On exactness and splitting

YANG LIU *

TU, Shenzhen, China.

World Journal of Advanced Research and Reviews, 2023, 20(02), 706–710

Publication history: Received on 06 October 2023; revised on 12 November 2023; accepted on 15 November 2023

Article DOI: https://doi.org/10.30574/wjarr.2023.20.2.2344

Abstract

In this paper, we study the concepts of exactness and splitting in exact sequences of modules over a ring. We review some basic definitions and properties of exact sequences, and introduce the notions of short exact sequences, split exact sequences, projective modules, injective modules, and semisimple modules. We prove some important results relating these concepts, such as the splitting lemma. We also give some examples and applications of these results.

Keywords: Exactness; Splitting; Modules; Ring; Short Exact Sequence

1. Introduction

An exact sequence is a sequence of modules and homomorphisms between them that satisfies a certain condition (see, for example, [9] and [5]). Exact sequences are useful tools for studying the structure and properties of modules, as well as their relations with other algebraic objects (see, for example, [7], [6], [10] and [3]). Exact sequences can also be used to describe various constructions and operations on modules, such as extensions, direct sums, tensor products, homology groups, etc. (see, for example, [7, [1], [2], and [11]).

One of the main questions that arise when dealing with exact sequences is whether they can be simplified or decomposed into simpler parts (see, for example, [4] and [13]). For example, given an exact sequence of modules, can we find another exact sequence that is equivalent to it but has fewer terms? Or can we split an exact sequence into two or more shorter exact sequences that are easier to handle? These questions lead to the concepts of exactness and splitting in exact sequences (see, for example, [8] and [12]).

In this paper, we will explore these concepts in detail. We will assume some familiarity with basic notions of ring theory and module theory. We will use $R$ to denote a ring (not necessarily commutative) with identity element 1, and $M, N, P, Q$, etc. to denote modules over $R$. We will use $\text{Hom}_R(M, N)$ to denote the set of all $R$-module homomorphisms from $M$ to $N$, and $\text{End}_R(M)$ to denote the set of all $R$-module endomorphisms of $M$. We will use $\ker f$ and $\text{im } f$ to denote the kernel and image of a homomorphism $f$, respectively.

The paper is organized as follows. In Section 2, we review some basic definitions and properties of exact sequences. In Section 3, we introduce the notions of short exact sequences and split exact sequences, and prove some results relating them. In Section 4, we introduce the notions of projective modules, injective modules, and semisimple modules, and prove some results relating them to split exact sequences. In Section 5, we give some examples and applications of these results in various areas of mathematics.

2. On exactness

In this section, we review some basic definitions and properties of exact sequences.

*Corresponding author: YANG LIU

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.
A sequence (or complex) of modules over $R$ is a collection of modules $\{M_i\}_{i \in \mathbb{Z}}$ indexed by the integers $Z$ together with a collection of homomorphisms $\{f_i: M_i \to M_{i+1}\}_{i \in \mathbb{Z}}$ such that

$$M_i = 0 \text{ for all sufficiently large or small } i.$$ 

We usually write a sequence as

$$\ldots \to M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \to \ldots$$

Or simply as

$$\ldots \to M_{i-1} \to M_i \to M_{i+1} \to \ldots$$

If the homomorphisms are clear from the context.

A sequence of modules over $R$ is said to be exact at $M_i$ if $\ker f_i = \text{im} f_{i-1}$, that is, if the image of the homomorphism from $M_{i-1}$ to $M_i$ is equal to the kernel of the homomorphism from $M_i$ to $M_{i+1}$. A sequence is said to be exact if it is exact at every module in the sequence.

Intuitively, exactness at $M_i$ means that every element of $M_i$ that is mapped to zero by $f_i$ comes from an element of $M_{i-1}$ via $f_{i-1}$, and conversely, every element of $M_{i-1}$ that is mapped to an element of $M_i$ via $f_{i-1}$ is mapped to zero by $f_i$.

Exact sequences can be used to measure how far a given sequence of modules and homomorphisms is from being an isomorphism. For example, if we have a sequence of the form

$$0 \to M_0 \to f_0 M_1 \xrightarrow{f_1} M_2 \to 0$$

Then exactness at $M_0$ means that $\ker f_0 = 0$, or equivalently, that $f_0$ is injective. Exactness at $M_2$ means that $\text{im} f_1 = M_2$, or equivalently, that $f_1$ is surjective. Exactness at $M_1$ means that $\ker f_1 = \text{im} f_0$, or equivalently, that $\text{coker} f_0 = \text{coker} f_1$, where $\text{coker} f$ denotes the cokernel of a homomorphism $f$, defined as the quotient module $M/\text{im} f$. Thus, exactness of the whole sequence means that $f_0$ and $f_1$ are both isomorphisms, and hence the sequence reduces to

$$0 \to M_0 \cong M_1 \cong M_2 \to 0$$

More generally, if we have a sequence of the form

$$\ldots \to M_{i-2} \xrightarrow{f_{i-2}} M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \xrightarrow{f_{i+1}} M_{i+2} \to \ldots,$$

Then exactness at $M_i$ means that $\ker f_i = \text{im} f_{i-1}$, or equivalently, that $\text{coker} f_{i-1} = \text{coker} f_i$. Thus, exactness of the whole sequence means that $\text{coker} f_j = \text{coker} f_k$ for any two indices $j$ and $k$, and hence the sequence reduces to

$$\ldots \to M_{j-1}/\text{im} f_j \cong M_j/\text{im} f_j \cong M_k/\text{im} f_k \cong M_{k+1}/\text{im} f_k \to \ldots$$

We now state some basic properties of exact sequences.

