
 Corresponding author: Sifat Ibtisum 

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

A comparative analysis of big data processing paradigms: Mapreduce vs. apache spark 

Sifat Ibtisum 1, *, Ehsan Bazgir 2, S M Atikur Rahman 3 and S. M. Saokat Hossain 4 

1 Department of Computer Science, Missouri University of Science and Technology, Missouri, USA. 
2 Department of Electrical Engineering, San Francisco Bay University, Fremont, CA 94539, USA. 
3 Department of Industrial, Manufacturing and Systems Engineering, University of Texas at El Paso, TX 79968, USA. 
4 Department of Computer Science, Jahangirnagar University, Dhaka, Bangladesh. 

World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

Publication history: Received on 16 September 2023; revised on 24 October 2023; accepted on 27 October 2023 

Article DOI: https://doi.org/10.30574/wjarr.2023.20.1.2174 

Abstract 

The paper addresses a highly relevant and contemporary topic in the field of data processing. Big data is a crucial aspect 
of modern computing, and the choice of processing framework can significantly impact performance and efficiency. The 
technical revolution of big data has changed how organizations handle and value large databases. As data quantities 
expand quickly, effective and scalable data processing systems are essential. MapReduce and Apache Spark are two of 
the most popular large data processing techniques. This study compares these two frameworks to determine their 
merits, shortcomings, and applicability for big data applications. Nearly quintillion bytes of data are created daily. 
Approximately 90% of data was produced in the previous two years. At this stage, data comes from temperature 
sensors, social media, movies, photographs, transaction records (like banking records), mobile phone conversations, 
GPS signals, etc. In this article, all key big data technologies are introduced. This document compares all big data 
technologies and discusses their merits and downsides. Run trials using multiple data sets of varying sizes to validate 
and explain the study. Graphical depiction shows how one tool outperforms others for given data. Big Data is data 
generated by the rapid usage of the internet, sensors, and heavy machinery, with great volume, velocity, variety, and 
veracity. Numbers, photos, videos, and text are omnipresent in every sector. Due to the pace and amount of data 
generation, the computing system struggles to manage large data. Data is stored in a distributed architectural file system 
due to its size and complexity. Big distributed file systems, which must be fault-tolerant, adaptable, and scalable, make 
complicated data analysis dangerous and time-consuming. Big data collection is called ‘datafication’. Big data is 
‘datafied’ for productivity. Organisation alone does not make Big Data valuable; we must choose what we can do with 
it.  

Keywords: SparkR; Spark Core; Apache Spark; MapReduce; Graph X 

1. Introduction

The phrase "Big Data" refers to a compilation of data sets that are of such significant size and complexity that they pose 
challenges for processing using traditional data mining techniques and tools. The primary objective of big data analytics 
is to extract valuable insights from vast datasets and convert them into a comprehensible format for subsequent use. 
The primary components of big data encompass the activities of acquisition, organisation, retention, exploration, 
dissemination, transmission, examination, and representation. 

In recent times, there has been a significant surge in the recognition of the significance of this particular domain. This is 
mostly due to its ability to provide organizations with valuable information and enhanced comprehension of both 
organised and unorganised data. Consequently, this may potentially result in improved decision-making processes that 
are based on a more comprehensive understanding of the subject matter. Within the realm of business, big data analytics 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2023.20.1.2174
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2023.20.1.2174&domain=pdf


World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

1090 

refers to the systematic examination of extensive datasets, sometimes referred to as "big data," with the objective of 
revealing concealed patterns, unexplored relationships, market tendencies, client inclinations, and other pertinent 
business insights. The convergence of contemporary technological advancements and the latest progressions in data 
analytics algorithms and methodologies has facilitated the utilisation of big data analytics by organizations. Several 
significant challenges arise when attempting to effectively use big data analytics. These challenges encompass data 
quality, storage, visualisation, and processing. Several corporate examples of big data include social media material, 
mobile phone details, transactional data, health records, financial papers, Internet of things, and weather information. 
In order to extract relevant judgements from a large dataset, it is imperative to employ effective processing control, 
analytical capabilities, and talents [1-4]. The accurate selection of data within a bigger dataset is crucial for the analysis 
of big data, as it encompasses a significant volume of data. Various firms provide predictive analytics and data mining 
solutions for corporations, such as Predictive Analytics Suit, IBM SPSS Statistics, and Microsoft Dynamics CRM Analytics 
Foundation. The primary objective of software deployed on big data platforms and utilised for big data analytics is to 
facilitate the efficient analysis of vast datasets. Big Data analytics (BDA) is expected to have a significant influence on 
several industries, including banking, vehicles, healthcare, telecom, government, transportation, and travel. 

