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Abstract 

Stepped spillways are hydraulic components of dams used to dissipate energy downstream of the dams. Numerous 
studies have been conducted to understand the hydraulics of flow on stepped spillways, primarily in laboratory settings. 
The flow passing over stepped spillways can be categorized into two types of flow regimes: Nappe Flow and non-Nappe 
Flow. In this research, the FLOW-3D software was utilized to model the Cardan configuration of the downstream basin 
of the stepped overflow based on laboratory data. In this investigation, we compared the distribution profile of 
maximum, minimum, and average pressures in three areas: the center, right, and left, with the laboratory data in the 
numerical model using graphical methods and statistical indicators. The results revealed that 08% of the pressures 
obtained from the model closely matched the laboratory data with an error rate of only 5.1%.   
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1. Introduction

The flow of currents resulting from floods can present various hazards downstream of dams (1). One effective solution 
for mitigating flood energy is the implementation of structures like stilling basins. Stilling basins, which are designed to 
dissipate the excess energy from dam overflow, experience more pronounced pressure fluctuations (2,3). In such 
structures, the average pressure is an inadequate representation of the pressure dynamics because momentary 
pressure fluctuations can pose significant risks to the integrity of the structure (4–6). 

When a hydraulic jump occurs in stilling basins, various forces act on the bottom slab of the stilling basin, including 
hydrostatic and hydrodynamic forces (7–9). These forces consist of the weight of the water on the slab, the lifting force 
on the subslab, and hydrodynamic forces caused by pressure fluctuations during the hydraulic jump. Due to the two-
phase nature of hydraulic jumps, flow fluctuations, and high turbulence, it is not possible to obtain pressure values using 
conventional methods. These pressures are non-linear and vary depending on the magnitude of fluctuations and 
turbulence at each point (10). Therefore, it is necessary to investigate and interpret the fluctuating characteristics of 
pressure. There have been limited studies, based on analytical and numerical relationships, that review changes in static 
and dynamic pressure in the basin after stepped spillways are implemented, and some relationships are presented in 
this context. Utilizing FLOW3D models, complex geometric conditions can be accurately simulated. By establishing 
different flow scenarios and measuring and recording dynamic and momentary pressure distribution, inferences can 
be made regarding the pressure distribution in the basin after dam overflow events (11,12). 

1.1. The effect of pressure on the bottom of the stilling basin 

The phenomenon of pressure fluctuations in hydraulic structures has been the focus of a large number of engineers and 
scientists in recent decades. This focus on hydraulics coincides with the rapid advancement of applied hydraulic science 
and the construction of thousands of hydraulic structures, both large and small, worldwide. There is a growing need to 
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understand and measure the pressure field exerted by water on the components of these structures. This need has 
pushed the capabilities of many instruments to their limits (13,14). 

Magionesi et al. showed in hydropower structures such as stilling basins, which are responsible for dissipating excess 
energy at the dam outlet through the mixing of water and air, pressure fluctuations have a more pronounced effect, 
especially during the hydraulic jump process (15). Fluctuations in pressure along the floor and walls of the stilling basin 
can lead to damage, as the turbulent flow interacts with the basin, forming vortices. This high-speed flow condition near 
the floor and walls can also trigger cavitation due to pressure fluctuations, potentially causing significant damage to the 
structure. The generation of dynamic pressures on the basin structure is a result of the disturbance and fluctuations in 
the high-speed flow, which propagate from the upper side of the overflow to the downstream side of the stilling basin 
(16,17).  

The pressure field around the attachments of the stilling basin consists of both average pressure and pressure 
fluctuations. Stilling basins, along with their appendages, such as the blocks at the base of rapids and the middle blocks, 
are located in areas where intense turbulence is generated during the formation of hydraulic jumps. Their primary 
purpose is to dissipate the excess energy from the outflow of hydraulic structures. As a result, they are subjected to 
severe and unpredictable pressure fluctuations that can lead to surface wear or complete destruction. 

