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Abstract 

This research introduces the Bayesian schemes for estimating logistic regression parameters in the presence of 
multicollinearity. The Bayesian schemes involve the introduction of a prior together with the likelihood which resulted 
in the posterior distribution that is not tractable, hence the use of a numerical method i.e Gibbs sampler. Different levels 
of multicollinearity were chosen to be 𝜌 = 0.80,0.85,0.90,0.95,0.99 𝑎𝑛𝑑0.999 to accommodate severe, very severe and 
nearly perfect state of multicollinearity with sample sizes taken as 10,20,30,50,100,200,300 and 500.Different ridge 
parameters k were introduced to remedy the effect of multicollinearity .The explanatory variables used were 3 and 7. 
Model estimation was carried out using Bayesian approach via the Gibbs sampler of Markov Chain Monte Carlo 
Simulation. The means square error MSE of Bayesian logistic regression estimation was compared with the frequentist 
methods of the estimation. The result shows a minimum mean square error with the Bayesian scheme compared to the 
frequentist method.  
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1. Introduction

Generalized Linear Models (GLMs) to which logistic regression belongs are a class of statistical models used for 
modeling the relationship between a dependent variable (response variable) and one or more independent variables 
(predictor variables or features). They are an extension of the traditional linear regression models and are particularly 
useful when dealing with the non-normal distribution of data or when the relationship between variables is not strictly 
linear. Like in linear regression, GLMs start with a linear predictor, which is a linear combination of the predictor 
variables. However, unlike linear regression, GLMs don't assume a linear relationship between the predictors and the 
response. The linear predictor is often denoted as η (eta).  

  η = β₀ + β₁x₁ + β₂x₂ + ... + βₖxk.  (1) 

Here, β₀, β₁, β₂, etc., are the coefficients to be estimated, and x₁, x₂, etc., are the predictor variables. GLMs introduce a 
link function (g) that relates the expected value of the response variable to the linear predictor η.     

Logistic Regression is a statistical model used for binary classification problems, where the outcome variable is 
categorical and has only two possible values, often labeled as 0 and 1 (or "negative" and "positive"). It's called "logistic" 
because it uses the logistic function (also known as the sigmoid function) to model the probability of the binary outcome. 
Logistic Regression is a generalized linear model (GLM) and is widely used in various fields, including machine learning, 
statistics, and epidemiology. 
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Logistic Function: The logistic function, denoted as σ(η), is used to model the probability that the dependent variable 
takes the value 1. The logistic function has an S-shaped curve and is defined as: 

                                                       𝜎(𝜂) =  
1

(1+𝑒(−𝜂))
                                                                                   (2) 

Here, σ(η) represents the probability of the positive class (1), η is the linear combination of predictor variables (similar 
to the linear predictor in GLMs), and e is the base of the natural logarithm 

Multicollinearity is defined as a statistical phenomenon that occurs when two or more predictor variables in a 
regression model are highly correlated with each other. In other words, it is a condition in which there is a strong linear 
relationship between two or more independent variables in a regression analysis. 

This can cause issues in regression analysis because it violates the assumptions of the ordinary least squares (OLS) 
method, which is commonly used to estimate the parameters of a regression model. When multicollinearity is present, 
it becomes difficult to determine the individual effects of the correlated variables on the dependent variable. Several 
authors have develop different estimators to solve the problem of multicollinearity.(Dawodu,2020) 

Adepoju and Ojo (2018) provided another estimator which is alternative to ordinary least square when multicollinearity 
is almost perfect. If multicollinearity is found to be present, there are several strategies to address it, such as removing 
one of the correlated variables, transforming the variables, or using dimensionality reduction techniques like principal 
component analysis (PCA). ), or incorporating regularization methods such as ridge regression or LASSO (Least 
Absolute Shrinkage and Selection Operator) to mitigate the effects of multicollinearity as said by.(Park,T and Casella,G 
2008). Hans, C. et al.(2010). explores the Bayesian Lasso in the context of survival analysis.To address multicollinearity 
in GLMs, similar strategies can be applied as in linear regression.. 

