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Abstract 

This research presents a vibration analysis of a thick anisotropic rectangular plate using modified first shear 
deformation theory. Modified first shear deformation theory, which is not built upon the classical plate theory, was used 
to develop the kinematic equations and constitutive relations of a deformed section of thick anisotropic rectangular 
plate from which the generalized stress equations were determined. Using the assumptions of the theory, the strain 
energy and external work equations were formulated, and by employing the principles of total minimum potential 
energy, the total potential energy functional of a thick anisotropic plate was developed. Minimization of the total 
potential energy functional with respect to the deflection function (w) and with respect to the shear rotations (

𝑥
)and

(
𝑦
), respectively, resulted in the governing differential equation and the two compatibility equations of the plate. The

displacement functions that satisfy the governing and compatibility equations were obtained by solving the governing 
and compatibility equations. From the general displacement function, the peculiar deflection equations (shape 
functions) were obtained for the boundary conditions considered, which are simply supported on its four edges (SSSS), 
clamped on two adjacent edges, and simply supported on the other two (CCSS). Using the displacement equation and 
the equation for rotation in the x-direction (

𝑥
) and equation for rotation in y-direction (

𝑦
) the direct governing and

two direct compatibility equations were obtained, from which coefficients that enable the formula for calculating 
fundamental natural frequencies to be obtained. For the boundary condition analyzed in this work, the stiffness 
coefficients (kR, kQ, kRQ, kq, kRRQ , kRQQ , kNR, kNQ, kNRQ and kλ ) were computed and used in determining the 
fundamental natural frequency parameter values at various span to depth ratios (5,10,20, 25 and 100), aspect ratios (1 
to 2 at the increment of 0.1) and angle of fibre orientation (0𝑜, 15𝑜 , 45𝑜). The solutions of this study were compared 
with those from previous researchers. The fundamental natural frequency parameter values obtained in this study were 
compared with the work of Reddy (1984) for 0𝑜 angle of fibre orientation at span to depth ratios of 5,10,20,25,50 and 
100 at an aspect ratio of 1. The percentage difference values were 6.073%, 3.197%, 1.132%, 0.788%, 0.255%, and 
0.112%, respectively. These differences revealed the closeness of the results of this present study to the results of Reddy 
(1984). This shows that the present theory provides good and acceptable solutions to the vibration problems of thick 
anisotropic rectangular plates. 

Keywords: Thick Plate; Anisotropic; Fundamental natural frequency; Governing Equations 

1. Introduction

For vibration analysis of thick plates, shear deformation effects are very important; these effects are what the classical 
plate theory (CPT) did not take into account. The classical plate theory ignored the effect of through-thickness shear 
deformation and thus overrated the stiffness of the plate, which is of very considerable significance for thick plates. In 
order to define the correct behavior of thick plates, including shear deformation effects and the associated cross-
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sectional warping are required and many theories have evolved to address this dearth. Refined traditional theories of 
plate analysis were advanced to overwhelm the shortcomings of classical plate theories (otherwise called Kirchhoff's 
plate theory). The first refined traditional theories are Mindlin theory and Reissner theory (Sadrnejad et al., 2009). 
These theories are called first-order shear deformation theories. They are called first-order theories because the 
straight line, which was normal to the middle surface before bending, remained straight but was no longer normal to 
the middle surface after bending. Hence, the profile equation of that line as used in the first-order theories is z 
coordinate. A major constraint of these first-order theories is the assumption of constant shear stress across the 
thickness of the plate. Correction factors are usually employed when these theories are used. To overcome the 
limitations of first-order theories, second, third and higher-order theories evolved (Sayyad and Ghugal, 2012; Sayyad, 
2011). Popular among these theories is third-order theories (third-order shear deformation, exponential shear 
deformation, hyperbolic shear deformation, trigonometric shear deformation, etc.). Since the development of this 
theory, many researchers have used it in their respective studies on thick plates. These include the works of Qian et al. 
(2003), Batra and Vidoli (2002), Abdul-Razzak and Haido (2002), Kank and Swaminathan (2001), and Kocak and Hassis 
(2002). These higher-order theories have a shear deformation profile line (usually called f(z)) that is not linear (not 
equal to the z coordinate). The underlying reason for the nonlinear shear deformation line is that shear stress was 
assumed to relate to the first derivative of the profile line equation. That is, shear stress is the product of the first 
derivative of F(z) and nominal stress (CPT shear stress and the first derivative of the profile line equation). The 
implication of this assumption is that the shear deformation profile line equation, F(z) is related to the shear stress 
profile equation, G(z). That is, G(z) is the first derivative of F(z) (Shimpi and Patel, 2006; Chikalthankar et al., 2013; 
Ibearugbulem et al., 2016a). A better assumption ought to have been that, whereas the vertical shear is a product of 
nominal shear stress and G(z), no relationship exists between G(z) and F(z), meaning that G(z) cannot be obtained by 
the first derivative of F(z). Another, better assumption ought to be that the rotation of the middle surface is not divided 
into a classical part and a shear deformation part. The same assumption goes for in-plane displacements, u and v. They 
are whole each and are not divided into classical and shear deformation parts (Ibearugbulem et al., 2016b). 
Ibearugbulem et al. (2016b) assumed that F(z) is equal to z (that the profile is a straight line after deformation) and that 
there is no relationship between F(z) and G(z). With these assumptions, Kirchhoff’s assumption of zero vertical shear 
strain or stress on the classical theory was avoided completely. In their opinion, the vertical shear strains and stresses 
can be very small to be ignored but can never be equal to zero (no matter how small). This erroneous assumption that, 
for classical theory, the vertical shear strain and stress are absolutely equal to zero was introduced in the third and 
higher-order theories. Ordinarily, in-plane displacements and stresses are not functions of span-to-depth ratios. It is 
only the out-of-plane displacement and stresses that are functions of the span-to-depth ratio. But this is not the case 
from the results obtained using third- and higher-order theories (Pagano, 1970; Pagano and Hatfield, 1972; Reddy, 
1984; Idibi et al., 1997; Aydogdu, 2009; Daouadji et al., 2012). Ibearugbulem (2016b), in their work titled "Full shear 
deformation for analysis of thick plates," analyzed only isotropic plates. Another shortcoming of their work is the 
assumption of the displacement function. The present work tried to extend their work (Ibearugbulem, 2016b) to the 
case of vibration analysis of thick anisotropic plates. Theoretical formulation of natural frequency 

2. Theoretical formulation of natural frequency 

 

Figure 1 Deformation of a section of a thick anisotropic plate 
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The displacement field consists of one out-of-plane displacement(w) and two in-plane displacements (u and v). From 
Figure 1, a fibre of the plate DF oriented in the z direction takes the positions D′′F′′ and D′F′ as a result of bending and 
shear deformations in the x-z plane. Let the rotation in the x-z plane of a line initially normal to the middle surface before 
deformation be 

𝑥
 The displacement of a point E having a distance z from the mid-plane in the line of action of the x axis 

is +z
𝑥

. Likewise, the displacement of point E along the y axis is +z
𝑦

. Where 
𝑦
 is the rotation in the y-z plane of a line 

that was previously normal to the middle plane before the deformation of the plate. 

