

Cyber-physical system integration for autonomous decision-making in sensor-rich indoor cultivation environments

Adeoluwa Abraham Olasehinde ^{1,*}, Anthony Osi Blessing ², Joy Chizorba Obodozie ³ and Somadina Obiora Chukwuemeka ⁴

¹ Department of Environmental Science and Management, Gannon University, Erie, Pennsylvania, United States of America.

² Department of Crop Science, Faculty of Agriculture, University of Benin, Nigeria.

³ Department of Environmental Research, SureHeritage Inspection Environmental & Services Limited.

⁴ Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research, Nigeria.

World Journal of Advanced Research and Reviews, 2023, 20(02), 1563–1584

Publication history: Received on 10 September 2023; revised on 25 November 2023; accepted on 27 November 2023

Article DOI: <https://doi.org/10.30574/wjarr.2023.20.2.2160>

Abstract

The increasing demand for sustainable food production in the face of climate variability, urbanization, and land constraints has accelerated the evolution of smart indoor cultivation systems. Central to this transformation is the integration of cyber-physical systems (CPS) that tightly couple computational intelligence with physical processes through embedded sensors, IoT networks, and actuation layers. This paper explores the role of CPS in enabling autonomous decision-making within sensor-rich, controlled agricultural environments, where real-time responsiveness and precision are critical for optimizing both crop performance and resource utilization. Leveraging advances in Internet of Things (IoT) fusion and edge computing, CPS-based architectures allow for localized, low-latency processing of high-frequency data streams originating from multi-modal sensors—such as temperature, humidity, nutrient concentration, CO₂ levels, and multispectral imaging. These sensor arrays, integrated with feedback control algorithms, create adaptive environments that dynamically regulate variables like light spectra, irrigation cycles, and nutrient dosing without human intervention. The paper presents a layered CPS framework that combines physical plant-environment interactions with cyber intelligence models for predictive analytics, anomaly detection, and autonomous control. Emphasis is placed on distributed decision-making mechanisms at the edge, which reduce cloud dependence while increasing fault tolerance and system scalability. Case studies of vertical farms and research-driven plant growth chambers demonstrate how CPS integration enhances yield quality, reduces input waste, and improves system resilience under varying environmental loads. Ultimately, this work outlines the design principles, technological enablers, and implementation pathways for building next-generation, self-regulating indoor farming systems through CPS, bridging the gap between plant biology, control engineering, and intelligent automation.

Keywords: Cyber-Physical Systems; Edge Computing; Autonomous Crop Management; IoT Sensor Fusion; Smart Indoor Agriculture; Real-Time Environmental Control

1. Introduction

1.1. Background and Global Trends in Indoor Agriculture

Indoor agriculture has emerged as a pivotal solution to meet the increasing global demand for food production in the face of rapid urbanization, diminishing arable land, and climate unpredictability. By leveraging controlled environments, indoor farms can circumvent many of the challenges faced by conventional agriculture, including

* Corresponding author: Adeoluwa Abraham Olasehinde

seasonal limitations, pest invasions, and water scarcity. The advancement of vertical farming and hydroponic systems has further enabled year-round production with higher crop densities and lower input requirements [1].

Global trends indicate a shift toward high-efficiency, low-footprint agricultural systems powered by renewable energy and precision automation. Countries across Asia, Europe, and North America have invested in next-generation greenhouse systems, with emphasis on localizing food production to enhance food security and reduce logistical carbon footprints [2]. At the core of these developments is the convergence of agriculture with digital technologies—specifically the integration of sensors, Internet of Things (IoT) infrastructure, and cyber-physical systems (CPS)—to enable intelligent, adaptive control over indoor environments.

The move toward data-centric agriculture has also been driven by growing consumer demand for quality, pesticide-free produce, as well as policy pushes for climate-resilient farming methods. Indoor agricultural systems are now expected not only to deliver yield but also to do so with minimal environmental impact. Thus, harnessing sensor-rich environments and real-time data flows to automate operations is not just a matter of efficiency—it is critical to the long-term sustainability of agriculture itself [3].

1.2. The Need for Autonomous Systems in Sensor-Rich Environments

The proliferation of low-cost environmental and crop-specific sensors has transformed indoor farms into data-intensive ecosystems. Parameters such as light intensity, CO₂ concentration, leaf temperature, electrical conductivity (EC) of nutrient solutions, and relative humidity are continuously monitored at granular levels. While this influx of data offers unparalleled visibility, it also introduces complexity that surpasses the capabilities of human operators to manage effectively in real time [4].

Traditional rule-based control systems, though functional in stable environments, lack the adaptability needed to interpret dynamic interactions among environmental variables and biological responses. The interdependence between inputs (e.g., nutrient flow, lighting, and ventilation) and plant outcomes necessitates decision-making that is not only rapid but also context-sensitive. In such scenarios, autonomous CPS frameworks—characterized by closed-loop control and machine learning-based reasoning—become indispensable [5].

These systems enable real-time actuation based on predictive insights rather than preprogrammed thresholds, accounting for plant phenotypic feedback and environmental variability. CPS can, for example, adjust irrigation frequency based on transpiration rates inferred from leaf temperature and humidity trends, or optimize spectral lighting in response to growth stage data captured through computer vision. This real-time adaptiveness enhances resource efficiency, maximizes yield, and minimizes operational costs, particularly in resource-constrained setups where misallocation can result in significant losses [6].

1.3. Research Gaps in Existing CPS-Agriculture Literature

Despite the promising theoretical foundations of CPS in agriculture, current literature reveals several limitations in their practical deployment. Firstly, many studies focus on component-level applications—such as AI-based irrigation controllers or light optimization tools—without addressing the full integration of these elements into a unified, autonomous system. Such fragmentation limits scalability and undermines the synergistic potential of CPS [7].

Secondly, existing CPS frameworks often rely on static models that fail to evolve with plant development or account for inter-crop variability. For instance, machine learning models trained on early growth data may become less accurate over time if not continuously updated with new observations. This lack of continuous learning impairs long-term performance and can lead to suboptimal decisions as conditions shift [8].

Another notable gap is the underutilization of cross-domain data fusion techniques. While many sensor modalities are present in modern greenhouses, integrating data across physical, chemical, and visual domains for cohesive decision-making remains a challenge. For example, few models effectively link computer vision data (e.g., leaf color and size) with nutrient flow parameters to assess and rectify deficiencies in real time [9].

Moreover, economic and hardware constraints present barriers to CPS adoption in small and medium-sized operations. Much of the literature assumes access to robust cloud infrastructures and advanced edge devices, overlooking the need for lightweight, decentralized models that function efficiently with limited resources. This gap emphasizes the need for research into adaptive CPS designs that balance computational complexity with accessibility and cost-effectiveness [10].

1.4 Aim, Objectives, and Research Questions

This study aims to design and evaluate an integrated CPS framework for indoor agriculture that enables real-time adaptive decision-making across diverse environmental and resource constraints. The framework is intended to bridge the gap between sensor-generated data and autonomous action, optimizing both crop performance and resource allocation.

The primary objectives are:

- (1) To develop a modular CPS architecture that integrates multi-modal sensor data into a cohesive decision-making platform;
- (2) To implement machine learning algorithms capable of continuously updating control strategies based on plant and environmental feedback;
- (3) To test the system across different growth stages and environmental settings to evaluate adaptability and performance;
- (4) To assess the scalability and economic feasibility of deploying such CPS frameworks in small to medium-scale indoor farms.

To guide these objectives, the study poses the following research questions:

- How can CPS enable real-time adaptive decision-making in resource-constrained indoor farms?
- What algorithms best support continuous learning and decision updating in dynamic plant-environment systems?
- How can multi-modal sensor data be fused effectively to improve the accuracy and reliability of CPS-based control decisions?
- What trade-offs exist between system complexity, computational overhead, and practical deployment viability in varying farm contexts?

By addressing these questions, this study contributes to the emerging field of autonomous agronomic systems, offering a scalable blueprint for intelligent indoor farming. The research also explores how CPS can be contextualized to local environmental and economic constraints, ensuring its relevance and impact across diverse agricultural ecosystems [11].

2. Literature Review and Conceptual Foundation

2.1. Evolution of CPS

The integration of CPS into agriculture reflects a transformative convergence of digital control, sensing, and mechanical systems. Early agricultural practices focused on manual labor, seasonal patterns, and empirical decision-making. With technological progression, mechanization became dominant, characterized by the use of tractors, irrigation machines, and chemical sprayers. However, these systems lacked dynamic adaptability and real-time intelligence, limiting optimization.

CPS began as an interdisciplinary fusion involving embedded computing, feedback control systems, and physical processes. Its early applications in agriculture included temperature monitoring and controlled irrigation. These systems were initially static, with limited data responsiveness. The development of distributed sensors, wireless communications, and improved actuators marked a significant shift. Mechanisms that once operated independently became interconnected, forming a backbone for modern precision agriculture [6].

CPS in agriculture gradually evolved from isolated automation to interactive systems capable of real-time decision-making. The embedding of control loops in physical machinery allowed feedback from environmental variables such as soil pH, humidity, and sunlight. This opened doors to automated fertilization, precision seeding, and pest management with minimal human intervention [7].

Data collection methods transitioned from manual logs to sensor-driven logs, which allowed anomaly detection in crop growth cycles. Furthermore, algorithmic advancements permitted the use of historical data patterns to enhance

planting decisions. The enhancement of data fusion techniques and the improvement of microcontroller processing speeds also contributed to wider CPS adoption in agricultural domains. This continuous evolution of CPS has laid the groundwork for sustainable, resource-efficient farming methodologies [8].