1.1. Bayesian methods of solving multicollinearity 

Bayesian methods provide an alternative approach to addressing multicollinearity in regression models. They offer a 
framework that incorporates prior knowledge and uncertainty about the parameters and allows for more flexible 
modeling. Emenyonu and Mohd (2019) introduced Bayesian approach to logistic regression via markov chain monte 
carlo algorithm for posterior distribution to be obtained with the discovery that non-flat prior yielded a better model 
than the maximum likelihood estimate and the Bayesian with the non-informative flat prior.  

1.2. Bayesian Logistic Regression 

Is a variation of logistic regression that incorporates Bayesian principles for estimating the model parameters and 
making probabilistic inferences about them. Unlike traditional (frequentist) logistic regression, which uses maximum 
likelihood estimation (MLE) to estimate the parameters, Bayesian Logistic Regression provides a probability 
distribution over the parameters themselves. This makes it possible to express uncertainty about the parameter 
estimates and to perform Bayesian model selection and hypothesis testing.  

Gelman, A et al(2013) in his book discusses regularization techniques and hierarchical modeling in Bayesian statistical 
methods, which can be relevant for addressing multicollinearity.  

Harrison, X. A.et al. (2018). focuses on hierarchical modeling, which can be particularly useful for handling 
multicollinearity in complex models. This paper seeks to use the Bayesian approach to solve the problem of 
multicollinearity in logistic regression bringing in some existing ridge parameter of solving multicollinearity , 

2. Materials and Methods 

2.1. Prior Distribution 

In Bayesian Logistic Regression, a prior distribution for the model parameters is obtained. This prior reflects the beliefs 
about the parameters before observing any data. It encapsulates any prior knowledge or assumptions about the values. 
We assume a normal prior on β.  

                                                 𝛽𝑗 ~ 𝑁(𝜇𝑗,𝜎2
𝑗)                                                                                                      (3) 
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2.2. Likelihood 

Similar to traditional logistic regression, Bayesian Logistic Regression uses a likelihood function that models the 
probability of observing the data given the model parameters. For binary classification, the likelihood is typically the 
binomial likelihood. 

                                          Likelihood = 𝜋(𝑥𝑖)
𝑦𝑖(1 − 𝜋(𝑥𝑖))

1−𝑦𝑖                                                                   (4) 

where 𝜋(𝑥𝑖)represents the probability of the event for i with covariate vector 𝑥𝑖 𝑎𝑛𝑑𝑦𝑖 indicates the presence of 𝑦𝑖 = 1, 
or absence y=0 of the event i.From the classical logistic regression 𝜋(𝑥𝑖) is given by: 

                                   𝜋(𝑥𝑖) =  
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘

1+𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘
                                                                                              (5) 

In effect the likelihood contribution from ith subject is 

Likelihood = [
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘

1+𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘
]

𝑦𝑖

[1 − 
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘

1+𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘
]

(1−𝑦𝑖)

                                                              (6) 

Given that individual subjects are assumed independent from each other, the likelihood function over a data set of n 
subject is then 

Likelihood = ∏ [ [
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘

1+𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘
]

𝑦𝑖

[1 − 
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘

1+𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘
]

(1−𝑦𝑖)

]𝑛
𝑖=1                                                   (7) 

2.3. Posterior Distribution 

The goal of Bayesian Logistic Regression is to compute the posterior distribution over the model parameters. This 
posterior distribution represents the updated beliefs about the parameters after observing the data. It is proportional 
to the product of the prior distribution and the likelihood function.  

Posterior ∝ Likelihood × Prior 

Posterior = ∏ [ [
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘

1+𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘
]

𝑦𝑖

[1 − 
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘

1+𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘
]

(1−𝑦𝑖)

]𝑛
𝑖=1  

                                         x ∏
1

√2𝜋𝜎𝑗
𝑒𝑥𝑝 {−

1

2
(

𝛽𝑗−𝜇𝑗

𝜎𝑗
)

2

}𝑛
𝑖=1                                                                                         (8) 

Bayesian Logistic Regression offers a more principled and flexible approach to logistic regression modeling, especially 
when dealing with small sample sizes or when prior information is available. It provides a richer understanding of 
parameter uncertainty and allows for more comprehensive probabilistic inference. However, it typically requires more 
computational resources and expertise in Bayesian methods compared to traditional logistic regression. 