According to a study conducted by IDC Digital Universe and released in 2011, it was reported that around 130 Exabytes 
of data were generated and stored in the year 2005. The aforementioned quantity had a significant increase to 1,227 
Exabytes in the year 2010, and it was anticipated to exhibit a growth of 45.2% to reach 7,910 Exabytes by the year 2015. 
The use of this dataset has the potential to uncover valuable information that is now hidden inside it. In 2004, the 
company "Google" unveiled MapReduce, a technology that subsequently served as the basis for Hadoop and other 
comparable methodologies. The first objective of Hadoop was to create an index of the whole World Wide Web (WWW). 
Presently, several organizations are utilising the open-source Hadoop technology to efficiently process substantial 
amounts of data. The use of Big Data for the purpose of obtaining commercial value and gaining a competitive edge is a 
widespread global trend that is expected to persist and expand, hence presenting an array of connected opportunities 
[5-8]. According to a research study conducted by MGI (McKinsey Global Institute) and McKinsey's Business Technology 
Office, the effective use of extensive data sets is projected to become a vital element in the success and expansion of 
enterprises. It is expected to contribute to enhancing consumer benefits, boosting production, and fostering innovation. 
Leveraging Big Data involves making thoughtful choices in selecting an appropriate Big Data analytics platform and 
tools, which holds substantial significance for any organization. This document serves as a comprehensive guide to the 
field of Big Data. The provided content encompasses comprehensive information on big data, encompassing its defining 
features and classifications, the concept of the 5 Vs (Volume, Velocity, Variety, Veracity, and Value), diverse data formats, 
the significance of processing big data, the wide-ranging uses of big data, as well as an overview of the many analytical 
tools employed for dataset analysis in the context of big data. Furthermore, a series of experiments were conducted 
utilising diverse datasets in order to establish the superiority of certain tools over others. This study presents a 
comparative analysis of data interpretation in order to enhance comprehension of the subject matter. The objective of 
this article is to offer a short and comprehensive resource on the fundamental aspects of Apache Spark, with the aim of 
assisting individuals in bridging the gap and facilitating their initiation into the utilisation of Apache Spark, as well as 
their engagement with this dynamic project. Our primary focus is on the utilisation of Apache Spark to facilitate the 
execution of efficient large-scale ML, graph analysis, and stream processing tasks. Apache Spark utilises in-memory 
processing for data, whereas Hadoop MapReduce stores data on disc following a map or reduce operation. 

2. Apache spark 

Apache Spark is a robust platform for processing large volumes of data, known for its ability to seamlessly integrate 
hybrid frameworks. A hybrid architecture provides assistance for the concurrent use of batch and stream processing 
functionalities. Despite sharing many ideas with Hadoop's MapReduce engine, Spark demonstrates superior 
performance compared to the latter. For example, when comparing the performance of Spark and MapReduce in 
handling a batch processing workload, it has been seen that Spark can exhibit shorter processing times. This can be 
attributed to Spark's use of the "full in-memory computation" feature, which allows for computations to be performed 
entirely in memory. In contrast, MapReduce relies on the conventional approach of reading data from disc and writing 
results back to disc. Spark has the capability to operate alone or it may be integrated with Hadoop in order to supplant 
the MapReduce framework. 

The primary benefit of the Spark batch processing model in comparison to MapReduce is its ability to perform 
computations in-memory. The interaction between Spark and the disc is limited to two specific tasks: the initial loading 
of data into memory and the subsequent storage of results back into memory. All intermediate findings are handled in 
memory. The utilisation of in-memory processing in Spark results in a notable increase in speed compared to its rival 
batch processing framework, Hadoop. In addition, the implementation of holistic optimisation in Spark further enhances 



World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

1091 

its computational efficiency by allowing for the analysis of a whole set of tasks in advance. The accomplishment of this 
task involves the generation of Directed Acyclic Graphs (DAGs).  

