH-3%cW+oF 0550e5556e27f844190dc0alea75b9d9dcaBe07543 920 tH-3%cW+oF 0.11043 0.0514
@25rL&SPIqSHEXG @25rL&5P1qSHEXG
Lai-Masi SZ0*tH-3%cW+oF  9cb758ef45988ba9648b59244a0630b086bA 785165 9Z0*tH-3%cW+oF 0.09641 0.01559
@25rL&5PIGSHEXG @25rL85P1qSHEXG
BlowFish 9Z0*tH-3%cW+oF  df24327044bd6b1aSb1acd85500f4fb9a5d5251f9ffi SZ0*tH-3%cW+oF 0.05364 0.05687
Quantum @25rL&5P1qS#8xG @25rL85P1qS#8xG
Computing 9Z0*tH-3%cWeoF  b"w\x8a\t\x84\xf0"\xe6\x96\xe5\xdfz\xa3\xd5\» 920*tH-3%cW+oF 0.01981 0.00128
Encryption Decrytion
Crytographic Time(s) At 350 Time(s) At 350
Method Plaintext Ciphertext Decryted Text Iterations Iterations
@25rL&5P1qS#8xG @®25rL8SP1qS#8xG
ChaCha20 920*tH-3%cW+oF  b"\xad\xb3Q\x8eT\x8f\xbf\x98'K\xb5\xdb\x9b\» 9Z0*tH-3%cW+oF 0.02981 0.02699
AES{Advanced
Encryption @25rLE&SPIqS#8xG @25rL8S5P1qS#8xG
Standard) 9Z0*tH-3%cWeoF  229056839¢402866ac20d8ea93320b04795566¢323( 9Z0*tH-3%cW+oF 0.13563 0.01562
@25rL&SPIGSH8XG @25rL&5P1qSH8XG
Lai-Masi 920*tH-3%cW+oF  929f95e044ec73905c00e2d0a7a0a0cd9a4dd69331: 9Z0*tH-3%cW+oF 0.12675 0.01998
@25rL&5PIqSHEXG @2501&5P1qSHEXG
BlowFish SZ0™tH-3%CcW+oF  823df5709bc215f8fe8e5a5115¢c950ff6295125a714 9Z0™tH-3%cW+oF 0.11006 0.12526
Quantum @25rL&S5P1qS#8xG @25rL_SP!qS#8xG
Computing 9Z0*tH-3%cW+oF  b"-\xc0\xda\xfO\xebe\x0c\x94\x06\xd5\x1em"\x 9Z0*tH- 3% cW+oF 0.02254 0.00216

Figure 17 Result achieved with Symbols and Numbers (250 - 350 iterations)
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Encryption and Decryption Time at 350 Iterations

[ SN L. — A - - y N
ChaChal0 AES Lai-Masi BlowfFist Quantury

Cryptographic Method

Figure 18 Encryption and decryption times of five cryptographic methods

5. Limitations and challenges

This investigation does not explore the detailed technical aspects of quantum computing hardware. Instead, it relies on
simulated environments for experimentation, acknowledging that outcomes may vary when applied to actual quantum
systems compared to simulated ones. It is essential to recognize that the study's conclusions are contingent on the
availability and advancement of practical quantum computing technology. As quantum computing evolves, its potential
impact on encryption approach may change. Periodic updates to the research may be necessary to ensure its continued
relevance, considering the dynamic nature of advancements in quantum technology. The use of simulated environments
underscores the preliminary nature of the findings and emphasizes the need for real-world validations as quantum
computing technology progresses.

6. Future work

Investigate the implementation of the quantum key distribution (QKD) algorithm on actual quantum hardware. This
involves testing the algorithm on quantum computers to assess its performance, robustness, and security in a real-world
setting. Considering the evolving nature of quantum computing and cryptography, this direction advances our
applicability, robustness, and real-world impact.

7. Conclusion

Through data analysis, this study underscores the advantages of quantum cryptography over classical approach,
particularly in handling larger datasets efficiently. While classical techniques demonstrate resilience in encrypting small
datasets and proficiency with numerical and symbolic data, they falter when confronted with increased data volumes,
leading to diminished efficiency. Classical encryption algorithms exhibit a linear relationship between iteration count
and processing time, resulting in longer durations for larger operations due to their sequential nature. In contrast,
quantum cryptographic approach leverage principles like quantum entanglement and superposition to maintain faster
processing times, irrespective of operation size. By exploiting parallelism, quantum algorithms facilitate faster
computations, thus overcoming the scalability limitations inherent in classical approach. This fundamental difference
in computational paradigm positions quantum cryptography as a superior solution for efficient data encryption and
decryption across diverse datasets.
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