The kinematic equations of the present theory are as follows: 

The in-plane displacements of any point (like E) from Figure 1 is given by Equations (1) and (2) respectively. 

𝑢 = 𝑧
𝑥
………………… (1) 

𝑣 = 𝑧
𝑦
 …………………(2) 

Equations (3) to (7) are the equations of the five engineering strain components 

𝑥 =  
𝜕𝑢

𝜕𝑥
= 𝑧

𝜕
𝑥

𝜕𝑥
 ………………… (3) 

𝑦 =  
𝜕𝑣

𝜕𝑦
= 𝑧

𝜕
𝑦

𝜕𝑦
…………………(4) 


𝑥𝑦
= 2𝑥𝑦 = 2𝑦𝑥 = 2𝑧

𝜕
𝑥

𝜕𝑦
= 2 𝑧

𝜕
𝑦

𝜕𝑥
 …………………(5) 


𝑥𝑧
= 𝑥𝑧 + 𝑧𝑥 = 

𝑥
 +

𝜕𝑤

𝜕𝑥
 …………………(6) 


𝑦𝑧
= 𝑦𝑧 + 𝑧𝑦 = 𝑦 +  

𝜕𝑤

𝜕𝑦
 …………………(7) 

The equations of the vertical rotations (
𝑥
 𝑎𝑛𝑑 

𝑦
) are expressed in Equations (8) and (9). 


𝑥
= 

𝑥𝑧
−
𝜕𝑤

𝜕𝑥
= 𝑐𝑥

𝜕𝑤

𝜕𝑥
 ………………… (8) 


𝑦
= 

𝑦𝑧
−
𝜕𝑤

𝜕𝑦
= 𝑐𝑦

𝜕𝑤

𝜕𝑦
 ………………… (9) 

The constitutive relationships are formulated as follows: 

Applying Hooke’s law, the anisotropic material engineering strains are expressed in terms of stress, Young's modulus, 
Poisson’s ratios, and stress and are as given in Equations (10) to (14). 

𝜀11 =
𝜎11
𝐸11

 − 𝜇21
𝜎22
𝐸22

 …………………(10) 

𝜀22 = −𝜇12
𝜎11
𝐸11

+
𝜎22
𝐸22

 …………………(11) 

𝛾12 =
1

𝐺12
. 𝜏12  ………………… (12) 

𝛾13 =
1

𝐺13
. 𝜏13  …………………(13) 
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𝛾23 =
1

𝐺23
. 𝜏23  ………………… (14) 

Note: 𝐸11 and 𝐸22 represents Young’s moduli of elasticity of the anisotropic plate. 𝜇12 and 𝜇21 stands for Poisson’s ratios 

of the anisotropic plate. 𝐺12 ,  𝐺13and  𝐺23  are the shear moduli of elasticity of the anisotropic plate.  𝜎11 and 𝜎22  are 
normal stresses.  

By simultaneously solving Equations (10) and (11) and rearranging Equations (12), (13) and (14) respectively gave 
Equation (15a)  

[
 
 
 
 
𝜎11
𝜎22
𝜏12
𝜏13
𝜏23]
 
 
 
 

= 𝐸00

[
 
 
 
 
𝑒11 𝑒12  0  0  0
𝑒12 𝑒22 0  0 0

0
0
0

0
0
0

𝑒33
0
0

 0
𝑒44
0

 0
 0
𝑒55]
 
 
 
 

[
 
 
 
 
𝜀11
𝜀22
𝛾12
𝛾13
𝛾23]
 
 
 
 

 ………………… (15𝑎) 

𝑊ℎ𝑒𝑟𝑒:   

𝐸00 = 𝐸0 (1 − 𝜇12𝜇21)⁄ ………………… (15𝑏) 

𝑒11 =
𝐸11
𝐸0
 ………………… (15𝑐) 

𝑒12 =
𝜇21. 𝐸11
𝐸0

=
𝜇12. 𝐸22
𝐸0

 ………………… (15𝑑) 

𝑒22 =
𝐸22
𝐸0
 ………………… (15𝑒) 

𝑒33 =
𝐺12
𝐸0

. (1 − 𝜇12𝜇21) ………………… (15𝑓) 

𝑒44 =
𝐺13
𝐸0

. (1 − 𝜇12𝜇21) ………………… (15𝑖) 

𝑒55 =
𝐺23
𝐸0

. (1 − 𝜇12𝜇21) ………………… (15𝑗) 

Note: 𝐸0 𝑐𝑎𝑛 𝑏𝑒 𝐸11 𝑜𝑟 𝐸22  

By arranging Equations (3), (4), (5), (6) and (7) in matrix form gives Equation (16). 