Bayesian methods allow for the estimation of these hyperparameters as well, which can lead to more robust model 
tuning. 

Logistic Regression Using Pólya-Gamma Latent Variables which this paper seeks to apply in the presence of 
multicollinearity. Polson et al. (2012) proposed an alternative Gibbs sampler for logistic and negative binomial models. 
The approach introduces a vector of latent variables, Zi, that are scale mixtures of normals with independent Pólya-
Gamma precision terms rather than Gamma precision terms as in the t-link model. 

A random variable ω is said to have a Polya-Gamma distribution with parameters b>0 and c∈ ℜ, if 

                         𝜔~ 𝑃𝐺(𝑏, 𝑐)  ≞
1

2𝜋2
∑

𝑑𝑘

(𝑘−1 2⁄ )2+𝑐2 (4𝜋2)⁄
∞
𝑘=1                                                                                         (9) 
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where 𝑑𝑘′𝑠  are independently distributed according to a Ga(b,1) distribution giving an important property of the 
PG(b,c) density –namely that for a∈ ℜ and 𝜂𝜖ℜ, 

                                               
(𝑒𝜂)𝑎

(1+𝑒𝜂)𝑏 =  2−𝑏𝑒𝑘𝜂 ∫ 𝑒−𝜔𝜂2 2⁄ 𝜌(𝜔 𝑏, 0⁄ )
∞

0
𝑑𝜔                                                    (10) 

Where k = a-b/2 and 𝜌(𝜔 𝑏, 0⁄ ) denotes a PG (b,0) density. 

Here the ridge – type estimator of ꞵ was examined for the logistic model. Different levels of ridge-type parameter (𝑘), 
namely Hoerl and Kennard (1970), Lukman and Ayinde (2017) and Fayose and Ayinde (2019) was introduced, and the 
posterior mean was examined.  

2.4. Likelihood 

This is the joint probability density function (p.d.f) for the model  

Logistic f (𝓍; 𝜇, 𝑠)  
ℯ−(𝒳−𝜇) 𝑠⁄

𝑆(1+ℯ−(𝒳−𝜇) 𝑠⁄ )
2   𝑥 ∈ (−∞, +∞) 𝑠 > 0  

A Gibbs sampler for logistic models was proposed by Polson et al. (2012). This involves the use of a vector of latent 
random variables 𝑌𝑗, which are scale mixtures of normal with independent polya-gamma precision terms rather than 

Gamma precision terms as in t-link models. A polya-gamma random variable 𝑋 with parameters (𝑎, 𝑏) with 𝑎 > 0 and 
𝑏 ∈  ℜ is given as: 

                                          𝑓(𝑥|𝑎, 𝑏) =
1

2𝜋2
∑

𝜔𝑘

(𝑘−
1

2
)

2
+

𝑏2

4𝜋2

∞
𝑘=1                                                                                      (11) 

Where 𝜔𝑘’s are independently distributed according to a 𝐺𝑎𝑚𝑚𝑎(𝑏, 1) distribution. 

They further established a germane property of polya-gamma density that made it useful as a sampler for logistic model: 

                                          
(𝑒𝜂)𝑎

(1+𝑒𝜂)𝑏 = 2−𝑏𝑒𝜅𝜂 ∫ 𝑒−
𝜔𝜂2

2 𝑝(𝜔|𝑏, 0)𝑑𝜔,
∞

0
                                                                      (12) 

Here, 𝜅 = 𝑎 −
𝑏

2
 and 𝑝(𝜔|𝑏, 0) denotes a polya-gamma density with parameters(𝑏, 0). 

The integrand on the right hand side is the kernel of a normal density with precision 𝜔 (i.e the conditional density of դ) 
times the prior for 𝜔. 

The LHS of equation (12) has the same function form as the probability parameter logistic regression model.  

Hence, from the likelihood of binary response vector, the Bernoulli likelihood has the same form as the LHS of equation 
(1). So, with these properties of polya-gamma and its connection with logistic regression model, Polson et al (2012) 
shows that the full conditional distribution of 𝛽 given 𝑌 and 𝜔 is  

                           𝑝(𝛽|𝑌 = 𝑦, 𝜔)  ∝ 𝜋(𝛽) exp [−
1

2
(𝑧 − 𝑋𝛽)𝑇𝑊(𝑧 − 𝑋𝛽)]                                                                               (13) 

It is clear that the random variable 𝑍 follows Normal distribution with mean 𝜈 and a variance 𝑊−1 = 𝜏𝐼. 