The Spark Stream Processing Model encompasses the capability of performing stream processing tasks alongside batch 
processing operations by utilising micro-batches. Micro-batching involves the grouping of data streams into tiny 
batches, which are then processed as regular tasks by the Spark batch engine. While the micro-batching technique 
demonstrates effectiveness, it may nevertheless result in performance disparities compared to authentic stream 
processing frameworks. 

The process of executing a Spark application has five fundamental components: a driver program, a cluster manager, 
workers, executors, and tasks. A driver program refers to an application that utilizes Spark as a library and establishes 
a high-level control flow for the intended computation. The worker in a Spark application is responsible for providing 
CPU, memory, and storage resources. On the other hand, an executor refers to a Java Virtual Machine (JVM) process that 
Spark generates on each worker specifically for that application. A job refers to a collection of calculations, such as a 
data processing method, that are executed by Spark on a cluster in order to get results for the driver application. A Spark 
application has the capability to initiate and execute many tasks. The Spark framework divides a computational job into 
a directed acyclic graph (DAG) consisting of stages, with each stage including a set of jobs. A task refers to the most basic 
and indivisible item of work that is dispatched by Spark to an executor. The primary means through which the driver 
application interacts with Spark is through a SparkContext, which serves as the principal entry point for accessing Spark 
functions. A SparkContext is a representation of a connection established with a computational cluster [7]. 

2.1. RDD 

The Spark core framework is constructed based on the abstraction of Resilient Distributed Datasets (RDDs) [8]. A RDD 
is a collection of records that is partitioned and immutable. RDDs offer fault-tolerant and parallel data structures that 
enable users to explicitly store data on disk or in memory. Users may also exercise control over the partitioning of data 
and manipulate it using a diverse range of operators [9]. Efficient data sharing between calculations is a crucial necessity 
for many workloads. An RDD can be generated through the utilization of either external data sources or existing RDDs. 

RDD, which stands for Resilient Distributed Datasets, serves as a fault-tolerant distributed memory abstraction. It does 
this by avoiding data replication and instead maintaining a graph of activities, known as an RDD's lineage (as seen in 
Figure 1), that were utilized in its construction. The system is capable of effectively recalculating missing data in the 
event of a failure. In order to ensure consistency between iterations, it is possible to exert control over the partitions of 
a Resilient Distributed Dataset (RDD). This may be achieved through the utilization of Spark core, which enables the co-
partitioning of RDDs and the co-scheduling of jobs, hence minimizing the need for data migration. In order to prevent 
redundant processing, it is necessary for the application to explicitly cache Resilient Distributed Datasets (RDDs) when 
they are expected to be utilized many times. 

 

Figure 1 Evaluation of RDD (image adapted from: http://www.slideshare.net/GirishKhanzode/apache-spark-core) 

2.2. Spark SQL 

Spark SQL, previously referred to as Shark, Spark SQL is a distributed computational platform designed to operate on 
both structured and semi-structured datasets. The platform enables the use of analytical and interactive applications 
for real-time and past data, sourced from diverse formats like JSON, Parquet, and Hive tables. 

http://www.slideshare.net/GirishKhanzode/apache-spark-core


World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

1092 

Spark Streaming is a framework that facilitates the real-time processing of streaming data. To facilitate streaming 
analysis, Spark streaming improves the rapid scheduling functionality of Apache Spark by partitioning data into smaller 
batches. The last step involves the implementation of a process referred to as transformation, which is executed on the 
aforementioned subsets of data that may be readily acquired from live streams and other data sources, including but 
not limited to Twitter, Apache Kafka, IoT sensors, and Amazon Kinesis. 