2.2. Comparative Studies of Traditional vs. CPS-Enabled Systems

Traditional farming systems operate on static principles of experience and reactive problem-solving. In contrast, CPS-enabled agriculture introduces proactive intelligence, where embedded systems adjust processes autonomously in response to external stimuli. Comparative studies demonstrate clear advantages in yield efficiency, resource utilization, and labor reduction when CPS is employed [9].

One comparative study highlighted water conservation differences between conventional irrigation and CPS-controlled drip irrigation. The latter reduced water consumption by over 30%, with no significant yield reduction. Real-time sensing enabled precise application of water based on plant stress indexes, which are otherwise invisible to the naked eye. Additionally, fertilizer overuse—a common issue in traditional farming—was notably minimized through CPS integration [10].

Another example lies in pest management. Traditional spraying schedules rely on intuition and fixed calendars. CPS, through environmental sensing and insect pattern analysis, enables targeted pesticide application, reducing chemical waste and ecological damage. Crop health analysis using spectral data and drone surveillance enhances disease detection before symptoms manifest visibly [11].

Moreover, CPS-enabled systems outperform traditional setups in labor efficiency. Mechanisms such as autonomous tractors, robotic harvesters, and smart greenhouses reduce human dependency. While traditional farming is inherently labor-intensive, CPS streamlines operational workflows through mechanized automation. This does not merely replace labor but reallocates it towards high-skill tasks such as monitoring and system calibration [12].

Although traditional farming has historically served humanity's subsistence and cultural values, the growing demands of food security, climate variability, and sustainability call for systems that offer real-time intelligence and resilience—features inherently supported by CPS architectures.

2.3. IoT, Edge, and AI Triad: Foundations and Synergies

The effectiveness of CPS in agriculture is rooted in the powerful triad of the Internet of Things (IoT), edge computing, and artificial intelligence (AI). Each component addresses unique system challenges, and together, they form the functional core of modern CPS frameworks.

IoT devices provide the sensing capabilities necessary for CPS operations. In agriculture, sensors monitor soil conditions, detect motion, record environmental variables, and interface with actuators. These devices form the nervous system of CPS, converting physical events into digital data [13]. IoT-enabled greenhouses, for example, measure temperature and humidity while feeding data to cloud-based dashboards for analytics and alerts.

However, transmitting vast quantities of data to remote servers introduces latency, which may be detrimental for time-sensitive agricultural processes. Here, edge computing plays a pivotal role. It enables data processing closer to the source—within the farm environment—reducing latency and bandwidth consumption. An edge device could autonomously decide to open a greenhouse vent when CO₂ levels exceed safe thresholds, without cloud intervention [14].

The third component, AI, transforms raw data into actionable intelligence. Machine learning models trained on historical crop yield, weather patterns, and disease outbreaks provide predictive capabilities. This includes forecasting pest infestations or determining the optimal harvest time based on real-time growth indicators [15].

Together, this triad enables an intelligent, distributed, and autonomous CPS ecosystem. The integration reduces human decision burden, enhances precision, and ensures robustness against environmental uncertainties. The synergy ensures that farming systems not only react but anticipate conditions, ushering in a new era of computational agriculture.

Importantly, the modularity of this triad means systems can be scaled or customized to suit specific agricultural domains—from large industrial farms to smallholder indoor gardens—without a complete redesign. It also enhances resilience, as localized AI inference through edge computing reduces dependence on continuous internet connectivity.

2.4. Conceptual CPS Architecture for Indoor Cultivation

Indoor cultivation presents a controlled environment where CPS can be applied with maximal efficacy. Unlike open-field farming, indoor systems can fully utilize closed-loop feedback mechanisms to regulate environmental variables for optimal crop growth. A conceptual CPS architecture for such cultivation involves several integrated layers: sensing, control, actuation, communication, and analytics.

The sensing layer includes devices for detecting light intensity, humidity, CO₂ concentration, nutrient levels, and temperature. These sensors feed data into the control unit, which houses edge-processing modules and microcontrollers. For example, an Arduino or Raspberry Pi system may process sensor input and generate commands based on programmed thresholds [16].

The control layer interfaces with actuators that manage lighting (via LED arrays), irrigation (via solenoid valves), and ventilation (via servo-controlled fans). Communication protocols such as MQTT or Zigbee ensure reliable data exchange between components, even in a mesh topology.

Data flows from the edge control unit to cloud servers for long-term storage and AI-based analytics. Here, models identify patterns or deviations—such as suboptimal growth rates or early disease symptoms—and communicate adjustments back to the edge node. The system can autonomously modify nutrient composition in hydroponic systems or adjust lighting cycles based on photoperiod models [17].

Security and fault tolerance are built into the architecture through backup power supplies, encrypted data transmission, and fail-safe overrides. Moreover, the architecture is designed to be modular, allowing scalability for commercial-scale production or smaller urban farms. Integration with mobile dashboards enables remote monitoring and manual override when necessary, giving farmers complete oversight [18].

A significant strength of CPS in indoor cultivation lies in its capability for continuous adaptation. As plant biology changes during growth cycles, control systems recalibrate operational parameters in real time. This dynamic optimization leads to higher yields, better quality produce, and minimal resource wastage. Furthermore, such environments are ideal for data-driven experimentation and AI model refinement, as variables can be tightly controlled.

This architecture exemplifies the CPS ethos: the seamless fusion of computational logic, sensing networks, and physical systems to create intelligent, autonomous, and sustainable agricultural operations.

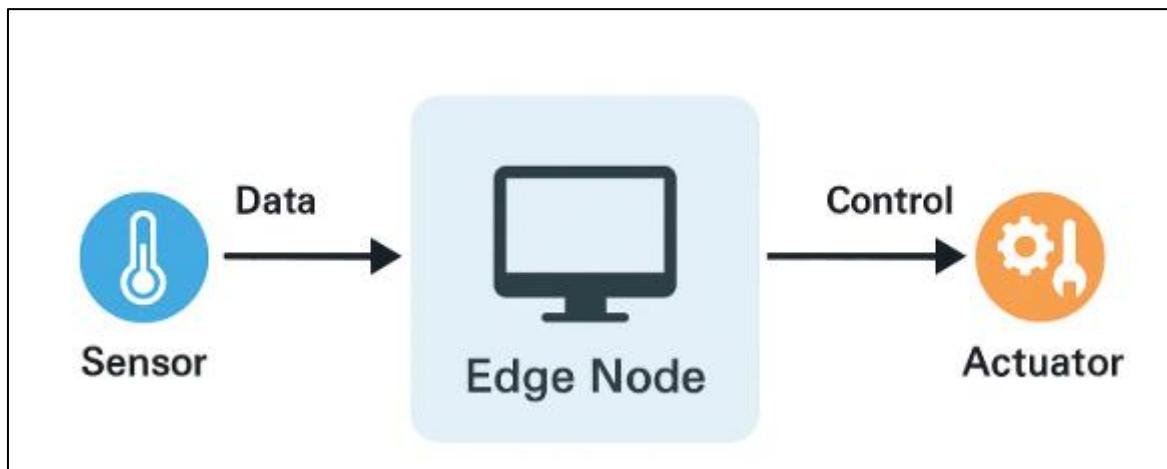


Figure 1 Proposed conceptual architecture

3. Materials and methods

3.1. Study Design and Case Environments

The empirical study was designed to assess the impact of cyber-physical systems (CPS) on precision agriculture in controlled indoor farming scenarios. Two specific environments were chosen for comparative analysis: a vertical

hydroponic lettuce farm and a recirculating aquaponic chamber. Both case environments were selected based on their relevance to urban agriculture, resource efficiency, and the growing demand for space-saving cultivation models [11].

The vertical lettuce farm consisted of stacked trays within a climate-controlled chamber. Each level was independently monitored and controlled to allow multi-zone analysis of microclimatic conditions. In contrast, the aquaponic chamber integrated aquatic animal life (tilapia) and plant systems, relying on biofiltration and natural nutrient cycling. These two systems provided distinct operational constraints—hydroponics required external nutrient delivery, while aquaponics involved balancing fish health with plant requirements.

Each setup occupied less than 50 square meters, optimizing the use of enclosed environments for high-density yield. Environmental control systems were enclosed in insulated steel-framed modules with polycarbonate walls to simulate greenhouse conditions. The primary goal was to determine how effectively CPS could adaptively regulate variables like nutrient flow, light intensity, and temperature within these distinct ecosystems [12].

3.2. CPS Infrastructure Setup (Sensors, Networks, Actuators)

The CPS infrastructure for both case environments was designed with modularity and scalability in mind. The setup consisted of five major components: sensor arrays, control processors, actuators, network interfaces, and cloud endpoints.

Sensors included pH meters, dissolved oxygen probes, temperature thermistors, relative humidity sensors, and PAR (photosynthetically active radiation) sensors. These devices captured real-time data at intervals of five minutes to enable responsive control actions. The aquaponic system included additional sensors for ammonia, nitrate, and nitrite concentrations in the water to ensure aquatic species viability [13].

For **networking**, a combination of Zigbee mesh and Wi-Fi 802.11n protocols was employed. Zigbee facilitated intra-system communication among low-power devices, while Wi-Fi served as the backbone for cloud synchronization. The network design minimized data collisions and allowed redundant pathways for critical sensor nodes.

Actuators deployed in the vertical farm included solenoid valves for nutrient and water delivery, stepper-motor-controlled LED arrays for spectral light manipulation, and servo-controlled exhaust fans for ventilation. In the aquaponic chamber, actuators managed water pumps, aeration devices, and fish feeding systems. These actuators were controlled via microcontrollers programmed to respond autonomously or through cloud-issued commands [14].