Thus, assuming a 𝑁𝑝(β0, 𝑇0
−1) prior for 𝛽, the full conditional for 𝛽 given 𝑍 = 𝑧 and 𝑊 is  

𝑁𝑝(𝑚, 𝑉), 

where 𝑉 = (𝑇0 + 𝑋𝑇𝑊𝑋)−1 , 𝑚 = 𝑉(𝑇0𝛽0 + 𝑋𝑇𝑊𝑧), different 𝐾  in the ridge used give rise to having the mean , 𝑚 =
𝑉(𝑅0+𝑇0𝛽0 + 𝑋𝑇𝑊𝑧), and the variance , 𝑉 = (𝑅0 + 𝑇0 + 𝑋𝑇𝑊𝑋)−1, 

where the R0 is the k of the different ridge parameters used. 
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The ridge parameters estimators used are namely 

Ridge Estimator (Hoerl And Kennard, 1970a) 

2

2

ˆ

ˆ
)(ˆ

i

i HKk



  , i = 1, 2, 3, p. 

Where 
2̂  = 

pn

e
n

i

i




1

2

 and it is the Mean Square Error from the OLS regression, i  is the ith element of the vector, and is 

also the regression coefficient from the OLS regression. i  = ̂lQ  where Q  is an orthogonal matrix. p is the number 

of regressors and n is the sample size . 

Ridge Estimator (Lukman And Ayinde, (2017) 

2

2

ˆ

ˆ
)(ˆ

ii

i LAk



  

Where λ = (𝜆𝑖) = 1,2,3, . . . , 𝑝 

Ridge Estimator (Fayose And Ayinde, (2019) 
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2.5. Design 

In this study, different high levels of collinearity among regressors were chosen to be:  

High Positive Collinearity (HPC) when 𝜌 = 0.80, 0.85, 0.90, 0.95,0.99 and 0.999. 

Sample sizes: 10,20,30,50,100,200,300 and 500 

Three explanatory variables were used for the different levels of multicollinearity with increasing sample sizes after 
which seven explanatory variables were also used for the different levels of multicollinearity with the increasing sample 
sizes.  

In this study, model estimation was carried out using Bayesian approach via the Gibbs sampler of the Markov Chain 
Monte Carlo simulation.  
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3. Results and discussion 

The following results were obtained for  

 

Figure 1 Performance of Estimators as Multicollinearity increases when the sample size is small 

From the graph, Bayes_FA poses to perform most efficiently. Also, from the graph, the range of MSE increases with 
number of regressors. It can also be seen that the MSE increases with the value of 𝜌. 

 

Figure 2 Performance of Estimators as Multicollinearity increases when the sample size is large 

The major difference between this graph and the first graph is that the lines are more clustered when the sample size is 
high, this explains the reduction of variability with larger sample size. Also, the range of MSE reduces with increased 
sample size. 
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Figure 3 Performance of Estimators as Sample size increases when R=0.9 

When the sample size is low (𝑁 = 10), the MSE is at maximum. MSE reduces towards minimum at around 𝑁 = 30, 
moves up a bit and for all estimators, converges towards a point as sample size goes to infinity. This is the same for 
higher level of multicollinearity, but the range of MSE increases for high levels. 

4. Conclusion 

Focusing on the Performance of Estimators as Multicollinearity increases when the sample size is small, Bayes_FA poses 
to perform most efficiently having the range of MSE increasing with number of regressors. On the other hand the 
Performance of Estimators as Multicollinearity increases when the sample size is large, the graph shows that the lines 
are more clustered when the sample size is high, this explains the reduction of variability with larger sample size and 
the range of MSE reduces with increased sample size. 

When the sample size is low (𝑁 = 10), the MSE is at maximum. MSE reduces towards minimum at around 𝑁 = 30, 
moves up a bit and for all estimators, converges towards a point as sample size goes to infinity. This is the same for 
higher level of multicollinearity, but the range of MSE increases for high levels. 
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