MLlib is a software library that offers efficient algorithms characterised by their superior performance and rapid 
execution. It facilitates the utilisation and expansion of machine learning techniques by providing a user-friendly 
interface and the ability to handle large-scale data. There exist several machine learning methods, including regression, 
classification, clustering, and linear algebra. Additionally, it offers a library that caters to lower-level machine learning 
primitives, such as the generic gradient descent optimisation technique. Additionally, it offers several functionalities 
including model assessment and data importation. This functionality is applicable in programming languages such as 
Java, Scala, and Python. 

2.3. GraphX 

GraphX is optimised for distributed computation, rendering it well-suited for managing graphs of considerable 
magnitude that surpass the memory capacity of a single machine. By capitalising on the distributed characteristics of 
Spark, it efficiently executes operations on graph data across a cluster of processors. 

GraphX offers programming interfaces (APIs) that facilitate the construction of directed graphs from distributed data 
collections. It enables the representation of data as vertices and edges, which can then be used to generate graphs. In 
addition to transportation and social networks, these graphs have the capability of simulating a vast array of real-world 
systems. This facilitates a wide range of graph operations, such as filtering, mapping, joining, and aggregating, which 
enable the execution of intricate transformations on graph data. By utilising these operations, one can modify attributes 
of nodes and edges, exclude nodes or edges according to particular criteria, or generate completely new graphs from 
pre-existing ones. This offers an extensive assortment of pre-installed libraries and algorithms designed to facilitate 
routine graph-related endeavours. These consist of algorithms designed to determine the shortest paths, compute 
connected components, and conduct graph analytics, among other tasks. By utilising these algorithms, users are not 
required to implement them manually. 

2.4. Spark Core 

The Spark core serves as the foundation for several features inside Apache Spark. The platform offers a wide array of 
application programming interfaces (APIs) and software tools for several programming languages, including Scala, Java, 
and Python. These APIs are designed to enhance the efficiency and convenience of software development processes. 
The implementation of in-memory processing in Spark core is aimed at enhancing computational performance and 
addressing the limitations associated with MapReduce. 

2.5. SparkR 

SparkR is a software package designed for the R programming language, which facilitates the use of Spark's capabilities 
within the R shell. The Data Frame serves as the core data structure for data processing in the R programming language. 
In a similar vein, the SparkR Data Frame functions as the fundamental unit inside the SparkR framework. The tool has 
the capability to execute a range of operations on extensive datasets, including but not limited to selection, filtering, and 
aggregation. 

3. Comparison Between Hadoop and Spark 

Hadoop [12] a well-recognised and valuable open-source software system that facilitates distributed storage, allowing 
for the storage of substantial volumes of enormous datasets across clusters. The architecture of the system allows for 
seamless expansion from a singular server to a multitude of nodes. Hadoop is capable of parallel processing of extensive 
datasets, leading to efficient and prompt outcomes. Hadoop consists of two primary components, namely the Hadoop 
Distributed File System (HDFS) and MapReduce. 

The Hadoop Distributed File System (HDFS) partitions files into smaller units known as blocks and distributes them 
among several nodes for storage [13]. Hadoop Distributed File System (HDFS) consists of two types of nodes: data-
nodes, also known as worker nodes, and name-nodes, sometimes referred to as master nodes [14, 15]. All actions, 
namely deletion, reading, and writing, are dependent on the utilisation of these two distinct sorts of nodes. The 
workflow of the Hadoop Distributed File System (HDFS) can be described as follows: Firstly, the name-node requests 



World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

1093 

access permission. If the acceptance of the proposal is granted, the file name will be transformed into a comprehensive 
compilation of HDFS block identifiers. This compilation will encompass the files themselves, as well as the specific data-
nodes responsible for storing the blocks associated with each respective file. Subsequently, the list of identification (ID) 
will be transmitted back to the client, enabling users to perform subsequent activities based on the received information. 