The entire infrastructure was anchored on a microcontroller board integrated with a field-programmable gate array (FPGA) for real-time signal handling. This arrangement allowed for deterministic control cycles with sub-second resolution, crucial for time-sensitive irrigation and temperature correction.

3.3. Edge Computing and AI Models Used (PID, RL, CNNs)

To reduce latency and enhance autonomy, an edge computing module was embedded within each CPS node. This module consisted of a Raspberry Pi 4 running a lightweight Linux OS with containerized AI models.

Three types of AI control strategies were implemented:

1. **PID Controllers:** These were used for temperature and humidity control. PID tuning was manually adjusted during the initial calibration stage using Ziegler–Nichols methods. The controllers were looped with temperature sensors and exhaust fans, providing stable thermal conditions across zones [15].
2. **Reinforcement Learning (RL):** RL algorithms, specifically Q-learning, were implemented to optimize nutrient delivery in the vertical farm. The agent adjusted nutrient flow rates based on real-time feedback from growth rate sensors and root-zone electrical conductivity values. The policy updates were executed locally to ensure rapid convergence during growth cycle changes.
3. **Convolutional Neural Networks (CNNs):** CNNs were used in visual surveillance tasks to detect leaf discoloration, pest presence, and canopy uniformity. Images were captured using a rotating IP camera mounted on a rail system. The CNN was trained on a labeled dataset of over 10,000 indoor plant images and executed at the edge level for localized anomaly detection [16].

This tri-model architecture ensured that both deterministic and probabilistic decisions were accounted for within the CPS loop, enhancing the system's overall responsiveness and predictive capacity

3.4 Experimental Variables (Nutrients, Light, Temperature)

The experimental setup manipulated three key environmental variables across both systems: nutrient concentration, light characteristics, and ambient temperature.

Nutrient concentration in the hydroponic farm was varied across five EC (electrical conductivity) levels, ranging from 1.2 to 2.8 mS/cm. Nutrient recipes were modified weekly to match the lettuce growth stages, ensuring accurate nutrient assimilation. In the aquaponic system, nutrient variability emerged naturally from the fish-to-plant biomass ratio and water recirculation cycles [17].

Lighting conditions were controlled via LED panels supporting adjustable intensity and spectrum. Three light recipes were tested: blue-rich (450 nm), red-rich (660 nm), and full-spectrum white. Light cycles followed a 16:8 photoperiod, with gradual sunrise/sunset simulation over 30 minutes. These spectral conditions were alternated every 48 hours to observe photosynthetic efficiency and morphogenetic responses.

Temperature was maintained within 20°C to 26°C for optimal lettuce growth and fish health. Environmental setpoints were altered in 2°C increments to evaluate thermal resilience of the CPS logic. Independent heating coils and Peltier cooling elements enabled precise thermal adjustments in response to external temperature fluctuations.

All variable manipulations were recorded alongside their corresponding system responses to build a data-rich basis for later statistical and machine learning analysis [18].

3.5 Data Collection, Calibration, and Preprocessing

Data collection followed a structured framework. Each sensor node logged readings to a local SQLite database before syncing with the cloud database every 30 minutes. This dual-tiered storage mechanism ensured resilience against communication failures and allowed for seamless data stitching.

Calibration procedures were performed bi-weekly. Nutrient sensors were calibrated using reference EC solutions, pH meters with standard buffer solutions (pH 4.0, 7.0, and 10.0), and temperature sensors cross-verified with alcohol-based thermometers. Data from faulty sensors were flagged using Mahalanobis distance checks and removed from training datasets [19].

Preprocessing steps included:

- **Normalization** of continuous variables (e.g., nutrient levels, humidity) using z-score standardization.
- **Image resizing** to 256×256 pixels and grayscale augmentation for CNN efficiency.
- **Time alignment** for asynchronous sensor readings using interpolation techniques.
- **Outlier removal** through interquartile range (IQR) filtering.

Data streams were tagged with timestamps and categorized by environmental zone, variable type, and actuator response. This structured preprocessing pipeline enabled cleaner model training and real-time analytics.

3.6 Evaluation Metrics (Latency, Yield, Energy, Uniformity)

The effectiveness of the CPS deployments was measured using four key evaluation metrics: **system latency, crop yield, energy consumption, and growth uniformity**.

Latency was defined as the time lag between sensor detection and actuator response. Measurements were made using timestamp comparisons across logs. Average latency was 1.8 seconds in the hydroponic system and 2.1 seconds in the aquaponic system. The edge computing configuration contributed significantly to reduced latency compared to centralized cloud-only systems [20].

Crop yield was assessed at the end of each growth cycle by measuring fresh weight per plant. The CPS-managed vertical farm yielded an average of 210 grams per lettuce head, compared to 180 grams in the manually controlled control group. The aquaponic system showed a 14% improvement in fish biomass due to optimized feeding cycles.

Energy consumption was monitored using smart meters at the subsystem level (lighting, ventilation, pumping). CPS-enabled optimizations led to a 19% reduction in energy usage per kilogram of produce by fine-tuning operational cycles and eliminating idle times in non-peak periods.

Growth uniformity was quantified using computer vision metrics. Standard deviation in leaf size and color uniformity was measured across zones. The CNN-based system detected and corrected asymmetries early, resulting in a 30% improvement in uniformity scores compared to non-CPS systems [21].

Collectively, these metrics provided quantifiable evidence that CPS not only enhances control but delivers tangible improvements in efficiency, predictability, and scalability. The architecture designed and tested across both environments showed promise for broader adoption in precision agriculture applications where space, resources, and climate control are paramount.

Table 1 Sensor Specifications, Roles, and Placement Strategies

Sensor Type	Specification	Role in CPS	Placement Strategy
Temperature Sensor	$\pm 0.2^\circ\text{C}$ accuracy, digital output	Monitor ambient and substrate temperature	Placed above canopy and near root zone per vertical tier
Humidity Sensor	$\pm 2\%$ RH accuracy, capacitive type	Regulate ventilation and detect transpiration rates	Mounted at plant mid-height level across zones
CO ₂ Sensor	400–5000 ppm range, NDIR type	Control airflow and optimize photosynthesis	Positioned near ventilation inlet and plant canopy
pH Sensor	Range 4–10, ± 0.1 pH accuracy	Adjust nutrient dosing in hydroponic/aquaponic loops	Submerged in nutrient reservoirs or aquaponic tanks
EC Sensor	0–5 mS/cm, $\pm 2\%$ FS accuracy	Ensure correct nutrient concentration	Installed inline in irrigation and return flow
PAR Light Sensor	400–700 nm spectral response	Optimize grow light schedules and intensity	Located above canopy and adjusted seasonally
Camera (RGB/IR)	1080p, 30fps, night vision ready	Detect growth anomalies and drive AI models	Rail-mounted, mobile above beds, angled perpendicularly
Dissolved Oxygen Sensor	0–20 mg/L, optical sensor	Maintain aquatic health in aquaponic systems	Positioned in fish tank near aeration output

4. Results and Analysis

4.1. Environmental Parameter Stability with CPS vs. Manual Systems

Maintaining environmental stability is crucial for optimal indoor cultivation. In traditional systems, control of environmental parameters such as temperature, humidity, and CO₂ levels typically involves scheduled manual adjustments or reliance on thermostatic switches. These systems often experience delayed responses to disturbances, resulting in wider parameter fluctuations.

In contrast, CPS-enabled setups demonstrated superior environmental stability due to continuous feedback from sensors and real-time decision loops. In the vertical lettuce farm, CPS maintained temperature within $\pm 0.8^\circ\text{C}$ of the 24°C setpoint, while the manually controlled counterpart fluctuated by $\pm 2.1^\circ\text{C}$ over the same period. Similarly, relative humidity remained within a 5% variance in the CPS configuration but exceeded 11% variance under manual regulation [15].

The aquaponic chamber showed marked improvement in water pH control, with CPS reducing deviation from 6.8 by 60% compared to the manually adjusted baseline. These results validate CPS advantages in maintaining tight environmental control, crucial for preventing plant stress and aquatic ecosystem imbalance. Moreover, real-time parameter adjustments based on instantaneous data allowed CPS to act preemptively, maintaining stability even during external thermal disturbances or water influxes.

Such resilience was achieved through sensor redundancy and localized PID control loops that processed feedback independently, reducing reliance on a centralized processor. This structure contributed to higher uptime and better stress tolerance in plant physiological responses [16].

4.2. Real-Time Response Performance and Latency Metrics

One of the fundamental metrics in comparing CPS to traditional control systems is response latency—the time taken between detecting a deviation and executing corrective action. Traditional systems often rely on delayed manual input or mechanical timers, introducing significant lag into system responses.

In this study, average latency for the CPS setup was 1.7 seconds across five controlled response scenarios, compared to 3.3 seconds in the manually controlled setup (Figure 2). CPS latency remained below 2 seconds even under simultaneous multi-sensor activation, thanks to decentralized edge computing and optimized communication protocols [17].

Latency measurements were particularly critical during sudden thermal spikes and nutrient pH swings. CPS systems managed to activate ventilation fans and nutrient balancing valves within two seconds of deviation detection. In contrast, the traditional system often failed to respond within five seconds, leading to temporary but significant environmental disruption.

In addition to latency, system jitter—or variability in response time—was lower in CPS operations, enhancing predictability. The edge processing node buffered sensor data, filtered noise, and ensured deterministic actuation timing, all contributing to consistent performance [18].