[Exactness is preserved by composition] If we have two exact sequences of modules over $R$

$$\ldots \to A_i \xrightarrow{\alpha_i} A_{i+1} \xrightarrow{\alpha_{i+1}} A_{i+2} \to \ldots \to B_i \xrightarrow{\beta_i} B_{i+1} \xrightarrow{\beta_{i+1}} B_{i+2} \to \ldots$$

and a collection of homomorphisms $\{g_i: A_i \to B_i\}_{i \in \mathbb{Z}}$ such that the following diagram commutes for all $i \in Z$, that is, $\beta_i \circ g_i = g_{i+1} \circ \alpha_i$ for all $i$:

$$\ldots \to A_{i-1} \xrightarrow{\alpha_{i-1}} A_i \xrightarrow{\alpha_i} A_{i+1} \to \ldots \to B_{i-1} \xrightarrow{\beta_{i-1}} B_i \xrightarrow{\beta_i} B_{i+1} \to \ldots$$

then the sequence

$$\ldots \to g_{i-1}(A_{i-1}) \xrightarrow{\beta_{i-1} \circ g_{i-1}(\alpha_{i-1})} g_i(A_i) \xrightarrow{\beta_{i+1} \circ g_i(\alpha_i)} g_{i+1}(A_{i+1}) \to \ldots$$
is also exact, where $\beta_i|_{g_i(A_i)}$ denotes the restriction of $\beta_i$ to the submodule $g_i(A_i)$ of $B_i$.

**Proof.** We need to show that $\ker(\beta_i|_{g_i(A_i-1)}) = g_i(\im a_{i-1})$ for all $i$. Let $b \in g_i(A_{i-1})$, then $b = g_i(a)$ for some $a \in A_{i-1}$. Then

$$b \in \ker(\beta_i|_{g_i(A_{i-1})}) \iff \beta_i(b) = 0 \iff \beta_i(g_i(a)) = 0 \iff g_i(a_{i-1}(a)) = 0 \iff a_{i-1}(a) \in \ker g_i.$$

Since the original sequence is exact at $A_i$, we have $\ker g_i = g_i(\ker a_i)$. Hence,

$$b \in \ker(\beta_i|_{g_i(A_{i-1})}) \iff a_{i-1}(a) \in g_i(\ker a_i) \iff \exists a' \in A_i; g_i(a') = g_i(a_{i-1}(a)) \iff b = g_i(a' - a_{i-1}(a)).$$

Since the original sequence is exact at $A_{i-1}$, we have $\im a_{i-2} = \ker a_{i-1}$. Hence, there exists $a'' \in A_{i-2}$ such that $a_{i-2}(a'') = a' - a_{i-1}(a)$. Then

$$b = g_i(a' - a_{i-1}(a)) = g_i(a_{i-2}(a'')) = g_i(a_{i-2})(a'').$$

Therefore, we have shown that any element $b$ in $g_i(A_{i-1})$ that satisfies $\beta_i|_{g_i(A_{i-1})}(b) = 0$ can be written as $g_i(a'')$ for some $a''$ in $A_{i-2}$. This implies that $\ker(\beta_i|_{g_i(A_{i-1})}) = g_i(\im a_{i-2})$.

To complete the proof, we need to show that $g_i(A_i)$ is equal to $\im(\beta_i|_{g_i(A_{i-1})})$.

Let $c$ be an element in $g_i(A_i)$. Then $c = g_i(a)$ for some $a$ in $A_i$. Since the original sequence is exact at $A_i$, there exists an element $d$ in $A_{i+1}$ such that $a_i(a) = \beta_{i+1}(d)$.

Consider the element $g_i(d)$ in $g_i(A_{i+1})$. We have $\beta_{i+1}(g_i(d)) = g_{i+2}(a_{i+1}(d)) = g_{i+2}(\beta_i(a)) = 0$, where the commutativity of the diagram is used.

This shows that $g_{i+1}(d)$ is in $\ker(\beta_{i+1}|_{g_i(A_i)})$. Therefore, there exists an element $e$ in $g_i(A_{i-1})$ such that $\beta_{i+1}|_{g_i(A_i)}(c) = \beta_{i+1}(g_{i+1}(d)) = \beta_{i+1}|_{g_i(A_{i-1})}(e)$.

Hence, we have shown that any element $c$ in $g_i(A_i)$ can be written as $\beta_{i+1}|_{g_i(A_{i-1})}(e)$ for some $e$ in $g_i(A_{i-1})$. This implies that $g_i(A_i)$ is equal to $\im(\beta_i|_{g_i(A_{i-1})})$.