The computing system known as MapReduce [16] encompasses two fundamental functions, namely Mappers and 
Reducers. The mappers will execute the map function to process the files and convert them into novel key-value pairs 
[17]. Subsequently, the newly generated key-value pairs are allocated to distinct partitions and arranged in ascending 
order according to their respective keys. The inclusion of a combiner is discretionary and may be identified as a local 
reduction operation that facilitates the pre-reduction of values with identical keys, hence mitigating the burden on 
input/output operations. Ultimately, the intermediate key-value pairs will be partitioned into distinct segments and 
subsequently transmitted to a reducer. The implementation of MapReduce necessitates the inclusion of a single 
operation known as shuffle. The term "shuffle" refers to the process of transporting the data produced by the mapper 
to the appropriate reducer. Upon completion of the shuffle process, the reducer initiates a series of copy threads known 
as Fetchers, which are responsible for retrieving the output files of the map job over the HTTP protocol [18-19]. The 
subsequent stage involves the consolidation of the generated output into distinct final files, which are subsequently 
identified as the input data for the reduction. Subsequently, the reducer undertakes the processing of the data in 
accordance with the reduced function, subsequently returning the output to the Hadoop Distributed File System (HDFS). 

4. MapReduce 

The programming paradigm and parallel processing framework known as MapReduce has significantly transformed the 
methodologies employed in large-scale data processing and data mining. The concept was initially developed by Google 
during the early 2000s and subsequently gained popularity through its adoption by the Hadoop open-source project. 
MapReduce is a key idea within the field of big data analytics and has significant importance in the execution of data 
mining operations. The MapReduce framework is a data processing approach that involves the partitioning of a data 
mining operation into two distinct phases: Map and Reduce. The system is specifically engineered to manage distributed 
and parallel computing over a cluster of standard, affordable hardware components. 

The following is a concise exposition of the operational principles behind the MapReduce computational framework: 

During the map step, the input data is partitioned into smaller segments called splits. The splits are processed 
individually by a group of worker nodes, which are computers inside the cluster. The data received by each worker node 
is subjected to a "map" function, resulting in the generation of a collection of key-value pairs. The result of the map 
phase consists of a set of intermediate key-value pairs [10, 11]. 

Following the completion of the map phase, the intermediate key-value pairs undergo a process of shuffling and sorting 
based on their respective keys. Ensuring the aggregation of all values corresponding to a certain key in close proximity 
is a critical measure, facilitating their seamless transition to the subsequent stage. 

During the reduction phase, a separate group of worker nodes is responsible for taking the sorted and grouped key-
value pairs and applying a "reduce" function to them. The reduction function is responsible for processing all values 
associated with a certain key and generating a collection of output values. 

The outcome of the reduction step is commonly saved in a distributed file system or utilised for subsequent analysis, 
reporting, or other data-related activities. MapReduce is well recognised for its inherent simplicity and scalability, 
rendering it highly appropriate for the efficient processing of extensive datasets over expansive clusters of standard 
hardware. The abstraction provided by this approach simplifies several aspects of distributed computing, including data 
partitioning, distribution, and fault tolerance. Consequently, developers may direct their attention on crafting map and 
reduce functions that are specifically designed to meet their data processing requirements [12]. 

Although MapReduce has provided a fundamental framework for the processing of large-scale data, it possesses several 
limitations, namely in relation to iterative and interactive processing. This is where contemporary frameworks such as 
Apache Spark become relevant, since they provide enhanced performance and a more adaptable programming 
paradigm for large-scale data processing. However, MapReduce continues to be a fundamental idea and is employed in 
specific scenarios and contexts where the emphasis is on simplicity and dependability. 