1.2. Pressure in hydraulic structures 

In hydraulic structures, the forces acting on the structure from the fluid side are two forms of hydrostatic forces and 
forces There is hydrodynamics. Hydrostatic forces are caused by the weight of the fluid and are usually easy to calculate. 
Forces Or hydrodynamic pressures enter the structure when the fluid has a velocity factor and the flow lines are at an 
angle with the body of the structure have Although in a constant flow, the characteristics of the fluid at a specific point 
are constant and independent of time the fact is that due to the random formation and removal of eddies in a completely 
turbulent flow, the characteristics of the fluid, including speed and the pressure at a point does not have a specific and 
constant value and changes constantly (18). Fiorot and colleagues showed one of the important issues in engineering 
Hydraulics is the study and evaluation of hydrodynamic pressures and momentary changes of these pressures on 
structures. About Static pressures are not a problem because the structures are designed in such a way that the warp 
resists against a constant stress but in the case of hydrodynamic fluctuations, the force applied to the structure is not a 
constant force but at every moment It has a variable value (19).  

Many researchers, such as Kai et al. and Hua et al., have considered the study of pressure fluctuations in hydraulic 
structures characterized by non-hydrostatic pressure distributions, as well as in locations where vortices are present 
and where the flow impacts bends, blocks, and aqueducts, to be of significant importance (20,21). Consequently, there 
are certain areas where it is recommended, according to designers' opinions, to assess pressure fluctuations. These 
areas include stilling basins at the end of rapids, absorption basins downstream of dams, arched concrete structures, 
bends between rapids, throw cups, stepped spillways, and areas downstream of valves installed in drainage tunnels, 
particularly those situated beneath dams. Conducting studies to examine and monitor dynamic pressures is advised in 
these specific locations. Kamyab Moghaddam et al. conducted a series of experiments to analyze the static pressure in 
stepped chutes with inclined and horizontal steps. Their results demonstrated that the static pressure in the middle of 
the step is higher than the static pressure on the right and left sides of the steps at all discharge rates. Inspired by their 
work, a similar approach and location for the piezometers has been adopted in this research to study and examine 
pressure fluctuations in the stilling basin, the results compared to their work to confirm the accuracy of the model (22). 
Zienkiewicz and Moriguchi et al. showed different parts of the basin experience varying levels of pressure, with the 
maximum values typically occurring in the initial parts of the basin due to the direct impact of the water jet on the first 
blocks. To assess the dynamic pressure on these blocks, it is crucial to understand the conditions, functions, and 
governing equations of the flow across different sections of the stilling basin, as well as the parameters influencing flow 
and fluctuations, and the pressures they impose (23,24). 

2. Research Methodology  

The FLOW3D software is a versatile program that is compatible with complex flow conditions in both two-dimensional 
and three-dimensional modeling. This software is specialized in Computational Fluid Dynamics (CFD) and is provided 
by Flow Science. It utilizes the finite volume method for solving equations. FLOW3D is well-suited for handling complex 
problems. It offers five turbulence models, including the RNG (renormalized group) model, which has been tested 
through trial and error. The software also provides two numerical techniques for geometric simulations. 

1-Volume of fluid method (VOF): In this method, it is used to show the behavior of the fluid in the free surface. 
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2- Obstacle volume subtraction method (FAVOR): This method is employed for geometric simulations involving solid 
surfaces and volumes, such as borders. 

In this article, the tested model is the hydraulic model of the stilling basin at Barvan Dam. Prior to modeling, it is essential 
to investigate the software's accuracy in modeling and calculating flow parameters. To achieve this, the appropriate 
mesh dimensions were selected using a method that involves dimension selection and ensuring the independence of 
the results from the network size. 

Pressure and velocity distribution functions for five flow rates 0.31,0.28,0.19,0.15,0.13 and with the number of meshes 
in three directions X, Y, Z equal to 0.2,0.5 and 1 meter that in total 2775000 the calculation cell is calculated. 

3. Pressure distribution on the bottom of the stilling basin  

Pressure distribution in 9 piezometers and for five flow rates 0.13, 0.15, 0.19, 0.28, 0.31 cubic meter per second was 
calculated. in the table 1 the place of pressure collection is presented for three sections of center, left and right of stilling 
basin. 