𝜀 =

[
 
 
 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 𝑧

𝜕
𝑥

𝜕𝑥

𝑧
𝜕

𝑦

𝜕𝑦

𝑧 (
𝜕

𝑥

𝜕𝑦
+
𝜕

𝑦

𝜕𝑥
)

(
𝑥

 +
𝜕𝑤

𝜕𝑥
)

(
𝑦
+  
𝜕𝑤

𝜕𝑦
)
]
 
 
 
 
 
 
 
 
 
 
 

 ………………… (16) 

Transforming Equation (15a) from local coordinate (1-2 coordinate) system to global coordinate (x-y coordinate) 
system using the transformation matrix [T] yields Equation (17). 
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[
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧 ]

 
 
 
 

= 𝐸00

{
 
 

 
 

[𝑇]−1

[
 
 
 
 
𝑒11 𝑒12  0  0  0
𝑒12 𝑒22 0  0 0

0
0
0

0
0
0

e33
0
0

 0
e44
0

 0
 0
e55]
 
 
 
 

[𝑇]−𝑇

}
 
 

 
 

[
 
 
 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧]
 
 
 
 

 ………………… (17) 

Where: the transformation matrix [T] is defined as: 

[𝑇] =

[
 
 
 
 
𝑚2 𝑛2 2𝑚𝑛  0  0
𝑛2 𝑚2 −2𝑚𝑛  0  0
−𝑚𝑛
0
0

𝑚𝑛
0
0

(𝑚2 − 𝑛2)
0
0

 0
m
−𝑛

 0
 𝑛
m]
 
 
 
 

 ………………… (18) 

Where: "m" and "n" are respectively Cos θ and Sin θ, and θ is the angle of orientation of the fibers. 

When Equation (16) and (18) are substituted into Equation (17), Equation (19a) is obtained.  

𝜎 =

[
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧 ]

 
 
 
 

= 𝐸00

[
 
 
 
 
𝑎11 𝑎12 𝑎13 0 0
𝑎12 𝑎22 𝑎23 0 0
𝑎13
0
0

𝑎23
0
0

𝑎33
0
0

0
𝑎44
𝑎45

0
𝑎45
𝑎55]

 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 𝑧

𝜕
𝑥

𝜕𝑥

𝑧
𝜕

𝑦

𝜕𝑦

𝑧 (
𝜕

𝑥

𝜕𝑦
+
𝜕

𝑦

𝜕𝑥
)

(
𝑥

 +
𝜕𝑤

𝜕𝑥
)

(
𝑦
+  
𝜕𝑤

𝜕𝑦
)
]
 
 
 
 
 
 
 
 
 
 
 

 ………………… (19𝑎) 

Where:  

a11 = m4e11 + 2m
2n2(e12 + 2e33) + n

4e22………………… (19𝑏) 

a12 = e12(n
4 +m4) + m2n2(e11 + e22 − 4e33) ………………… (19c) 

a13 = m3n(e11 − e12 − 2e33) + mn
3(e12 − e22 + 2e33) ………………… (19d) 

a22 = n
4e11 + 2m

2n2(e12 + 2e33) + m
4e22  ………………… (19e) 

a23 = mn3e11 −m
3ne22 + (m

3n − mn3)(e12 + 2e33)………………… (19f) 

a33 = m2n2(e11 − 2e12 + e22 − 2e33) + e33(m
4 + n4) ………………… (19g) 

a44 = m
2e44 − 2mn e45 + n

2e55  ………………… (19h) 

a45 = mn (e44 − e55) + (m
2 − n2)e45…………………(19i) 

a55 = n
2e44 + 2mn e45 +m

2e55  ………………… (19j) 

The total potential energy functional is defined as Equation (20). 

Π = 𝑈 + 𝑉 ………………… (20) 

Where: 𝑉 is the work done on the thick plate and 𝑈 is the internal energy of the thick rectangular anisotropic plate. 
strain energy of the plate is given as Equation (21)  



World Journal of Advanced Research and Reviews, 2023, 20(01), 1268–1283 

1273 

𝑼 =
𝟏

𝟐
∭𝜺𝑻𝝈  𝒅𝒙 . 𝐝𝐲 . 𝒅𝒛 ………………… (𝟐𝟏) 

By filling in Equations (16) and (19a) into Equation (21) and rearranging the resulting equation, Equation (22a) is 
obtained. Equation (22a) is the strain energy equation of anisotropic rectangular plate based on modified first order 
shear deformation theory. 

𝑈 =
𝐷00
2
∬{(

𝜕
𝑥

𝜕𝑥
)

2

. 𝑎11 + 2𝑎𝑥𝑦
𝜕

𝑥

𝜕𝑥
.
𝜕

𝑦

𝜕𝑦
+ (

𝜕
𝑦

𝜕𝑦
)

2

𝑎22 

+2 [
𝜕

𝑥

𝜕𝑦

𝜕
𝑥

𝜕𝑥
+
𝜕

𝑦

𝜕𝑥

𝜕
𝑥

𝜕𝑥
] 𝑎13 + 2 [

𝜕
𝑥

𝜕𝑦

𝜕
𝑦

𝜕𝑦
+
𝜕

𝑦

𝜕𝑥

𝜕
𝑦

𝜕𝑦
] 𝑎23 

+
12

𝑡2
(

𝑥
2  + 2

𝜕𝑤

𝜕𝑥

𝑥
 + (

𝜕𝑤

𝜕𝑥
)
2

)𝑎44 +
24

𝑡2
(
𝜕𝑤

𝜕𝑥
. 
𝑦
+
𝜕𝑤

𝜕𝑥
.
𝜕𝑤

𝜕𝑦
+ 

𝑦

𝑥
+
𝜕𝑤

𝜕𝑦

𝑥
) 𝑎45

+
12

𝑡2
(2
𝜕𝑤

𝜕𝑦

𝑦
+ (

𝜕𝑤

𝜕𝑦
)
2

+ 
𝑦
2)𝑎55} 𝑑𝑥𝑑𝑦 ………………… (22𝑎) 

Where: 

𝐷00 =
𝐸00𝑡

3

12
………………… (22𝑏) 

𝑎𝑥𝑦 = (𝑎12 + 2𝑎33) ………………… (22𝑐) 

The external work induced on a rectangular plate undergoing free vibration as given by Ibearugbulem et al. (2014) will 
be adopted in this study and is herein written as Equation (23). 

𝑉𝜆 = 
𝑀. 𝜆2

2
.∫ ∫ 𝑤2

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦 …………………(23) 

Where ‘𝑀’ is the inertia mass of the plate while ‘λ’ is the fundamental natural frequency of the plate. 

This inertia work when written in non-dimensional coordinate terms yields Equation (24). 

𝑉𝜆 = 
𝑀 . 𝜆2𝑎𝑏

2
.∫ ∫ 𝑤2

𝑏

0

𝑎

0

𝑑𝑅𝑑𝑄 ………………… (24) 

By filling in Equations (22a) and (24) into Equation (20), and rearranging the resulting equation in non-dimensional 
coordinate form, Equation (25a) is obtained. 