World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

1094 

5. Spark vs MapReduce: Which is faster? 

Big data analytics is currently a very active and dynamic field of study, with many challenges and a pressing need for 
ground-breaking discoveries with broad implications across numerous industries. To meet the computational 
requirements of large-scale data analysis, it is crucial to have an efficient framework for the design, implementation, 
and administration of the required pipelines and algorithms. Apache Spark has evolved into a comprehensive engine 
for large-scale data analysis across a variety of use cases. In the field of data science and engineering, a novel 
methodology has been proposed whereby a variety of data challenges can be effectively addressed by combining a single 
processing engine with general-purpose programming languages. Due to its powerful programming style, which 
facilitates rapid and scalable processing, Apache Spark has acquired widespread use in both academic and industrial 
contexts. The aforementioned project has emerged as the most actively pursued open-source initiative in the field of big 
data and has gained considerable prominence within the Apache Software Foundation as one of its most vigorously 
pursued initiatives. In the domain of big data, acquiring credible references is essential for maximising Apache Spark's 
benefits and making significant contributions to its development. The official programming guide is the primary and 
most up-to-date reference for Apache Spark, containing comprehensive usage information. In addition, a number of 
published articles demonstrate the practical application of Apache Spark in addressing big data-related challenges. 
Moreover, Databricks, the company founded by the creators of Apache Spark, has created a collection of illustrative 
applications to demonstrate the diverse uses of Apache Spark for various workloads. The official Databricks and Spark 
Hub blogs, which offer a comprehensive compilation of Spark-related news, events, tools, and other pertinent content, 
are additional reliable sources. Notwithstanding, the rapid adoption and development of Apache Spark, as well as the 
expanding scholarly investigation of its application in big data analytics, make it difficult for novices to comprehend its 
expansive growth and research endeavours. Regarding current scholastic knowledge, there is a lack of a comprehensive 
synthesis regarding the implementation of Apache Spark in the field of big data analytics. According to theoretical 
analysis, it is anticipated that Spark will exhibit superior performance compared to Hadoop MapReduce. Spark offers 
graph processing functionality and integrates the MLlib machine learning library in addition to its primary data 
processing capabilities. Spark's extraordinary performance capabilities allow it to perform both real-time and bulk 
processing operations. Hadoop MapReduce is ideally suited for bulk processing applications. If the client desires a real-
time solution, an alternative platform, such as Impala or Apache Storm, must be utilised. For graph processing purposes, 
Apache Graph can be employed. Apache Mahout was formerly used by the MapReduce framework for machine learning; 
however, Spark has since superseded it. The Spark framework requires a substantial quantity of memory. Spark, similar 
to conventional databases, stores computational tasks in memory for cache purposes until they are expressly removed. 
Spark's performance may decrease when executed on Hadoop YARN alongside other resource-intensive services or 
when working with datasets that exceed the available memory capacity. MapReduce, on the other hand, terminates its 
processes upon the completion of a task, allowing it to coexist with other services with minimal performance 
differences. Spark is a framework for high-performance distributed computation that is renowned for its speed and 
efficiency. Apache Spark performs significantly better than Hadoop, with a 100-fold increase in efficiency when 
operating in memory and a 10-fold increase when operating on disc. Spark enables the storage of transitory data by 
decreasing the frequency of disc read/write cycles and utilising in-memory storage. MapReduce's reliance on disc I/O 
for receiving and writing data diminishes processing performance due to the inherent latency of these operations. In 
this investigation, an experiment will be conducted to demonstrate that Spark is faster than MapReduce. 

Big data processing frameworks like Apache Spark and MapReduce are increasingly vital in healthcare due to the 
exponential growth of medical data. These technologies offer efficient and scalable ways to manage, analyze, and derive 
valuable insights from large and complex healthcare datasets. In healthcare, the volume of data is staggering, 
encompassing electronic health records (EHRs), medical imaging, genomics, patient monitoring, and more. MapReduce 
and Apache Spark excel in processing such data through parallelism, distributing tasks across clusters of machines for 
expedited processing. 

MapReduce, pioneered by Google, is well-suited for batch processing tasks. It segments data into smaller chunks, 
processes them in parallel, and then aggregates the results. It's instrumental in tasks like analyzing patient records, 
identifying disease patterns, or processing claims data [20-22]. On the other hand, Apache Spark, with its in-memory 
processing capabilities, is ideal for iterative and interactive workloads. It outperforms MapReduce for machine learning, 
real-time data analytics, and graph processing. In healthcare, this means faster analysis of medical images, real-time 
patient monitoring, and rapid genome sequencing. Both frameworks offer healthcare professionals the tools to uncover 
insights, enhance patient care, streamline operations, and support research endeavors. They are pivotal in leveraging 
big data to drive innovation and improve healthcare outcomes. However, it's essential to consider the specific use case 
and data characteristics when choosing between MapReduce and Apache Spark in healthcare applications [23, 24]. 



World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

1095 

6. Experimental Results 

The fifteen queries were executed in Hive on both MapReduce and Spark platforms, and the execution times were 
recorded. The time taken for processing user queries to retrieve records is documented in both Table 1 and Table 2.  