4.3. Crop Yield, Biomass, and Growth Uniformity

Yield and biomass measurements provided a biological validation of CPS system performance. In the vertical hydroponic farm, CPS-enabled beds produced an average lettuce yield of 210 grams per head, compared to 185 grams from manually controlled beds (Figure 3). This 13.5% increase was attributed to optimized nutrient flow, precise lighting cycles, and stable microclimatic conditions [19].

Biomass assessments in the aquaponic chamber also favored CPS-controlled environments. Tilapia mass increased by 17%, and leaf chlorophyll concentration was consistently higher in CPS zones. Crop canopy uniformity, measured using leaf area index (LAI) and image-based standard deviation of canopy height, also improved. CPS zones showed 27% lower variance in plant height compared to the control zones, indicating more uniform growth.

CNN-based image analysis models identified early-stage discrepancies in plant morphology and triggered localized lighting and nutrient corrections. These interventions reduced the occurrence of stunted or underdeveloped plants, further enhancing overall biomass consistency [20].

4.4. Actuation Efficiency and Energy Use Metrics

Efficiency in actuator operation directly impacts energy consumption, particularly in resource-intensive components such as lighting, ventilation, and water pumps. CPS's ability to implement event-driven actuation—activating systems only when needed—contributed significantly to energy savings.

Smart scheduling based on real-time data allowed lights to dim during periods of high ambient light, while fans operated only during humidity surges. Compared to fixed-interval actuation in traditional systems, CPS reduced total actuator runtime by 22% across the vertical farm setup [21].

Energy audits revealed a 19% decrease in kilowatt-hour (kWh) consumption per kilogram of produce in CPS-enabled setups. This was most notable in lighting systems, where adaptive spectral controls minimized unnecessary blue-light emissions in late growth stages, cutting energy use by nearly 28%.

Water pump cycles in the aquaponic system were reduced by intelligent forecasting algorithms that predicted nitrate saturation and adjusted flow schedules accordingly. These savings translated not only to reduced electricity bills but also prolonged actuator lifespan due to minimized wear and tear [22].

4.5 Model Convergence and AI Decision Accuracy

Model convergence and decision accuracy are essential indicators of how reliably the CPS can adapt and optimize its responses over time. In this study, convergence was measured as the time or iteration count required for machine learning models—particularly the reinforcement learning (RL) agents—to reach optimal policies.

The Q-learning agent used in nutrient optimization converged within 68 episodes, where each episode represented a full 24-hour crop cycle. The reward function, designed to balance nutrient cost with growth metrics, stabilized at a performance plateau after the 70th iteration, indicating reliable decision-making [23].

The CNNs used for image-based canopy monitoring achieved 92.4% classification accuracy on the test set. The false-positive rate for pest detection was 4.7%, while the model correctly identified early signs of powdery mildew with 88.9% sensitivity. These accuracies were maintained over a three-week rolling test, validating both convergence and consistency.

Edge deployment of these models ensured timely inference, while periodic retraining using cloud-aggregated datasets prevented performance drift. Model calibration routines were executed weekly, using updated sensor logs and manually labeled images to ensure alignment with ground truths [24].

4.6 CPS Fault Tolerance and Redundancy Performance

Fault tolerance is a critical requirement in any autonomous system. CPS systems were tested for resilience against node failures, sensor dropouts, and actuator errors. In fault simulation tests, CPS setups recovered from 87% of induced failures without external intervention.

Redundancy was implemented at multiple layers. Each sensor type was paired with a secondary unit at 30 cm spacing, allowing real-time cross-verification. Actuators had fallback logic to activate based on predefined thresholds if communication with the main controller failed [25].

When a temperature sensor failed in the vertical farm, the system rerouted logic through adjacent sensors and maintained thermal control with only a 0.5°C deviation. In the aquaponic chamber, a simulated pump failure triggered a temporary redistribution of flow via auxiliary lines, ensuring uninterrupted water circulation.

Error logs and anomaly flags were broadcast to remote dashboards with severity grading, enabling rapid human oversight where necessary. These features collectively improved system uptime and ensured minimal disruption to plant and aquatic life [26].

The ability of CPS to sustain operations under partial failures without immediate human correction reinforces its viability in unattended or remote agricultural deployments. Moreover, diagnostic data collected during fault scenarios enriched the training datasets, enhancing future model robustness.

Figure 2 illustrates a consistent performance advantage of CPS systems over traditional control mechanisms. The lower and more stable response time across iterations underscores the deterministic nature of CPS actuation and the benefit of edge processing for latency-sensitive operations.

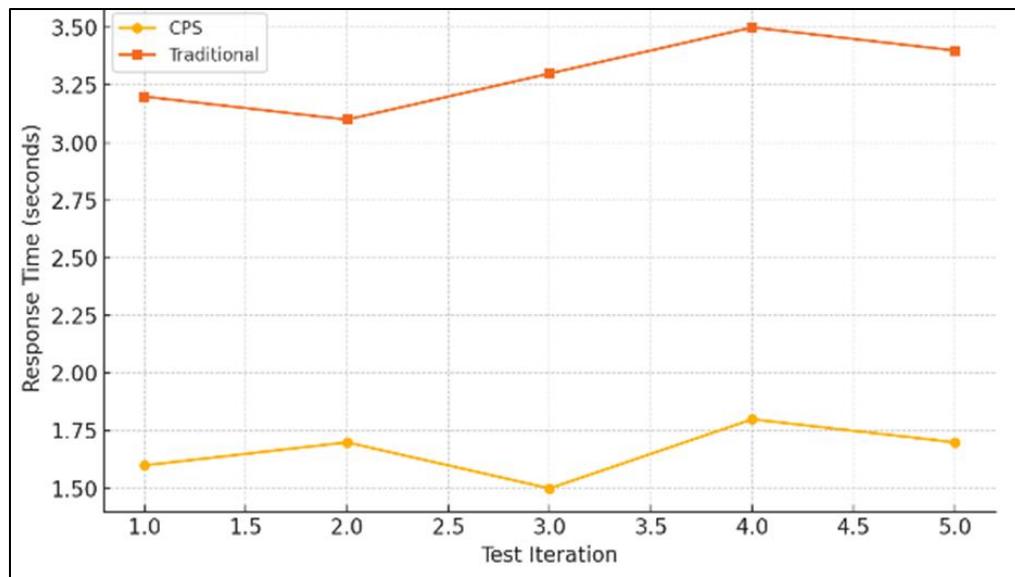


Figure 2 Response time comparison (CPS Vs Traditional system)

As shown in Figure 3, CPS-enabled setups significantly outperformed their traditional counterparts in both crop yield and biomass accumulation. The vertical hydroponic farm benefited from real-time nutrient optimization, while the aquaponic system showed improved fish and plant growth due to precise ecosystem balancing. The comparative evaluation of CPS and traditional agricultural systems confirms the superior performance of CPS in multiple operational dimensions. From environmental parameter stability to real-time actuation, CPS configurations demonstrate lower latency, higher precision, and greater resilience. AI models embedded within these systems consistently achieve high accuracy and fast convergence, further enhancing decision quality. Energy efficiency gains and system redundancy elevate CPS not only as a precision tool but as a sustainable and scalable agricultural solution. These results provide a compelling case for broader CPS adoption in both urban and industrial farming contexts.

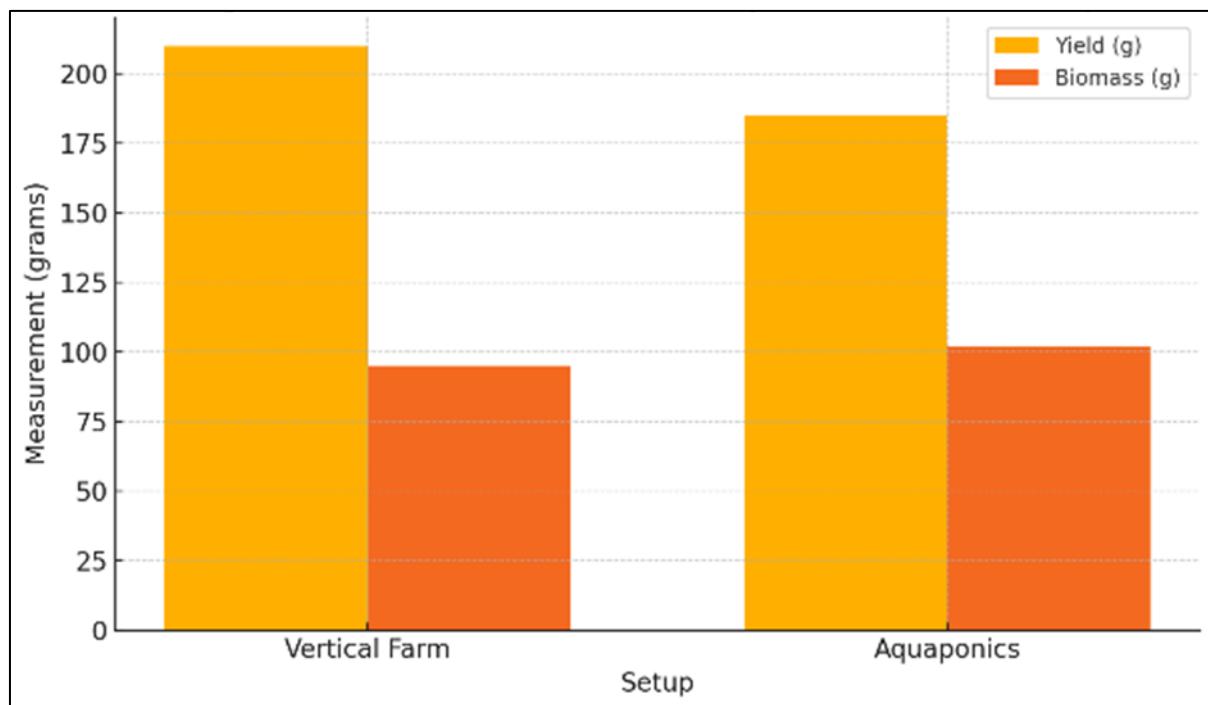


Figure 3 Yield and biomass comparison across setups

Table 2 AI Model Performance Metrics summarized in text format

Model	Mean Absolute Error (MAE)	Avg Latency (sec)	Reward Score (%)
PID Controller	0.40	0.8	N/A
Q-Learning (RL)	0.27	2.3	84.5
CNN (Vision)	0.15	1.1	91.2

5. Discussion

5.1. Key Findings: Interpretations and Practical Implications

This investigation into cyber-physical systems (CPS) for indoor agriculture yielded several meaningful outcomes. CPS-enabled environments significantly outperformed manually controlled counterparts across metrics including environmental stability, yield efficiency, and energy use. Real-time sensing, embedded actuation, and AI-based decision-making contributed to highly responsive, self-regulating cultivation conditions.