Table 1 The location of pressures on the bottom of the stilling basin in the software 

  X Y Z 

 Right 8.96 0.16 1.12 

piezometer9 Center 8.96 0.85 1.12 

 Left 8.96 1.28 1.12 

 Right 9.56 0.16 1.11 

piezometer10 Center 9.56 0.85 1.11 

 Left 9.56 1.28 1.11 

 Right 9.9 0.16 1.1 

piezometer11 Center 9.9 0.85 1.1 

 Left 9.9 1.28 1.1 

4. Comparison of the results obtained from the numerical model and the laboratory model  

The average values of the pressures taken from the laboratory model in the piezometers along with its similar value in 
the data model are presented in tables (2) to (6). 

Table 2 The pressure recorded in the laboratory model during the 0.13 discharge 

Q    0.13    

Data   model   lab  

Velocity   V=1.9   V=1.68  

Location  center Right Left center Right Left 

 max 3.39 3.12 3.22 3.6 3.66 3.57 

piezometer9 min 0.41 2.22 1.13 2.43 2.57 2.32 

 Average 2.35 2.79 2.76 2.88 2.99 2.92 

 max 3.59 3.5 3.72 3.79 3.77 3.52 

piezometer10 min 1.16 2.54 2.1 3.04 3.02 2.86 

 Average 2.73 3.11 3.12 3.44 3.37 3.19 
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 max 3.73 3.57 3.53 3.83 3.89 3.73 

piezometer11 min 0.96 2.57 1.89 3.32 3.32 3.1 

 Average 2.84 3.16 3.14 3.59 3.59 3.39 

 

Table 3 The pressure recorded in the laboratory model during the 0.15 discharge 

Q    0.15    

Data   model   lab  

Velocity   V=1.7   V=1.48  

Location  center Right Left center Right Left 

 max 3.23 3.53 3.15 4.47 4.31 4.57 

piezometer9 min 1.01 0.88 1.31 2.08 2.2 1.46 

 Average 2.88 2.83 2.68 3.14 3.18 3.13 

 max 3.74 3.75 3.46 4.18 4.16 3.79 

piezometer10 min 2.25 0.9 1.59 3.16 3.25 3.11 

 Average 3.3 3.18 3.02 3.74 3.67 3.49 

 max 4.05 3.73 3.61 4.11 4.2 3.97 

piezometer11 min 2.18 1.93 1.76 3.74 3.34 3.56 

 Average 3.38 3.26 3.04 3.93 3.95 3.75 

 

Table 4 The pressure recorded in the laboratory model during the 0.19 discharge 

Q    0.19    

Data   model   lab  

Velocity   V=2.1   V=1.88  

Location  center Right Left center Right Left 

 max 3.97 4.13 6.04 5.7 6.29 6.93 

piezometer9 min 0.84 2.82 1.46 1.92 1.9 1.63 

 Average 3.35 3.63 3.33 3.56 3.8 3.94 

 max 4.92 4.3 4.44 5.05 4.73 4.55 

piezometer10 min 2.04 3.33 2.38 3.62 4.34 4.05 

 Average 3.96 4.09 3.76 4.48 4.53 4.34 

 max 5.14 4.43 4.81 4.8 4.9 4.8 

piezometer11 min 2.46 3.38 2.43 4.45 4.48 4.32 

 Average 4.14 4.16 3.9 4.65 4.68 4.49 
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Table 5 The pressure recorded in the laboratory model during the 0.28 discharge 

Q    0.28    

Data   model   lab  

Velocity   V=2.8   V=2.58  

Location  center Right Left center Right Left 

 max 4.91 5.16 4.78 8.22 8.55 9.02 

piezometer9 min 0.78 1.42 0.6 1.11 1.03 1.81 

 Average 4.14 4.24 3.8 3.56 3.02 3.25 

 max 5.35 5.43 5.19 6.31 6.52 5.83 

piezometer10 min 0.72 1.27 3.22 2.26 2.1 2.31 

 Average 4.58 4.87 4.72 4.19 4.2 4.09 

 max 5.59 5.47 5.35 7.97 7.4 6.73 

piezometer11 min 4.26 3.63 2.74 4.74 4.96 4.82 

 Average 5.28 5.11 4.84 5.98 5.56 5.42 

 