𝛱 =
𝛽𝐷00
2

∬{(
𝜕

𝑅

𝜕𝑅
)

2

. 𝑎11 + 2
𝑎𝑥𝑦

𝛽

𝜕
𝑅

𝜕𝑅
.
𝜕

𝑄

𝜕𝑄
+
1

𝛽2
(
𝜕

𝑄

𝜕𝑄
)

2

𝑎22 + 2 [
1

𝛽

𝜕
𝑅

𝜕𝑄

𝜕
𝑅

𝜕𝑅
+
𝜕

𝑄

𝜕𝑅

𝜕
𝑅

𝜕𝑅
] 𝑎13

+ 2 [
1

𝛽2
𝜕

𝑅

𝜕𝑄

𝜕
𝑄

𝜕𝑄
+
1

𝛽

𝜕
𝑄

𝜕𝑅

𝜕
𝑄

𝜕𝑄
]𝑎23 +

12

𝑡2
(𝑎2

𝑅
2  + 2𝑎

𝜕𝑤

𝜕𝑅

𝑅
 + (

𝜕𝑤

𝜕𝑅
)
2

) 𝑎44

+
24

𝑡2
(𝑎
𝜕𝑤

𝜕𝑅
. 
𝑄
+
1

𝛽

𝜕𝑤

𝜕𝑅
.
𝜕𝑤

𝜕𝑄
+ 𝑎2

𝑄

𝑅
+
𝑎

𝛽

𝜕𝑤

𝜕𝑄

𝑅
) 𝑎45 +

12

𝑡2
(
2𝑎

𝛽

𝜕𝑤

𝜕𝑄

𝑄
+
1

𝛽2
(
𝜕𝑤

𝜕𝑄
)
2

+ 𝑎2
𝑄
2) 𝑎55

−
𝑀 . 𝜆2𝑤2𝑎2

𝐷00
} 𝑑𝑅𝑑𝑄 (25𝑎) 

Where: 

𝛽 =
𝑏

𝑎
;  𝜕𝑥 = 𝑎𝜕𝑅 𝑎𝑛𝑑 𝜕𝑦 = 𝑏𝜕𝑄…………………(25𝑏) 
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The governing and two compatibility equations are obtained follows:  

By differentiating Equation ( 25𝑎) with respect to the deflection (w) and equating the resulting equation to zero, the 
governing equation is obtained, which is given in Simplified form as Equation (26). 

12

𝑡2
(𝑎
𝜕

𝑅

𝜕𝑅
 +

𝜕2𝑤

𝜕𝑅2
)𝑎44 +

12

𝑡2
(𝑎
𝜕

𝑄

𝜕𝑅
+
𝑎

𝛽

𝜕
𝑅

𝜕𝑄
 +

2

𝛽

𝜕2𝑤

𝜕𝑅𝜕𝑄
)𝑎45 +

12

𝑡2
(
𝑎

𝛽

𝜕
𝑄

𝜕𝑄
+
1

𝛽2
𝜕2𝑤

𝜕𝑄2
) 𝑎55 −

𝑀 . 𝜆2𝑤2𝑎2

𝐷00
= 0 … . (26) 

Differentiating Equation (25𝑎) with respect to 
𝑅

 and equating the resulting equation to zero, the compatibility equation 

in x-z plane is obtained as Equation (27). 

𝜕2
𝑅

𝜕𝑅2
. 𝑎11 +

𝑎𝑥𝑦

𝛽

𝜕2
𝑄

𝜕𝑅𝜕𝑄
+ [

2

𝛽

𝜕2
𝑅

𝜕𝑅𝜕𝑄
+
𝜕2

𝑄

𝜕𝑅2
] 𝑎13 + [

1

𝛽2

𝜕2
𝑄

𝜕𝑄2
] 𝑎23 +

12

𝑡2
(𝑎2

𝑅
 + 𝑎

𝜕𝑤

𝜕𝑅
) 𝑎44 +

12

𝑡2
(𝑎2

𝑄
+
𝑎

𝛽

𝜕𝑤

𝜕𝑄
)𝑎45

= 0 ………………… (27) 

Differentiating Equation (25𝑎) with respect to 
𝑄

 gives compatibility equation in y-z plane as Equation (28). 

𝑎𝑥𝑦

𝛽

𝜕2
𝑅

𝜕𝑅𝜕𝑄
+
1

𝛽2

𝜕2
𝑄

𝜕𝑄2
𝑎22 +

𝜕2
𝑅

𝜕𝑅2
𝑎13 + [

1

𝛽2
𝜕2

𝑅

𝜕𝑄2
+
2

𝛽

𝜕2
𝑄

𝜕𝑅𝜕𝑄
]𝑎23 +

12

𝑡2
(𝑎2

𝑅
 + 𝑎

𝜕𝑤

𝜕𝑅
) 𝑎45 +

12

𝑡2
(𝑎2

𝑄
+
𝑎

𝛽

𝜕𝑤

𝜕𝑄
) 𝑎55

= 0 ………………… (28) 

The general displacement equations are determined as follows: 

By working out equations (26), (27) and (28) and reducing the resulting equation, Equation (29a) is obtained. 

𝑤 =  (𝑎00 + 𝑎01𝑅 + 𝑎02𝑅
2 + 𝑎03𝑅

3 + 𝑎04𝑅
4)(𝑏00 + 𝑏01𝑄 + 𝑏02𝑄

2 + 𝑏03𝑄
3 + 𝑏04𝑄

4) ………………… (29𝑎) 

Equation (29𝑎) can be represented as Equation (29𝑏) 

𝑤 =  𝐴1ℎ………………… (29𝑏) 

Where:  

ℎ =  [1 𝑅 𝑅2 𝑅4 𝑅4]. [1 𝑄 𝑄2 𝑄4 𝑄4]  ………………… (29𝑐)  

𝐴1is the coefficient of deflection; ℎ is the shape function 

By substituting Equation (29𝑏) into the non-dimensional form of Equations (8) and (9) respectively gives equations 
(30) and (31). 


𝑅
=
𝑐𝑥
𝑎
. 𝐴1.