Therefore, we have shown that $\ker(\beta_i|_{g_i(A_{i-1})}) = g_i(\im a_{i-2})$ and $g_i(A_i) = \im(\beta_i|_{g_i(A_{i-1})})$.

This completes the proof that the sequence

$$\cdots \to g_{i-1}(A_{i-1}) \to \beta_i|_{g_i(A_{i-1})} \to \beta_i|_{g_i(A_i)} \to \beta_{i+1}|_{g_i(A_i)} \to g_{i+1}(A_{i+1}) \to \cdots$$

is exact.

Let $A$ be an abelian category, and let $0 \to A \to B \to C \to 0$ be a short exact sequence in $A$. Then the following are equivalent:

- The sequence splits, i.e., there exists a morphism $s: C \to B$ such that $q \circ s = \id_C$.
- There exists a morphism $p: B \to A$ such that $p \circ i = \id_A$.
- There exists an isomorphism $f: B \to A \oplus C$ such that $f \circ i = (1_A, 0)$ and $q \circ f^{-1} = (0, 1_C)$.

**Proof.** (a) $\implies$ (b): Suppose there exists a morphism $s: C \to B$ such that $q \circ s = \id_C$. Then we can define a morphism $p: B \to A$ by $p = i^{-1} \circ (1_B - s \circ q)$. Note that $p$ is well-defined since $i$ is a monomorphism and $(1_B - s \circ q)$ is an endomorphism of $B$. Moreover, we have:

$$p \circ i = i^{-1} \circ (1_B - s \circ q) \circ i = i^{-1} \circ (i - s \circ q \circ i) = i^{-1} \circ i = \id_A$$

Hence, $p$ satisfies the condition in (b).
(b) \Rightarrow (c): Suppose there exists a morphism \( p: B \to A \) such that \( p \circ i = id_A \). Then we can define a morphism \( f: B \to A \oplus C \) by \( f = (p, q) \). Note that \( f \) is well-defined since \( p \) and \( q \) are morphisms from \( B \) to \( A \) and \( C \), respectively. Moreover, we have:

\[
f \circ i = (p, q) \circ i = (p \circ i, q \circ i) = (1_A, 0)
\]

and

\[
q \circ f^{-1} = q \circ (p, q)^{-1} = (0, 1_C)
\]

where the last equality follows from the fact that \((p, q)\) is an isomorphism with inverse \((i^{-1} \circ p, s)\), where \( s: C \to B \) is any morphism such that \( q \circ s = id_C \). Hence, \( f \) satisfies the condition in (c).

(c) \Rightarrow (a): Suppose there exists an isomorphism \( f: B \to A \oplus C \) such that \( f \circ i = (1_A, 0) \) and \( q \circ f^{-1} = (0, 1_C) \). Then we can define a morphism \( s: C \to B \) by \( s = f^{-1} \circ (0, 1_C) \). Note that \( s \) is well-defined since \((0, 1_C)\) is a morphism from \( C \) to \( A \oplus C \). Moreover, we have:

\[
q \circ s = q \circ f^{-1} \circ (0, 1_C) = (0, 1_C) \circ (0, 1_C) = id_C.
\]

Hence, \( s \) satisfies the condition in (a).

Therefore, the three conditions are equivalent.

Remark 2.1. In an abelian category, if \( B \) is splittable, \( B = A \oplus C \), then we clearly have a short exact sequence: \( 0 \to A \to B \to C \to 0 \). However, exactness doesn’t necessarily imply splitting. Generalizing from Hatcher’s example, consider the short exact sequence:

\[
0 \to Z_p^m \to Z_p^{m+k} \oplus Z_p^{n-k} \to Z_p^n \to 0
\]

where \( m, n, \) and \( k \) are positive integers, \( k < n \), and \( p \) is a prime. Now, we define the homomorphism \( \varphi: Z_p^m \to Z_p^{m+k} \oplus Z_p^{n-k} \) with \( \varphi(1) = (p^k, 1) \) and the homomorphism \( \psi: Z_p^{m+k} \oplus Z_p^{n-k} \to Z_p^n \) with \( \psi(p^k, 1) = 0 \) and \( \psi(1,0) = 1 \). However, \( Z_p^{m+k} \oplus Z_p^{n-k} \) is not split as the direct sum of \( Z_p^m \) and \( Z_p^{n-k} \).

3. Data Availability Statement

The author confirms that the data supporting the findings of this study are available within the article or its supplementary materials.

4. Conclusion

In conclusion, this study elucidated fundamental concepts of exactness and splitting in module theory, including short exact sequences, split exact sequences, and relationships between projective, injective, and semisimple modules. By proving key results like the splitting lemma, this research deepens understanding of intricate connections between these algebraic structures. With theoretical insights and practical examples, the study lays groundwork for advancements in abstract algebra and related fields like computer science and engineering. The knowledge gained opens avenues for further research on the ongoing relevance of exactness and splitting.

Compliance of ethical standard

Acknowledgment

This work is supported partly by a research grant from the Municipal Finance of Shenzhen.

References