Table 6 The pressure recorded in the laboratory model during the 0.31 discharge 

Q    0.31    

Data   model   lab  

Velocity   V=3.04   V=2.82  

Location  center Right Left center Right Left 

 max 5.69 5.94 4.69 6.11 7.03 8.06 

piezometer9 min 1.31 1.52 1.28 0.94 1.64 2.51 

 Average 3.4 3.54 3.33 3.23 2.1 2.38 

 max 5.68 5.9 5.38 6.93 6.81 7.5 

piezometer10 min 1 0.78 1.83 1.76 6.08 1.06 

 Average 4.18 4.33 4.27 3.89 0.9 3.78 

 max 6.48 5.5 5.38 8.46 3.79 7.51 

piezometer11 min 3.08 4.2 3.08 4.76 7.27 4.85 

 Average 4.95 4.88 4.61 6.17 4.96 5.62 

 

4.1. Validation of the model  

Modeling is a type of prediction, and this prediction will be useful when the accuracy of the model is confirmed. Accuracy 
of the model can be examined from two aspects. 

1-The structure of the model: that is, the model is considered in terms of physical parameters, meshing and numerical 
model. consider the best structure for it. The structure of the stepped spillways model in the previous chapter with trial 
and error and considering different modes of meshing were optimized. 
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2-Accuracy of observations used in model fitting: For this purpose, the outputs of the model should be compared to a 
series of observations that here is the data obtained from the laboratory model, compared. 

Validation of the model is possible in different ways, which in this research are two methods of graphical comparison 
and indices statistics have been used to validate the model. 

4.2. Graphical comparison of data 

For this type of comparison, graphical comparison of simulated and observed time series can be done sorted series of 
simulated and observed data, scatter plot of simulated data vs. data used observations and residual diagrams. 

The scatter plot of simulated data against observational data is the selected method for graphical comparison in this 
research. This comparison was conducted for the maximum, minimum, and average data, and it was also performed for 
the entire dataset. The results are presented in diagrams (1) through (4). 

 

Figure 1 Distribution of maximum pressures  

 
 

Figure 2 Distribution of average pressures  
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Figure 3 Distribution of minimum pressures  

 
 

Figure 4 Distribution of total pressures  

4.2.1. Analysis of comparative data charts  

As seen in the distribution charts, in the maximum data, considering 15% error, 72% the pressures taken from the 
model are consistent with the laboratory pressures. In the minimum diagram, this matching percentage is equal to 60 
and also in average pressures, the acceptable number is 92%. 

In the comparison of the goodness of fit for all the data as seen in the graph number four, the matching percentage is 
equal to 80%. 

4.2.2. Comparison of statistical errors (quantitative performance measures) 

Statistical errors allow when a large amount of data is available, an analysis of how the data is distributed and goodness 
of fit between observation data and model data. 

In this research, four indices RMSE, ME, MAE, NSE were used to compare the pressures measured in the laboratory and 
the pressures obtained in the FLOW3D numerical model. The equations used for each of the statistical indicators are as 
follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(P𝐿𝑎𝑏 −

 

 

P𝑚)^2 
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Pm is the pressure value obtained from the model and where Plab is the pressure value measured in the laboratory, 
~Plab the average value of laboratory.  

Table number seven presents the value of these errors for the maximum, minimum, average and total pressures, as can 
be seen in the analysis of statistical parameters, average pressures have a more acceptable error than other data. 

It should be noted that the closer the value of NSE is to one, the more valid it will be, while the value of NST is more than 
0.2 acceptable. 

Table 7 Statistical errors for the results of the model 

 RMSE ME MAE NSE 

Max 1.54 1.1 1.13 0.09 

Min 1.44 0.82 1.3 0.32 

Ave 0.67 0.24 0.6 0.54 

Total 1.28 0.72 1.01 0.22 

5. Conclusion  

In this research, the results presented show a high correlation between the pressures measured in the model and the 
laboratory data. When considering the use of the FLOW3D model for modeling pressure fluctuations, it is important to 
note that this software exhibits weaknesses in capturing random phenomena, such as hydraulic jumps, which result in 
significant variations between maximum and minimum pressures. However, the average pressure values align well with 
the laboratory data. 
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