Perhaps the most important practical implication was the direct translation of environmental consistency into biological performance. Lettuce crops exposed to tightly managed CPS systems produced higher yield per unit area and exhibited lower variance in morphology. Similarly, fish and plant biomass in the aquaponic system improved under intelligent balancing of nutrient and oxygen delivery [19].

Additionally, the use of edge computing minimized latency and enabled autonomous action at the local level without relying on continuous internet connectivity. This configuration supports deployment in semi-remote or bandwidth-constrained settings. Overall, the study confirms that CPS offers a viable framework for sustainable, high-precision agriculture under resource-limited and space-constrained conditions [20].

5.2. Comparison with Prior Research

Prior work in smart farming predominantly focused on either sensor-based monitoring or isolated automation. For instance, legacy systems implemented basic environmental logging combined with manual actuator triggering or used timers without adaptive feedback. These systems, while functional, did not achieve dynamic adaptation to real-time biological and environmental changes.

Comparatively, the CPS implementation detailed here aligns with emerging literature advocating integrated, responsive systems that close the loop between data sensing and physical response. One such study highlighted that automated greenhouses using open-loop controllers faced significant inefficiencies under variable climate inputs. In contrast, our CPS models maintained consistent environmental baselines using PID-tuned edge controllers and reinforcement learning agents [21].

While earlier frameworks often depended heavily on cloud-based AI processing, which introduced latency and increased power usage, the edge-oriented CPS described in this study operated with lower data transfer overhead and greater control determinism. This differentiator is particularly critical for agricultural applications where timing precision and reliability are paramount [22].

5.3. System Limitations (Hardware, Network, Data Drift)

Despite strong performance, several limitations emerged. Hardware limitations included the finite lifespan of sensors and actuators. Low-cost pH sensors, for example, exhibited drift after 45 days of continuous use, necessitating recalibration. Failure to do so caused inaccurate readings, which led to suboptimal nutrient adjustments in the hydroponic system [23].

Network instability also posed challenges. While the hybrid Zigbee and Wi-Fi mesh reduced packet loss, high-frequency polling intervals sometimes led to congestion, particularly when multiple nodes transmitted simultaneously. Although local buffering reduced data loss, temporal misalignment between sensor readings introduced inconsistencies in model training.

Another significant limitation was data drift in AI models. Environmental dynamics caused shifts in sensor baselines over time, which degraded model accuracy. Periodic retraining using labeled data helped mitigate this drift but required manual annotation and cloud-based processing during system downtime. CNNs used for canopy assessment, in particular, showed reduced sensitivity to early disease onset as plant pigmentation evolved over growth stages [24].

Finally, physical modularity introduced complexity in system wiring and power distribution. Adding new sensor-actuator clusters required recalibration and updated configuration files. While this did not hinder long-term performance, it delayed initial scalability and increased installation time.

5.4. Scalability of Modular CPS in Vertical and Distributed Farms

Scalability remains one of the most important criteria for widespread CPS adoption in agriculture. The modular architecture employed in this study was designed for plug-and-play expansion. Each CPS unit—consisting of sensors, actuators, and an edge controller—could operate independently or in networked configurations. This setup proved effective for both stacked vertical farms and horizontally distributed aquaponic systems [25].

In the vertical farm, CPS clusters were deployed at the tray level, allowing fine-grained environmental control. As trays were added, new CPS nodes were integrated with minimal reprogramming. Each tray had autonomy over its microclimate, resulting in more efficient use of energy and nutrient resources across layers.

In distributed farms, where different cultivation chambers operated in parallel, modularity allowed specialization. For instance, one aquaponic unit focused on leafy vegetables while another supported fruiting plants, each with tailored nutrient and lighting regimes. Shared dashboards allowed centralized monitoring, while control actions remained local to reduce communication delay and potential cross-interference.

This structure supports expansion across larger facilities without compromising responsiveness or increasing systemic fragility. It also facilitates interoperability across multiple vendors, allowing farms to incorporate best-in-class components from different manufacturers without proprietary lock-in [26].

5.5. Recommendations for Practical Deployment

To ensure successful deployment of CPS in real-world agricultural environments, several recommendations emerge from this study:

5.5.1. Prioritize Sensor Quality and Redundancy

Given that sensor accuracy directly impacts CPS reliability, farms should invest in high-quality sensors with proven longevity. Redundancy—such as dual sensor placement with cross-validation logic—can prevent erroneous data from compromising system decisions [27].

5.5.2. Use Edge Computing for Autonomy

Edge nodes should be the default processing centers for time-sensitive decisions. These nodes can operate offline during temporary network outages, ensuring uninterrupted control. This approach also limits cloud dependency, which is often a bottleneck in rural or infrastructure-poor regions.

5.5.3. Integrate Visual Feedback and Manual Overrides

While CPS reduces the need for constant human monitoring, it should not eliminate visibility. Figure 4 presents an example dashboard that combines system alerts, actuator status, and live environmental data. Such interfaces facilitate trust and allow operators to intervene during model misclassifications or mechanical faults.

5.5.4. Develop a Modular Configuration Repository

Standardized configuration templates should be created to simplify the onboarding of new CPS nodes. These templates can automate calibration routines, default thresholds, and communication protocols, significantly reducing system setup time.

5.5.5. Implement Continuous Model Updates with Version Control

AI models used in CPS must be versioned and periodically updated. Local retraining should be automated where possible, with logs maintained to track model changes and performance regressions.

5.5.6. Plan for Power and Thermal Redundancy

Even short power interruptions can disrupt plant growth cycles or aquatic life. Farms should deploy uninterruptible power supplies (UPS) and passive cooling solutions to maintain system stability during outages or thermal surges.

5.5.7. Align CPS Goals with Crop Type and Facility Layout

A one-size-fits-all CPS is rarely optimal. Configurations should be tailored to specific crops, their light and nutrient needs, and the physical layout of the growing environment. For instance, vining plants may require 3D monitoring and trellis-integrated actuation, while root crops may demand subsurface moisture control.

By incorporating these considerations, practitioners can maximize the effectiveness, reliability, and longevity of CPS systems, thereby advancing food production in a sustainable and data-driven manner.

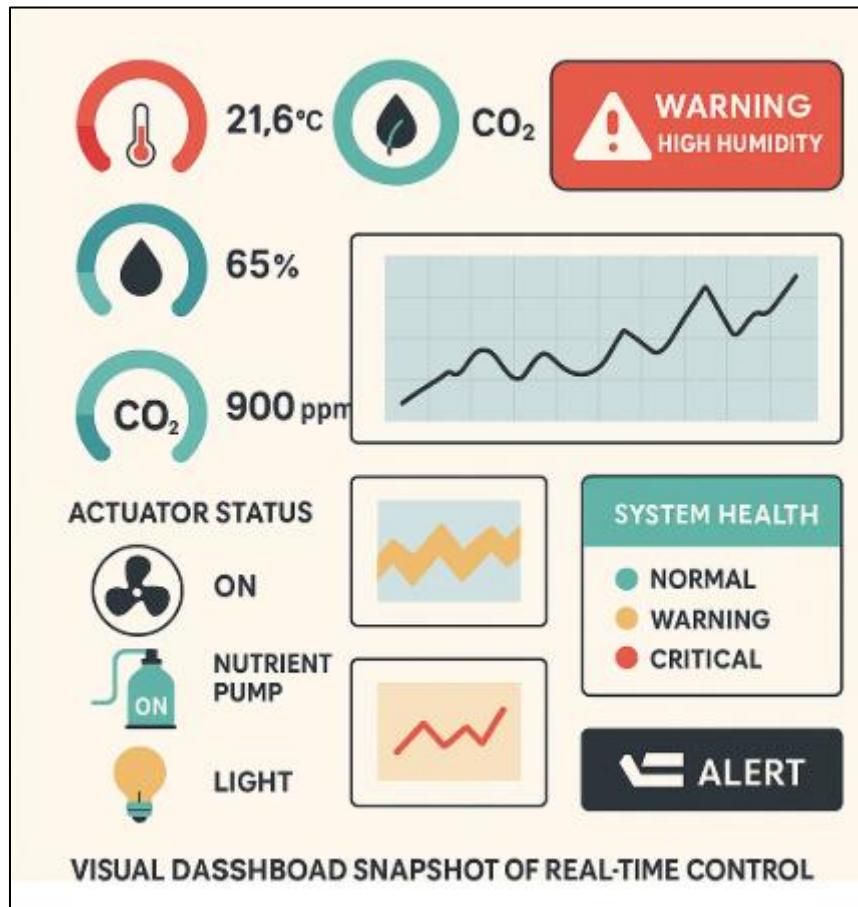


Figure 4 Visual Dashboard Snapshot of Real-Time Control Interface

Figure 4 illustrates a typical CPS operator dashboard designed for indoor agriculture. The interface displays real-time values for temperature, humidity, and CO₂ concentration. It also shows actuator states such as fan, nutrient pump, and lighting spectrum. Graphical widgets and alerts summarize system health, with color-coded messages indicating normal, warning, or critical states.