𝜕ℎ

𝜕𝑅
 =  

𝐴2
𝑎
.
𝜕ℎ

𝜕𝑅
 ………………… (30)  


𝑄

 =
𝐴3
𝑎𝛽
.
𝜕ℎ

𝜕𝑄
 …………………(31) 

Where: 𝐴2 = 𝐴1.  𝑐𝑥  ; 𝐴3 = 𝐴1.  𝑐𝑦 (𝐴2 𝑎𝑛𝑑 𝐴3 are the coefficients of vertical rotations 
𝑥
 𝑎𝑛𝑑 

𝑦
 respectively) 

In split deflection form, Equations (29𝑎) can be written as Equation (32) 

𝑤 =  𝑤𝑅 × 𝑤𝑄  ………………… (32) 

 𝑤𝑅  and 𝑤𝑄  are represented respectively as Equations (33𝑎) and (33𝑏). 

𝑤𝑅  =  (𝑎00 + 𝑎01𝑅 + 𝑎02𝑅
2 + 𝑎03𝑅

3 + 𝑎04𝑅
4) ………………… (33𝑎) 
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𝑤𝑄  =  (𝑏00 + 𝑏01𝑄 + 𝑏02𝑄
2 + 𝑏03𝑄

3 + 𝑏04𝑄
4)………………… (33𝑏) 

Equations (33𝑎) and (33𝑏) are the deflection equations of a strip of the rectangular plate along the x and y axes 
respectively.  

In generalized form, Equations (33𝑎) and (33𝑏) are given as Equation (34). 

𝑤∝ = (∆00 + ∆01∝ +∆02∝
2+ ∆03∝

3+ ∆04∝
4)…………………  (34) 

Equation (34) is the generalized split deflection equation and ∝ can be R or Q and ∆ can be 𝑎 or 𝑏 as the case may be. 

By substituting the boundary conditions of a particular strip into the generalized deflection equation of the plate, the 
deflection equations of the plate along simply supported (S-S) strip and clamped at one end and simply supported at 
the other end (C-S) strip are given in Equations (35) and (36) respectively. 

S − S =  ∆04(∝ −2 ∝
3+∝4) ………………… (35) 

C − S =  ∆04(1.5 ∝
2− 2.5 ∝3+∝4)………………… (36) 

By combining the peculiar deflections along various strips, the peculiar deflection equations for plate of various support 
conditions are obtained as given in Equations (37) and (38). 

SSSS =  𝑨𝟏(𝑹 − 𝟐𝑹
𝟑 + 𝑹𝟒) (𝑸 − 𝟐𝑸𝟑 + 𝑸𝟒) ………………… (37) 

CCSS =  𝑨𝟏(𝟏. 𝟓𝑹
𝟐 − 𝟐. 𝟓𝑹𝟑 + 𝑹𝟒)(𝟏. 𝟓𝑸𝟐 − 𝟐. 𝟓𝑸𝟑 + 𝑸𝟒) ………………… (38) 

The formula for calculating fundamental natural frequency is determined as follows: 

By filling in Equations (29a), (30) and (31) into Equation (25a) and minimizing the resulting equation with respect 𝐴1 
( coefficient of deflection) and 𝐴2 (coefficient of x-z shear rotation along x-direction) and 𝐴3(coefficient of y-z shear 
rotation along y-direction) respectively, Equations (39), (40) and (41) are obtained. 

𝑑𝛱

𝑑𝐴1
=
𝛽𝐷00
2

{24𝑎44 (
𝑎

𝑡
)
2

(𝐴1 + 𝐴2)𝑘𝑁𝑅 +
24𝑎45
𝛽

(
𝑎

𝑡
)
2

(2𝐴1 + 𝐴2 + 𝐴3)𝑘𝑁𝑅𝑄  +
24𝑎55
𝛽2

(
𝑎

𝑡
)
2

(𝐴1 + 𝐴3)𝑘𝑁𝑄

− 𝐴1
𝑀 . 𝜆2𝑎4

𝐷00
𝑘𝜆} = 0 ………………… (39) 

𝑑𝛱

𝑑𝐴2
=
𝛽𝐷00
2

{2𝐴2𝑎11𝑘𝑅 + 2𝐴3
𝑎𝑥𝑦

𝛽2
𝑘𝑅𝑄 +

2𝑎13
𝛽

[2𝐴2 + 𝐴3]𝑘𝑅𝑅𝑄 +
2𝑎23
𝛽3

[𝐴3]𝑘𝑅𝑄𝑄 + 12𝑎44 (
𝑎

𝑡
)
2

(2𝐴1 + 2𝐴2)𝑘𝑁𝑅

+
24𝑎45
𝛽

(
𝑎

𝑡
)
2

(𝐴1 + 𝐴3)𝑘𝑁𝑅𝑄} = 0 ………………… (40) 

𝑑𝛱

𝑑𝐴3
=
𝛽𝐷00
2

{2𝐴2
𝑎𝑥𝑦

𝛽2
𝑘𝑅𝑄 + 2𝐴3

𝑎22
𝛽4

𝑘𝑄 +
2𝑎13
𝛽

[𝐴2]𝑘𝑅𝑅𝑄 +
2𝑎23
𝛽3

[𝐴2 + 2𝐴3]𝑘𝑅𝑄𝑄 +
24𝑎45
𝛽

(
𝑎

𝑡
)
2

(𝐴1 + 𝐴2)𝑘𝑁𝑅𝑄

+
12𝑎55
𝛽2

(
𝑎

𝑡
)
2

(2𝐴1 + 2𝐴3)𝑘𝑁𝑄} = 0 ………………… (41) 

Note: 

𝑘𝑅 = ∫ ∫ (
𝜕2ℎ

𝜕𝑅2
)
2

1

0

1

0
𝑑𝑅𝑑𝑄; 𝑘𝑅𝑄 = ∫ ∫ (

𝜕2ℎ

𝜕𝑅𝜕𝑄
)
2

1

0

1

0
𝑑𝑅𝑑𝑄; 𝑘𝑄 = ∫ ∫ (

𝜕2ℎ

𝜕𝑄2
)
2

1

0

1

0
𝑑𝑅𝑑𝑄; 

𝑘𝑅𝑅𝑄 = ∫ ∫
𝜕2ℎ

𝜕𝑅𝜕𝑄

𝜕2ℎ

𝜕𝑅2

1

0

1

0
𝑑𝑅𝑑𝑄; 𝑘𝑅𝑄𝑄 = ∫ ∫

𝜕2ℎ

𝜕𝑅𝜕𝑄

𝜕2ℎ

𝜕𝑄2

1

0

1

0
𝑑𝑅𝑑𝑄; 𝑘𝑁𝑅 = ∫ ∫ (

𝜕ℎ

𝜕𝑅
)
21

0

1

0
𝑑𝑅𝑑𝑄 ; 

𝑘𝑁𝑄 = ∫ ∫ (
𝜕ℎ

𝜕𝑄
)
21

0

1

0
𝑑𝑅𝑑𝑄; 𝑘𝑁𝑅𝑄 = ∫ ∫

𝜕ℎ

𝜕𝑅
.
𝜕ℎ

𝜕𝑄

1

0

1

0
𝑑𝑅𝑑𝑄; 𝑘λ = ∫ ∫ h2

1

0

1

0
𝑑𝑅𝑑𝑄 
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By solving simultaneously, the simplified form of Equations (40) and (41) gave Equations (42) and (43). 