Table 1 Execution time taken by Hive with Spark 

Query Time in sec 

QR1 1.93 

QR2 1.63 

QR3 1.50 

QR4 1.89 

QR5 2.04 

QR6 4.48 

QR7 1.88 

QR8 2.59 

QR9 3.74 

QR10 4.63 

QR11 8.73 

QR12 6.38 

QR13 3.55 

QR14 0.98 

QR15 2.32 

 

 

Figure 1 Execution Time Taken by Hive with Spark 



World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

1096 

Table 2 Execution time taken by Hive with MapReduce 

Query Time in sec 

QR1 9.68 

QR2 6.94 

QR3 7.59 

QR4 13.89 

QR5 10.92 

QR6 6.68 

QR7 3.32 

QR8 4.18 

QR9 4.73 

QR10 7.92 

QR11 11.92 

QR12 7.01 

QR13 3.04 

QR14 1.94 

QR15 4.62 

 

 

Figure 2 Execution Time Taken by Hive with Spark 

It is quite apparent that the performance of Spark in executing queries is considerably faster than that of MapReduce. 
This is due to the fact that Spark carries out processing in memory, while MapReduce requires reading from and writing 
to disk. Consequently, there is a disparity in processing speed. Figs. 1 and 2 provide a more comprehensive illustration 
of the discrepancy in execution speed between Spark and MapReduce [25]. 



World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

1097 

7. Conclusion 

The use of big data and related technologies can yield substantial gains for a company. However, the widespread use of 
these technologies has made it more challenging for businesses to exert tight control over huge, disparate data sets in 
preparation for additional analysis and research. The application of Big Data has numerous results. It helps by giving 
businesses a vast potential to use against rivals and to fuel rapid expansion. Big Data may be used effectively to increase 
throughput, modernize processes, and boost efficiency across whole organizations or economies, but only if certain 
conditions are met. In order to reap the benefits of Big Data, it is essential to understand how to assure the intelligent 
usage, administration, and re-use of Data Sources, such as public government data, inside and beyond the country. 
Choosing the most appropriate method for data filtering and/or analysis is essential. Apache Spark and MapReduce are 
useful for efficient analytical processing. We have compared Hive's efficiency against that of Spark and MapReduce in 
this study. 

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest to be disclosed. 

References 

[1] A. Botta, W D Donato, V. Persico and A. Pescapé, Integration of cloud computing and internet of things: a survey, 
Future Generation Computer Systems, vol. 56, pp.684-700, 2016. 

[2] Ibtisum, S. (2020). A Comparative Study on Different Big Data Tools 

[3] A. Kankanhalli, J. Hahn, S. Tan, and G. Gao, Big Data And Analytics In Healthcare: Introduction to the Special 
Section$. Information Systems, Frontiers, 18(2), pp.233-235, 2016. 

[4] N. Stoianov, M. Urueña, M. Niemiec, P. Machnik, and G. Maestro, Integrated security infrastructures for law 
enforcement agencies, Multimedia Tools and Applications, vol.74, no. 12, pp.4453-4468, 2015. 

[5] M. Sharma and J. Kaur, A Comparative Study of Big Data Processing: Hadoop vs. Spark, 2019 6th International 
Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2019, pp. 1073-
1077. 

[6] S. K. Sahu, M. M. Jacintha and A. P. Singh, Comparative study of tools for big data analytics: An analytical study, 
2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 
2017, pp. 37-41, doi: 10.1109/CCAA.2017.8229827. 

[7] Salloum, S., Dautov, R., Chen, X. et al. Big data analytics on Apache Spark. Int J Data Sci Anal 1, 145–164 (2016). 
https://doi.org/10.1007/s41060-016-0027-9 

[8] Zaharia, M., Chowdhury, M., Das, T., Dave, A.: Resilient distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. NSDI’12 Proceedings of the 9th USENIX conference on Networked Systems Design 
and Implementation pp. 2–2. doi:10.1111/j.1095-8649.2005.00662.x (2012) 

[9] Zaharia, M., Chowdhury, M., Das, T., Dave, A.: Resilient distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. NSDI’12 Proceedings of the 9th USENIX conference on Networked Systems Design 
and Implementation pp. 2–2. doi:10.1111/j.1095-8649.2005.00662.x (2012) 

[10] C. Ranger et al. Evaluating mapreduce for multi-core and multiprocessor systems. In Proceedings of the 2007 
IEEE HPCA, pages 13–24, 2007. 