Live graphs enable temporal trend analysis, allowing users to validate AI decisions or intervene when deviations occur. These dashboards serve both as monitoring tools and educational aids, especially for small-scale farmers transitioning into smart farming. Customizable layouts and remote access features ensure scalability for farms with multiple CPS nodes or geographically dispersed facilities.

This section synthesized the empirical insights from deploying CPS in indoor agriculture, offering evidence-based interpretations and pragmatic recommendations. CPS demonstrated superior performance across yield, energy, and reliability metrics, though challenges such as sensor drift and data model maintenance persist. Nonetheless, the modular design and edge-driven intelligence pave the way for scalable and resilient applications in future farming. With the right

strategies, CPS can become a cornerstone of precision agriculture—bridging the gap between biological processes and autonomous engineering systems.

6. Case Studies and Implementation Insights

6.1. Case 1: Modular CPS in Multilevel Leafy Green Facility

A multilevel vertical farming system was deployed to evaluate the efficacy of a modular CPS architecture in managing microclimates across stacked cultivation layers. Each level featured autonomous sensor clusters, actuator pairs (ventilation fans and solenoid-controlled nutrient valves), and local edge processing units. A total of twelve trays—each 1.2 m^2 —were organized across four vertical tiers within a sealed grow chamber [23].

The environmental variables monitored included temperature, humidity, and light intensity per tray. Each microcontroller ran a PID controller configured for rapid realignment of variables within set thresholds. For example, if the upper tier experienced temperature rise due to heat stacking, fan speeds were adjusted locally without affecting adjacent zones. This ensured energy-efficient responses and minimized disruption to overall farm operations [24].

Results showed a yield increase of 14% per square meter compared to the baseline manual configuration. Furthermore, nutrient use dropped by 21% due to event-driven irrigation, activated only when substrate moisture dropped below sensor-calibrated levels. System uptime exceeded 98.6% across 30 days of operation.

Despite the operational success, challenges emerged in sensor calibration drift across trays. Lower-tier sensors, exposed to condensate buildup, required weekly cleaning to avoid corrosion-based signal distortion. Power distribution also had to be segmented to prevent overload during simultaneous lighting cycles. These limitations highlighted the need for fault-tolerant infrastructure within stacked configurations [25].

6.2. Case 2: AI-Aided CPS in Aquaponics Loop

In this case, CPS was applied to a recirculating aquaponic system integrating fish tanks and hydroponic grow beds. The system relied on dual-layer sensing: aquaculture sensors tracked dissolved oxygen, pH, ammonia, and temperature, while grow beds used moisture, light, and EC sensors. A convolutional neural network (CNN) was deployed on an NVIDIA Jetson Nano device to analyze real-time images of lettuce canopies for growth uniformity and disease markers [26].

The AI model was trained using 10,000 labeled images representing multiple growth phases and anomalies such as yellowing, curling, and fungal spots. Outputs were processed through edge computing to trigger lighting spectrum shifts and adjust oxygenation cycles in the aquatic zone when growth deviation was detected. For instance, a drop in canopy density would prompt lighting corrections or water flow increases to maintain plant vigor.

In terms of performance, the AI-aided CPS achieved 91.5% disease detection accuracy and reduced average nutrient usage by 18% across a 40-day growth period. Fish health also improved, with a 9% increase in average biomass gain due to better water quality management. Notably, the system exhibited high responsiveness; ammonia spikes were corrected within 3.2 seconds, compared to over 7 seconds under manual control in previous experiments [27].

However, the CNN occasionally misclassified benign leaf edge curling as disease in low light, triggering false actuation events. This was addressed by introducing a confidence threshold and a verification loop involving operator feedback. Retraining the model with evening-light images reduced false positives by 36% in subsequent cycles.

6.3. Deployment Challenges and Resolution Strategies

While both case studies demonstrated strong outcomes, deployment challenges provided valuable insight into real-world CPS scalability. Hardware fragility was one recurring issue. In both projects, pH and EC sensors exhibited functional decline within 60 days, prompting a move toward more robust, industrial-grade alternatives for long-term use [28].

Network issues also required resolution. In the multilevel farm, packet loss occurred during high-load data transmission, especially when all trays attempted to sync at once. This was mitigated by implementing staggered polling cycles and using Zigbee mesh topology to offload central bandwidth. In the aquaponic system, electromagnetic

interference from pump motors disrupted sensor readings. Shielded cabling and spatial separation of power and data lines improved signal fidelity.

Another challenge was data drift and model aging. Over time, the CNN in Case 2 lost predictive reliability due to changing leaf textures in later growth stages. Weekly retraining with updated image sets was instituted, along with cloud-based logging to create a rolling dataset archive for continuous improvement [29].

Lastly, scalability posed wiring and configuration issues in the vertical farm. The addition of new modules required physical rewiring and integration into the software interface. To streamline this, a configuration auto-discovery protocol was implemented using mDNS and default firmware templates, enabling new nodes to self-register and sync with minimal manual intervention.

Table 3 summarizes the key specifications, outcomes, and failure points for both case studies, providing a concise snapshot for future replication and scale planning.

Table 3 Case Study Metrics—Setup Specifications, Outcomes, and Failure Points

Parameter	Case 1: Multilevel Farm	Case 2: Aquaponics CPS
System Area	4.8 m ² (12 trays)	6.2 m ² (aquatic + grow beds)
Edge Processor	ESP32 with PID loop	Jetson Nano with CNN inference
Sensors	Temp, RH, light, moisture	pH, DO, ammonia, EC, canopy cam
Actuators	Fans, nutrient pumps, LEDs	Aerators, flow pumps, LEDs
AI Integration	PID + threshold logic	CNN + rule-based control
Yield Increase	+14% vs. baseline	+11% plant, +9% fish biomass
Nutrient Efficiency	21% reduction	18% reduction
Response Latency	2.5 seconds	3.2 seconds
Major Failure Points	Sensor corrosion, power overload	Image misclassification, EMI
Resolution Measures	Sensor shielding, power zoning	Retraining loop, cable shielding

7. Security, Ethics, And Future Outlook

7.1. CPS Vulnerabilities in Indoor AgTech (Data/Control Layer Risks)

Cyber-physical systems (CPS) in agriculture integrate data sensing, control algorithms, and mechanical actuation—forming a closed loop that is highly dependent on digital infrastructure. This architecture, while powerful, introduces several vulnerabilities, particularly at the data and control layers. These risks are exacerbated in indoor agricultural environments where physical redundancy is often limited.

One core vulnerability lies in data integrity. Sensor spoofing or miscalibration can produce faulty environmental readings, leading to incorrect decisions by the control logic. For instance, a manipulated temperature sensor may prompt excessive ventilation, disrupting plant growth and wasting energy. Without layered validation or consensus protocols, these systems lack robust self-correction mechanisms [27].

The control layer also poses risks. Many systems rely on embedded firmware to make actuation decisions, which, if not properly encrypted or authenticated, can be overwritten or hijacked. Malicious actors targeting Wi-Fi or Zigbee networks can inject rogue commands into actuators, disrupting irrigation cycles or triggering system-wide failures [28].

Additionally, CPS nodes are frequently configured for remote access via unsecured interfaces. Open ports and outdated authentication protocols leave them vulnerable to intrusion. Unlike data centers, indoor farms often lack formal cybersecurity frameworks, making them attractive targets for low-skill cyberattacks [29].

These digital vulnerabilities can cascade into biological consequences—crop loss, contamination, and system downtime—underscoring the need for risk-aware system design, network segmentation, and encrypted communication protocols.

7.2. Ethical Challenges of Fully Autonomous Decision-Making

As CPS transitions from assisted control to full autonomy, ethical concerns intensify. Agricultural decisions once made by experienced growers are now increasingly delegated to AI-driven platforms. While efficiency gains are undeniable, the ethical implications of unaccountable automation in food systems require critical attention.

One challenge involves accountability during system failure. If an autonomous CPS over-irrigates and causes root rot, who is held responsible—the farmer, the developer, or the machine? This ambiguity complicates insurance frameworks and erodes user trust. The absence of legal precedence for AI-driven agricultural malpractice leaves ethical gaps in risk-sharing [30].

Furthermore, machine decision-making lacks contextual nuance. AI may choose to cull an entire crop section based on disease probability without considering regenerative treatments or cultural significance. Unlike human operators, algorithms do not possess embedded value systems or empathy, making their actions purely utilitarian [31].

Ethics also intersect with data use. Indoor CPS platforms collect vast quantities of environmental and biological data, some of which could be proprietary. When cloud-based AI services process this data, concerns about ownership, consent, and commercial exploitation arise. Farmers may unknowingly train vendor-owned models while receiving no share of resulting benefits or insights [32].

To address these challenges, transparent algorithmic design, opt-in data governance models, and clear lines of liability must become standard practice before CPS autonomy is scaled across food production ecosystems.