𝐴2 = 𝑇2𝐴1 = 𝐴1
(𝑑12. 𝑑23 − 𝑑13. 𝑑22)

(𝑑12
2 − 𝑑11𝑑22)

 ………………… (42) 

𝐴3 = 𝑇3𝐴1 = 𝐴1
(𝑑12. 𝑑13 − 𝑑11𝑑23)

(𝑑12
2 − 𝑑11𝑑22)

 ………………… (43) 

Substituting Equations (42) and (43) into Equation (39) and making square of fundamental natural frequency (𝜆2) the 
subject gives Equation (44). 

𝜆2 =
𝑘𝑇
𝑘𝜆
.
𝐷00
𝑀𝑎4

 ………………… (44) 

simplifying Equation (44) gives Equation (45). 

𝜆 =
1

𝑎2
√
𝑘𝑇
𝑘𝜆
.
𝐷00
𝑀
 ………………… (45) 

Equation (45) can be expressed in the form of fundamental natural frequency parameter as Equation (46) 

𝜆𝑎2√ 
𝑀

𝐷00
= √

𝑘𝑇
𝑘𝜆
 ………………… (46) 

Where: 

𝑑11 = 𝑎11𝑘𝑅 + 2
𝑎13

𝛽
𝑘𝑅𝑅𝑄 + 12𝑎44 (

𝑎

𝑡
)
2

𝑘𝑁𝑅; 𝑑12 =
𝑎𝑥𝑦

𝛽2
𝑘𝑅𝑄  +

𝑎13

𝛽
𝑘𝑅𝑅𝑄 +

𝑎23

𝛽3
𝑘𝑅𝑄𝑄 +

12𝑎45

𝛽
(
𝑎

𝑡
)
2

𝑘𝑁𝑅𝑄 ; 

𝑑13 = −12 (
𝑎

𝑡
)
2

[𝑎44𝑘𝑁𝑅 +
𝑎45

𝛽
𝑘𝑁𝑅𝑄] ;  𝑑22 =

𝑎22

𝛽4
𝑘𝑄 + 2

𝑎23

𝛽3
𝑘𝑅𝑄𝑄 +

12𝑎55

𝛽2
(
𝑎

𝑡
)
2

𝑘𝑁𝑄; 

𝑑23 = −12 (
𝑎

𝑡
)
2

[
𝑎45
𝛽
𝑘𝑁𝑅𝑄 +

𝑎55
𝛽2

𝑘𝑁𝑄] ; 

𝑘𝑇 = 12𝑎44 (
𝑎

𝑡
)
2

(1 + 𝑇2)𝑘𝑁𝑅 +
12𝑎45
𝛽

(
𝑎

𝑡
)
2

(2 + 𝑇2 + 𝑇3)𝑘𝑁𝑅𝑄 +
12𝑎55
𝛽2

(
𝑎

𝑡
)
2

(1 + 𝑇3)𝑘𝑁𝑄  

3. Numerical problems 

Using the above described theory, rectangular and square anisotropic thick plates that are simply supported (SSSS) and 
clamped on two adjacent edges and simply supported on the other two edges (CCSS) are analysed for fundamental 
natural frequency ( λ ), at various span to depth ratios (a/t = 5, 10, 20, 25, 50 and 100), aspect ratios ( 𝛽 =

1 to 2 at increaments of 0.1) and fibre orientation angles (θ = 00, 150 , 450 ) with the following material properties: 
𝐸2

𝐸1
=

0.52500, 
𝐺12

𝐸1
= 0.26293,

𝐺13

𝐸1
= 0.15991, 

𝐺23

𝐸1
= 0.26681, 𝜇12 = 0.44049 and 𝜇21 = 0.23124. 

4. Results  

The numerical results for the vibration analysis of SSSS and CCSS thick anisotropic rectangular plates with the material 
properties given in the section above and for span-depth ratios (a/t = 5, 10, 20, 25, 50, and 100), aspect ratios (β = b/a 
= 1 to 2), and grain fiber orientation angles (θ = 00, 150 , 450) obtained from Equation (46) are presented on Tables 1 to 
6. The present solution is compared with solutions obtained from previous works by Srinivas and Roa (1970), Shimpi 
and Patel (2006), and Reddy (1984). The fundamental natural frequency parameter values (λ̅ ) were calculated for SSSS 
plate having the same material properties as given in the section above using the following formula: λ̅  =
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 λt√(
ρ(1− 𝜇12𝜇21)

Eo
). If β = 0.5 for previous work, β for this study is 

1

𝛽
 = 

1

0.5
 = 2.0. If β = 1.0 for previous work, β for this study 

is 
1

𝛽
 = 

1

1
 = 1.0 and if β = 2.0 for previous work; for this study β is 

1

𝛽
 = 

1

2
 = 0.5. Also, If 

𝑡

𝑎
 = 0.05 for previous work; for this 

present study 
𝑎

𝑡
 = 

1

0.05
 = 20.  

The present study solution was further validated by comparing its solutions with those obtained from Reddy (2004) for 
SSSS thick orthotropic rectangular plate with the following material properties: 𝐸1 = 25𝐸2 , 𝐺12 = 𝐺13 = 0.5𝐸2, 𝐺23 =
0.2𝐸2, 𝜇12 = 0.25. The fundamental natural frequency parameter values were calculated using the following formula: 

λ̅  =  λ
𝑎2

𝑡
√
ρ

E
 . The compared results are presented in Tables 7 and 8.  