[11] Yoo, R. M., Romano, A.K. and Kozyrakis, C. 2009. Phoenix Rebirth: Scalable MapReduce on a Large-Scale Shared-
Memory System. Proceedings of the 2009 IEEE International Symposium on Workload Characterization, pp. 198-
207. 

[12] Maitrey, Seema, and C. K. Jha. MapReduce: simplified data analysis of big data. Procedia Computer Science 57 
(2015): 563-571. 

[13] Landset S, Khoshgoftaar TM, Richter AN, Hasanin T. A survey of open source tools for machine learning with big 
data in the hadoop ecosystem. J Big Data. 2015; 2(1):24. 



World Journal of Advanced Research and Reviews, 2023, 20(01), 1089–1098 

1098 

[14] HiBench Benchmark Suite. https://github.com/intel-hadoop/HiBench. Accessed 06 October 2023. 

[15] Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed file system. In: 2010 IEEE 26th symposium on 
mass storage systems and technologies (MSST). New York: IEEE; 2010. p. 1–10. 

[16] Luo M, Yokota H. Comparing hadoop and fat-btree based access method for small file i/o applications. In: 
International conference on web-age information management. Berlin: Springer; 2010. p. 182–93. 

[17] Taylor RC. An overview of the hadoop/mapreduce/hbase framework and its current applications in 
bioinformatics. BMC Bioinform. 2010; 11:1. 

[18] Vohra D. Practical Hadoop ecosystem: a definitive guide to hadoop-related frameworks and tools. California: 
Apress; 2016. 

[19] Lee K-H, Lee Y-J, Choi H, Chung YD, Moon B. Parallel data processing with mapreduce: a survey. AcM sIGMoD 
record. 2012;40(4):11–20. 

[20] S M Atikur Rahman, Sifat Ibtisum, Ehsan Bazgir and Tumpa Barai. The Significance of Machine Learning in Clinical 
Disease Diagnosis: A Review. International Journal of Computer Applications 185(36): 10-17, October 2023. 
https://doi.org/10.5120/ijca2023923147 

[21] S M Atikur Rahman, Sifat Ibtisum, Priya Podder and S. M. Saokat Hossain. Progression and Challenges of IoT in 
Healthcare: A Short Review. International Journal of Computer Applications 185(37): 9-15, October 2023. 
https://doi.org/10.5120/ijca2023923168 

[22] Sarker, B., Sharif, N. B., Rahman, M. A. & Parvez, A. S. (2023). AI, IoMT and Blockchain in Healthcare. Journal of 
Trends in Computer Science and Smart Technology, 5(1), 30-50. https://doi.org/10.36548/jtcsst.2023.1.003 

[23] Podder, P., Bharati, S., Rahman, M. A., & Kose, U. (2021). Transfer learning for classification of brain tumor. In 
Deep learning for biomedical applications (pp. 315-328). CRC Press. 

[24] Bharati, S., Robel, M. R. A., Rahman, M. A., Podder, P., & Gandhi, N. (2021). Comparative performance exploration 
and prediction of fibrosis, malign lymph, metastases, normal lymphogram using machine learning method. In 
Innovations in Bio-Inspired Computing and Applications: Proceedings of the 10th International Conference on 
Innovations in Bio-Inspired Computing and Applications (IBICA 2019) held in Gunupur, Odisha, India during 
December 16-18, 2019 10 (pp. 66-77). Springer International Publishing. 

[25] Ahmed, N., Barczak, A.L.C., Susnjak, T. et al. A comprehensive performance analysis of Apache Hadoop and Apache 
Spark for large scale data sets using HiBench. J Big Data 7, 110 (2020). https://doi.org/10.1186/s40537-020-
00388-5 