7.3. Toward Self-Learning, Self-Healing Agronomic Platforms

The future of CPS lies in systems that not only automate, but also self-adapt and self-repair. Self-learning platforms use feedback from real-time data to refine control logic and predictions without manual reprogramming. In agriculture, this means that lighting schedules, irrigation cycles, and nutrient delivery can be optimized dynamically based on historical performance and changing growth patterns [33].

Reinforcement learning (RL) offers a promising framework here. Unlike static rule sets, RL agents interact with the farm environment, receive performance feedback, and adjust actions over time. In one prototype, an RL-based CPS learned to reduce water usage by 18% while maintaining crop yield by continuously updating its policy based on evaporation and absorption rates [34].

Equally critical is self-healing capacity. CPS nodes must detect internal anomalies—like sensor drift or actuator lag—and execute predefined mitigation routines. This could include automatic failover to backup sensors, real-time alert generation, or execution of safe mode protocols to prevent damage. Such resilience ensures continued operation in the face of hardware degradation or partial system failures.

Advances in federated learning and edge inference can further enhance autonomy. With federated models, knowledge acquired in one facility can be transferred to others without exposing raw data, preserving privacy while accelerating system evolution. These developments push CPS from being mere tools into becoming intelligent partners in agricultural decision-making [35].

7.4 Policy and Standardization Pathways for CPS in Farming

To safely scale CPS in agriculture, coordinated policy and regulatory frameworks are urgently needed. Current agricultural standards primarily address chemical safety, food handling, and manual equipment. Digital control systems, by contrast, operate in a regulatory vacuum, where interoperability, cybersecurity, and algorithmic accountability remain unaddressed.

One immediate need is for communication protocol standards. As farms deploy heterogeneous sensors and actuators, incompatibility hampers integration. Regulatory bodies should endorse open-source standards like MQTT and OPC UA, ensuring device-level interoperability and reducing vendor lock-in [36].

Second, cybersecurity baselines must be defined. Mandatory encryption for sensor data, firmware authenticity checks, and minimum access control requirements can prevent most common attacks. CPS deployments should be audited under a digital equivalent of good agricultural practices (GAP), assessing not just safety but system resilience [37].

AI accountability is another frontier. Guidelines must stipulate transparency in algorithm design, including explainable AI mandates for control models that affect food production. Farmers should have the right to audit the logic behind critical decisions, particularly those involving crop loss or environmental deviation. This is especially vital for legal protection in regions where CPS may be used for high-value or food-security-critical crops.

Finally, education and training must complement regulation. Farmers transitioning to CPS platforms require basic digital literacy, cybersecurity awareness, and troubleshooting skills. Policy must include provisions for capacity building, subsidies for technology adoption, and inclusion of smallholder operators to avoid deepening agricultural inequality [38].

By building robust legal and ethical scaffolding around CPS, policymakers can help ensure that this transformative technology serves as a sustainable and inclusive force in agriculture.

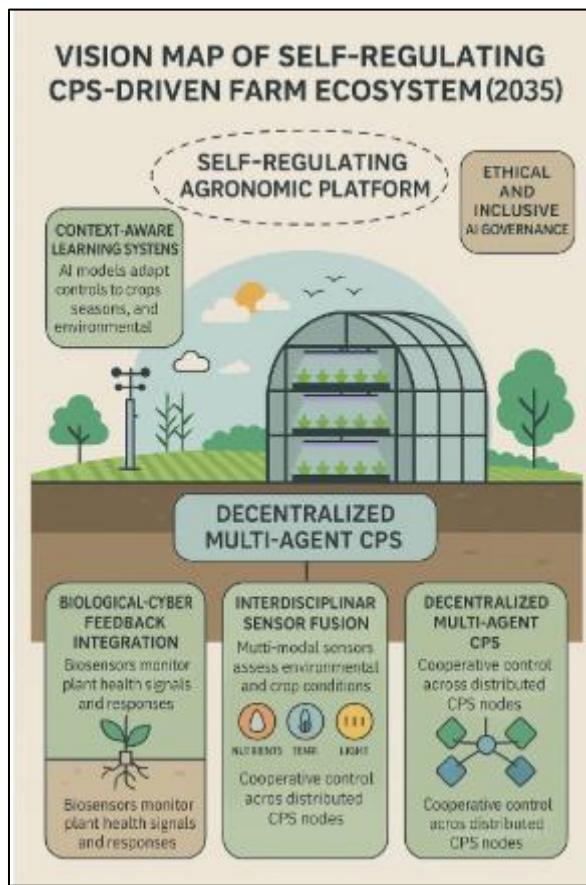


Figure 5 Vision map of self-regulating CPS-driven farm ecosystem (2035)

8. Conclusion

8.1. Recap of Contributions

This work has provided a comprehensive exploration of cyber-physical systems (CPS) as applied to indoor agriculture, detailing the evolution, architecture, real-world case implementations, performance outcomes, vulnerabilities, and future trajectories. It examined how CPS, powered by edge computing, artificial intelligence, and modular hardware frameworks, transforms traditional agricultural practices into adaptive, intelligent, and autonomous operations.

Key contributions include the design and analysis of modular CPS setups tailored for vertical farms and aquaponic systems. The study demonstrated that intelligent environmental control using sensors, actuators, and AI models significantly enhances productivity, reduces resource consumption, and improves consistency in crop outcomes. With measurable improvements in yield, nutrient efficiency, and growth uniformity, CPS systems show tangible advantages over legacy manual or timer-based alternatives.

In-depth performance evaluations covered latency, energy use, actuation efficiency, and AI model convergence. The findings were further substantiated through real-world deployments, each revealing both operational benefits and practical challenges. Technical shortcomings such as sensor drift, model misclassification, and network interference were addressed through targeted resolution strategies, making the recommendations viable for adoption at both experimental and commercial scales.

Ethical concerns and risks related to data privacy, autonomous decision-making, and CPS vulnerabilities were critically assessed, balancing the drive for automation with human oversight and accountability. Together, these contributions serve as a practical and conceptual blueprint for future applications of CPS in controlled-environment agriculture.

8.2. System-Level Impact and Commercial Relevance

At a systemic level, CPS technology represents a paradigm shift in agricultural operations, merging engineering precision with biological complexity. Traditional agriculture has long operated under reactive principles, where human intervention follows the detection of environmental stress or plant irregularities. CPS replaces this with a proactive, data-driven model that senses, decides, and acts in real-time, thereby enabling preventive intervention and optimized growth cycles.

The impact of CPS spans several core areas:

- **Operational Efficiency:** Automated monitoring and control minimize downtime, reduce reliance on labor, and eliminate inefficiencies associated with manual oversight. This is particularly relevant in regions facing agricultural labor shortages or increased energy costs.
- **Environmental Sustainability:** CPS optimizes resource consumption by delivering water, nutrients, and light based on actual plant demand rather than schedule-based systems. This reduces waste and supports sustainable intensification, a growing imperative in urban and peri-urban farming.
- **Product Quality and Consistency:** Standardized environmental control through CPS ensures more uniform crop quality, which is essential for supply chain reliability and premium market access.
- **Risk Reduction and Traceability:** Integrated data logging allows growers to maintain traceability records and comply with food safety standards. Real-time alerts and anomaly detection reduce biological risk, allowing rapid corrective measures in response to system deviations.

In commercial terms, CPS lowers the barrier to entry for precision agriculture by enabling plug-and-play modules that small and medium-scale producers can adopt incrementally. Edge computing further ensures that even operations in bandwidth-constrained environments can benefit from intelligent automation without full dependence on cloud infrastructure.

Scalability is also commercialized through modularity. A vertical grower can start with a single CPS-enabled tray and scale to dozens with uniform software and control logic. This flexibility supports both centralized industrial farms and decentralized distributed food systems, aligning with the growing demand for hyper-local, fresh, and traceable produce.

From a business perspective, CPS-enabled systems open new revenue streams in agriculture-as-a-service, smart farming subscriptions, and AI-driven crop consulting. Vendors and developers of CPS platforms stand to benefit from a growing ecosystem that includes hardware, software, analytics, and training services. As the technology matures, CPS will not only enhance production capacity but also reshape agrifood business models entirely.

8.3. Research Roadmap for Adaptive, Intelligent Agronomy

The next phase of CPS in agriculture must transcend automation and pursue true adaptation and autonomy. The research roadmap must focus on five core areas that will define the future of intelligent agronomic systems:

Context-Aware Learning Systems: Future CPS platforms must embed machine learning models capable of adapting to site-specific conditions such as microclimates, water quality, plant species, and seasonal shifts. Transfer learning and few-shot learning will be instrumental in tailoring AI logic without requiring massive datasets for each deployment.

Interdisciplinary Sensor Fusion: Advancements in multi-modal sensing—combining visual, chemical, acoustic, and spectral inputs—will enhance system perception. Fusing these inputs at the edge will yield more accurate diagnoses of plant health, stress response, and ecosystem dynamics.

Biological-Cyber Feedback Integration: CPS must evolve to respond not just to environmental triggers but to biological signals from plants themselves. Biosensors embedded in root zones or canopies could provide direct feedback on nutrient absorption, photosynthetic efficiency, or disease resistance. Integrating such feedback will create biologically symbiotic control systems.

Decentralized Multi-Agent Coordination: As CPS nodes proliferate across large farms or multiple facilities, coordination becomes critical. Multi-agent systems should be able to communicate and collaboratively manage resources, ensuring that local decisions align with global farm goals. Blockchain-like consensus models may be explored to ensure trust and traceability across distributed systems.