Table 1 Fundamental natural frequency parameter values for SSSS plate at θ = 𝟎𝒐 

𝛽 

𝝀𝒂𝟐√ 
𝑴

𝑫𝟎𝟎
 

𝒂

𝒕
 

5 10 20 25 50 100 

1 
14.8434 16.3116 16.7524 16.8077 16.8824 16.9012 

1.1 
13.8287 15.1476 15.5410 15.5903 15.6568 15.6735 

1.2 
13.0520 14.2616 14.6206 14.6655 14.7260 14.7413 

1.3 
12.4447 13.5718 13.9049 13.9466 14.0027 14.0169 

1.4 
11.9612 13.0244 13.3377 13.3768 13.4296 13.4429 

1.5 
11.5701 12.5828 12.8805 12.9177 12.9677 12.9804 

1.6 
11.2493 12.2215 12.5067 12.5423 12.5902 12.6023 

1.7 
10.9831 11.9221 12.1971 12.2314 12.2776 12.2892 

1.8 
10.7597 11.6713 11.9379 11.9711 12.0159 12.0271 

1.9 
10.5704 11.4591 11.7187 11.7510 11.7945 11.8055 

2 
10.4087 11.2780 11.5316 11.5632 11.6057 11.6164 
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Table 2 Fundamental natural frequency parameter values for SSSS plate at θ = 𝟏𝟓𝒐 

𝛽 

𝝀𝒂𝟐√ 
𝑴

𝑫𝟎𝟎
 

𝒂

𝒕
 

5 10 20 25 50 100 

1 14.9711 16.4112 16.8412 16.8951 16.9677 16.9860 

1.1 13.9253 15.2089 15.5893 15.6369 15.7011 15.7172 

1.2 13.1229 14.2921 14.6367 14.6797 14.7377 14.7523 

1.3 12.4941 13.5771 13.8949 13.9346 13.9880 14.0015 

1.4 11.9925 13.0090 13.3062 13.3433 13.3932 13.4057 

1.5 11.5861 12.5501 12.8311 12.8662 12.9133 12.9251 

1.6 11.2523 12.1741 12.4422 12.4756 12.5206 12.5319 

1.7 10.9749 11.8623 12.1199 12.1520 12.1951 12.2060 

1.8 10.7418 11.6008 11.8497 11.8807 11.9224 11.9329 

1.9 10.5442 11.3793 11.6211 11.6511 11.6916 11.7017 

2 10.3752 11.1902 11.4258 11.4551 11.4945 11.5044 

 

 

Table 3 Fundamental natural frequency parameter values for SSSS plate at θ = 𝟒𝟓𝒐 

𝛽 

𝝀𝒂𝟐√ 
𝑴

𝑫𝟎𝟎
 

𝒂

𝒕
 

5 10 20 25 50 100 

1 15.3497 16.7053 17.1042 17.1540 17.2211 17.2380 

1.1 14.1438 15.2940 15.6282 15.6698 15.7258 15.7399 

1.2 13.2092 14.2116 14.5001 14.5359 14.5840 14.5961 

1.3 12.4706 13.3633 13.6181 13.6497 13.6921 13.7028 

1.4 11.8769 12.6859 12.9153 12.9437 12.9819 12.9914 

1.5 11.3928 12.1364 12.3462 12.3722 12.4070 12.4157 

1.6 10.9929 11.6846 11.8789 11.9028 11.9350 11.9431 

1.7 10.6589 11.3085 11.4903 11.5127 11.5428 11.5504 

1.8 10.3770 10.9921 11.1638 11.1849 11.2133 11.2204 

1.9 10.1370 10.7234 10.8867 10.9068 10.9337 10.9405 

2 9.9310 10.4934 10.6495 10.6688 10.6945 10.7010 
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Table 4 Fundamental natural frequency parameter values for CCSS plate at θ = 𝟎𝒐 

𝛽 

𝝀𝒂𝟐√ 
𝑴

𝑫𝟎𝟎
 

𝒂

𝒕
 

5 10 20 25 50 100 

1 19.0773 22.0123 23.0050 23.1340 23.3097 23.3543 

1.1 17.8222 20.5396 21.4548 21.5735 21.7352 21.7762 

1.2 16.8887 19.4541 20.3154 20.4271 20.5790 20.6175 

1.3 16.1799 18.6349 19.4571 19.5636 19.7084 19.7452 

1.4 15.6314 18.0036 18.7963 18.8989 19.0385 19.0739 

1.5 15.1998 17.5078 18.2779 18.3775 18.5130 18.5473 

1.6 14.8549 17.1121 17.8642 17.9614 18.0937 18.1272 

1.7 14.5753 16.7916 17.5291 17.6245 17.7541 17.7870 

1.8 14.3459 16.5285 17.2541 17.3479 17.4754 17.5077 

1.9 14.1554 16.3100 17.0257 17.1182 17.2439 17.2758 

2 13.9957 16.1266 16.8340 16.9253 17.0496 17.0810 

  

Table 5 Fundamental natural frequency parameter values for CCSS plate at θ = 𝟏𝟓𝒐 

𝛽 
𝝀𝒂𝟐√ 

𝑴

𝑫𝟎𝟎
 

𝒂

𝒕
 

5 10 20 25 50 100 

1 19.2429 22.1105 23.0671 23.1909 23.3592 23.4019 

1.1 17.9540 20.5846 21.4573 21.5700 21.7233 21.7621 

1.2 16.9920 19.4572 20.2718 20.3769 20.5197 20.5559 

1.3 16.2592 18.6045 19.3771 19.4767 19.6120 19.6463 

1.4 15.6907 17.9462 18.6874 18.7829 18.9125 18.9454 

1.5 15.2421 17.4285 18.1456 18.2379 18.3632 18.3950 

1.6 14.8829 17.0147 17.7128 17.8026 17.9246 17.9554 

1.7 14.5912 16.6791 17.3619 17.4498 17.5690 17.5992 

1.8 14.3514 16.4034 17.0738 17.1600 17.2770 17.3066 

1.9 14.1521 16.1743 16.8343 16.9191 17.0343 17.0635 

2 13.9847 15.9818 16.6332 16.7168 16.8305 16.8592 
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Table 6 Fundamental natural frequency parameter values for CCSS plate at θ = 𝟒𝟓𝒐 

𝛽 

𝝀𝒂𝟐√ 
𝑴

𝑫𝟎𝟎
 

𝒂

𝒕
 

5 10 20 25 50 100 

1 19.7374 22.3982 23.2502 23.3591 23.5067 23.5440 

1.1 18.2765 20.5618 21.2808 21.3722 21.4960 21.5273 

1.2 17.1651 19.1896 19.8186 19.8983 20.0061 20.0333 

1.3 16.3046 18.1423 18.7078 18.7793 18.8759 18.9003 

1.4 15.6277 17.3275 17.8470 17.9125 18.0010 18.0234 

1.5 15.0874 16.6830 17.1680 17.2291 17.3116 17.3324 

1.6 14.6504 16.1654 16.6240 16.6817 16.7596 16.7792 

1.7 14.2925 15.7441 16.1820 16.2371 16.3113 16.3301 

1.8 13.9962 15.3969 15.8183 15.8713 15.9427 15.9607 

1.9 13.7483 15.1077 15.5157 15.5670 15.6361 15.6535 

2 13.5391 14.8643 15.2614 15.3112 15.3784 15.3953 

 

Table 7 Fundamental natural frequency parameter results of present study compared with the results of previous 
research for SSSS thick orthotropic rectangular plate at θ = 𝟎𝒐. 

𝒂
𝒕⁄  Theory 

𝛌𝐭√(
𝛒(𝟏 − 𝝁𝟏𝟐𝝁𝟐𝟏)

𝐄𝐨
) 

𝜷 

1 

10 Present study (P) 0.0471 

Shimpi and Patel (2006), (SP) 0.0477 

Reddy (1984), (R) 0.0474 

Srinivas and Roa (1970), (SR) 0.0474 

% Difference between P and SP  1.27389 

% Difference between P and R  0.63693 

% Difference between P and SR  0.63693 
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Table 8 Fundamental natural frequency parameter results of present study compared with the results of Reddy (2004) 
for SSSS thick orthotropic rectangular plate at β = 1 and θ = 𝟎𝒐 

Theory 
𝝀𝒂𝟐√ 

𝑴

𝑫𝟎𝟎
 

𝒂

𝒕
 

5 10 20 25 50 100 

Present study (P) 9.485 12.8632 14.5194 14.7659 15.1156 15.207 

Reddy (2004), (R) 8.909 12.452 14.355 14.651 15.077 15.190 

% Difference between P and R 6.07275 3.197 1.1323 0.7781 0.2554 0.1118 

5. Discussion  

The fundamental natural frequency parameter numerical results for CCSS and SSSS anisotropic rectangular plates are 

presented on Tables 1 to 6. From Tables 1 to 6, it is observed that the natural frequency parameter (𝜆𝑎2. √
𝑀

𝐷00
) values 

increased as span to depth ratio (a/t) increases for 0𝑜, 15𝑜  and 45𝑜 angles of fibre orientation (θ) at any given values of 
aspect ratio (1 to 2). Natural frequency parameter values also decreased as aspect ratio increases at any given value of 
span to depth ratio (5, 10, 20, 25 and 100) and angle of fibre orientation (0𝑜, 15𝑜 , and 45𝑜). For SSSS plate, highest value 

of 𝜆𝑎2. √
𝑀

𝐷00
 = 17.238 occurred at aspect ratio of 1.0 for θ = 45𝑜  and a/t = 100 while the lowest value of 𝜆𝑎2. √

𝑀

𝐷00
 = 

9.931 occurred at aspect ratio of 2.0 for θ =  45𝑜  and a/t = 5. For CCSS plate, highest value of 𝜆𝑎2. √
𝑀

𝐷00
 = 23.5440 

occurred at aspect ratio of 1.0 for θ = 45𝑜  and a/t = 100 while the lowest value of 𝜆𝑎2. √
𝑀

𝐷00
 = 13.5391 occurred at aspect 

ratio of 2.0 for θ = 45𝑜  and a/t = 5. This shows that the natural frequency parameter values have a more significant effect 
on SSSS and CCSS thin anisotropic rectangular plates than it has on SSSS and CCSS thick anisotropic plates. 

5.1 Comparison of present study solution with those from previous researchers 

From Table 7, vibration analysis result of thick orthotropic rectangular plate having all sides simply supported obtained 
using modified first order shear deformation theory is presented and compared with refined plate theory (RPT) result 
of Shimpi and Patel (2006), higher order shear deformation theory (HSDT) result of Reddy (1984) and three-
dimensional elasticity theory (TDET) result of Srinivas and Roa (1970). It is seen that the present study yields an 
excellent value for the fundamental frequency; this is shown by the result of the percentage difference between the 
present solution and those of previous research works. Thus, the present theory gives good solutions for free-vibration 
analysis of SSSS thick orthotropic plates. From Table 8, the vibration analysis result of thick orthotropic rectangular 
plate having all sides simply supported obtained using modified first order shear deformation theory is presented and 
compared with the first order shear deformation theory (FSDT) results of Reddy (2004) for span to depth ratios of 
5,10,20,25, 50 and 100 at an aspect ratio of 1. It is observed from Table 8, that the solution of present theory gets closer 
to that of Reddy (2004) as the plate gets thinner (span to depth ratio increases) as can be seen from the results of the 
percentage difference for the various span to depth ratios. Table 8, shows that the present study solution is the correct 
solution since modified first order shear deformation theory does not require shear correction factor which first order 
shear deformation theory uses. From the table, it is seen that the percentage difference reduces in value as the plate 
becomes thin, this shows that Reddy (2004) does not give a better solution when used to analyse SSSS thick orthotropic 
plate. Thus, the present theory gives better and accurate solutions for free-vibration analysis of SSSS thick orthotropic 
plate 

6. Conclusion 

In this study, a modified first order shear deformation theory is applied to free vibration analysis of anisotropic plate 
(SSSS and CCSS). The results obtained from this study were compared with those from previous authors. Observations 
show that the results of the fundamental natural frequency parameter predicted by the present theory are in close 
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agreement with those of previous researchers. The present method is capable of calculating reasonably correct values 
for free vibration problems of thick and thin anisotropic rectangular plates and can be adopted by future scholars to 
solve thick and thin anisotropic rectangular plate problems. 
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