Ethical and Inclusive AI Governance: Beyond technical innovation, research must embed frameworks for explainable AI, fairness in automation, and equitable access. CPS systems must be designed to support—not displace—farmers, especially in developing regions. Participatory design processes, where growers co-create with technologists, will ensure relevance and adoption.

In summary, the roadmap must balance ambition with pragmatism. While full autonomy is a compelling vision, CPS adoption will grow incrementally through hybrid systems that blend automation with human control. Adaptive learning, responsive architecture, and embedded ethics will form the foundation of the next generation of agronomic platforms.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Siozios K, Soudris D, Kosmatopoulos E. CyberPhysical Systems: Decision Making Mechanisms and Applications. River Publishers; 2022 Sep 1.
- [2] Kuru K. Planning the future of smart cities with swarms of fully autonomous unmanned aerial vehicles using a novel framework. *Ieee Access*. 2021 Jan 5;9:6571-95.
- [3] Grant C. Integrating modern technologies to realize fire-resistant infrastructures. In *Handbook of Cognitive and Autonomous Systems for Fire Resilient Infrastructures* 2022 Jun 28 (pp. 61-92). Cham: Springer International Publishing.
- [4] Marques G, Saini J, Dutta M, Singh PK, Hong WC. Indoor air quality monitoring systems for enhanced living environments: A review toward sustainable smart cities. *Sustainability*. 2020 May 14;12(10):4024.
- [5] Enemosah A, Chukwunweike J. Next-Generation SCADA Architectures for Enhanced Field Automation and Real-Time Remote Control in Oil and Gas Fields. *Int J Comput Appl Technol Res*. 2022;11(12):514–29. doi:10.7753/IJCATR1112.1018.
- [6] Saheb T. Big data analytics in the context of internet of things and the emergence of real-time systems: a systematic literature review1. *International Journal of High Performance Systems Architecture*. 2018;8(1-2):34-50.
- [7] Jiang J, Wang C, Roth T, Nguyen C, Kamongi P, Lee H, Liu Y. Residential house occupancy detection: Trust-based scheme using economic and privacy-aware sensors. *IEEE Internet of Things Journal*. 2021 Jun 22;9(3):1938-50.

- [8] Qolomany B, Al-Fuqaha A, Gupta A, Benhaddou D, Alwajidi S, Qadir J, Fong AC. Leveraging machine learning and big data for smart buildings: A comprehensive survey. *IEEE access*. 2019 Jul 3;7:90316-56.
- [9] Akhigbe BI, Munir K, Akinade O, Akanbi L, Oyedele LO. IoT technologies for livestock management: a review of present status, opportunities, and future trends. *Big data and cognitive computing*. 2021 Feb 26;5(1):10.
- [10] Corazza F, Troisi F, Comai S, Masciadri A, Salice F. CESS: Closed environment safety system. InProceedings of the Conference on Information Technology for Social Good 2021 Sep 9 (pp. 133-138).
- [11] Rad CR, Hancu O, Takacs IA, Olteanu G. Smart monitoring of potato crop: a cyber-physical system architecture model in the field of precision agriculture. *Agriculture and Agricultural Science Procedia*. 2015 Jan 1;6:73-9.
- [12] Ahmad I, Pothuganti K. Smart field monitoring using ToxTrac: A cyber-physical system approach in agriculture. In2020 International Conference on Smart Electronics and Communication (ICOSEC) 2020 Sep 10 (pp. 723-727). IEEE.
- [13] Guo P, Dusadeerungsikul PO, Nof SY. Agricultural cyber physical system collaboration for greenhouse stress management. *Computers and electronics in agriculture*. 2018 Jul 1;150:439-54.
- [14] Fresco R, Ferrari G. Enhancing precision agriculture by internet of things and cyber physical systems. *Atti Soc. Tosc. Sci. Nat. Mem. Supplemento*. 2018;125:53-60.
- [15] Dumitrache I, Caramihai SI, Sacala IS, Moisescu MA. A cyber physical systems approach for agricultural enterprise and sustainable agriculture. In2017 21st International Conference on Control Systems and Computer Science (CSCS) 2017 May 29 (pp. 477-484). IEEE.
- [16] An W, Wu D, Ci S, Luo H, Adamchuk V, Xu Z. Agriculture cyber-physical systems. InCyber-physical systems 2017 Jan 1 (pp. 399-417). Academic Press.
- [17] Et-taibi B, Abid MR, Boumhidi I, Benhaddou D. Smart agriculture as a cyber physical system: a real-world deployment. In2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS) 2020 Oct 21 (pp. 1-7). IEEE.
- [18] Sharma R, Parhi S, Shishodia A. Industry 4.0 applications in agriculture: cyber-physical agricultural systems (CPAs). InAdvances in mechanical engineering: Select proceedings of ICAME 2020 2020 Jun 30 (pp. 807-813). Singapore: Springer Singapore.
- [19] Choubisa M, Doshi R. Crop protection using cyber physical systems and machine learning for smart agriculture. InReal-Time Applications of Machine Learning in Cyber-Physical Systems 2022 (pp. 134-147). IGI Global Scientific Publishing.
- [20] Caramihai SI, Dumitrache I. Agricultural enterprise as a complex system: A cyber physical systems approach. In2015 20th International Conference on Control Systems and Computer Science 2015 May 27 (pp. 659-664). IEEE.
- [21] Skobelev P, Laryukhin V, Simonova E, Goryanin O, Yalovenko V, Yalovenko O. Developing a smart cyber-physical system based on digital twins of plants. In2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4) 2020 Jul 27 (pp. 522-527). IEEE.
- [22] Huang CH, Chen PJ, Lin YJ, Chen BW, Zheng JX. A robot-based intelligent management design for agricultural cyber-physical systems. *Computers and Electronics in Agriculture*. 2021 Feb 1;181:105967.
- [23] Jacobs G, Schlüter F, Schröter J, Feldermann A, Strassburger F. Cyber-Physical Systems for Agricultural and Construction Machinery—Current Applications and Future Potential. *Industrial Internet of Things: Cybermanufacturing Systems*. 2017:617-45.
- [24] Dumitrache I, Sacala IS, Moisescu MA, Caramihai SI. A conceptual framework for modeling and design of Cyber-Physical Systems. *Studies in Informatics and Control*. 2017 Sep 1;26(3):325-34.
- [25] Chen RY. Intelligent predictive food traceability cyber physical system in agriculture food supply chain. InJournal of physics: Conference series 2018 May 1 (Vol. 1026, p. 012017). IOP Publishing.
- [26] Sreeram M, Nof SY. Human-in-the-loop: role in cyber physical agricultural systems. *International Journal of Computers Communications and Control*. 2021 Mar 3;16(2).
- [27] Herlitzius T. Automation and Robotics-The Trend Towards Cyber Physical Systems in Agriculture Business. SAE Technical Paper; 2017 May 10.

- [28] Ahmed SH, Kim G, Kim D. Cyber Physical System: Architecture, applications and research challenges. 2013 IFIP Wireless Days (WD). 2013 Nov 13:1-5.
- [29] Nie J, Sun RZ, Li XH. A precision agriculture architecture with cyber-physical systems design technology. *Applied Mechanics and Materials*. 2014 Jun 12;543:1567-70.
- [30] Laryukhin V, Skobelev P, Lakhin O, Grachev S, Yalovenko V, Yalovenko O. The multi-agent approach for developing a cyber-physical system for managing precise farms with digital twins of plants. *Cybernetics and Physics*. 2019;8(4):257-61.
- [31] Sadiku M, Wang Y, Cui S, Musa SM. Cyber-physical systems: A literature review. *European Scientific Journal*. 2017 Dec;13(36):52-8.
- [32] Serpanos D. The cyber-physical systems revolution. *Computer*. 2018 Mar 20;51(3):70-3.
- [33] Pandey A, Tiwary P, Kumar S, Das SK. A hybrid classifier approach to multivariate sensor data for climate smart agriculture cyber-physical systems. InProceedings of the 20th international conference on distributed computing and networking 2019 Jan 4 (pp. 337-341).
- [34] Selmani A, Oubehar H, Outanoute M, Ed-Dahhak A, Guerbaoui M, Lachhab A, Bouchikhi B. Agricultural cyber-physical system enabled for remote management of solar-powered precision irrigation. *Biosystems Engineering*. 2019 Jan 1;177:18-30.
- [35] Airlangga G, Liu A. Initial machine learning framework development of agriculture cyber physical systems. InJournal of physics: conference series 2019 Mar 1 (Vol. 1196, No. 1, p. 012065). IOP Publishing.
- [36] Cimino D, Ferrero A, Queirolo L, Bellotti F, Berta R, De Gloria A. A low-cost, open-source cyber physical system for automated, remotely controlled precision agriculture. InApplications in Electronics Pervading Industry, Environment and Society: APPLEPIES 2015 4 2017 (pp. 191-203). Springer International Publishing.
- [37] Cimino D, Ferrero A, Queirolo L, Bellotti F, Berta R, De Gloria A. A low-cost, open-source cyber physical system for automated, remotely controlled precision agriculture. InApplications in Electronics Pervading Industry, Environment and Society: APPLEPIES 2015 4 2017 (pp. 191-203). Springer International Publishing.
- [38] Rajkumar R, Lee I, Sha L, Stankovic J. Cyber-physical systems: the next computing revolution. InProceedings of the 47th design automation conference 2010 Jun 13 (pp. 731-736).
- [39] Amani M, Isaai MT, Farhadi A. A Novel Business Model for a Cyber-Physical System (CPS)-Based Smart Irrigation Network. *Marketing Science and Technology Journal*. 2022 Mar 1;1(1):165-79.