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Abstract 

The increasing demand for sustainable food production in the face of climate variability, urbanization, and land 
constraints has accelerated the evolution of smart indoor cultivation systems. Central to this transformation is the 
integration of cyber-physical systems (CPS) that tightly couple computational intelligence with physical processes 
through embedded sensors, IoT networks, and actuation layers. This paper explores the role of CPS in enabling 
autonomous decision-making within sensor-rich, controlled agricultural environments, where real-time 
responsiveness and precision are critical for optimizing both crop performance and resource utilization. Leveraging 
advances in Internet of Things (IoT) fusion and edge computing, CPS-based architectures allow for localized, low-latency 
processing of high-frequency data streams originating from multi-modal sensors—such as temperature, humidity, 
nutrient concentration, CO₂ levels, and multispectral imaging. These sensor arrays, integrated with feedback control 
algorithms, create adaptive environments that dynamically regulate variables like light spectra, irrigation cycles, and 
nutrient dosing without human intervention. The paper presents a layered CPS framework that combines physical 
plant-environment interactions with cyber intelligence models for predictive analytics, anomaly detection, and 
autonomous control. Emphasis is placed on distributed decision-making mechanisms at the edge, which reduce cloud 
dependence while increasing fault tolerance and system scalability. Case studies of vertical farms and research-driven 
plant growth chambers demonstrate how CPS integration enhances yield quality, reduces input waste, and improves 
system resilience under varying environmental loads. Ultimately, this work outlines the design principles, technological 
enablers, and implementation pathways for building next-generation, self-regulating indoor farming systems through 
CPS, bridging the gap between plant biology, control engineering, and intelligent automation.  

Keywords: Cyber-Physical Systems; Edge Computing; Autonomous Crop Management; IoT Sensor Fusion; Smart 
Indoor Agriculture; Real-Time Environmental Control 

1. Introduction

1.1. Background and Gloabal Trends in Indoor Agriculture 

Indoor agriculture has emerged as a pivotal solution to meet the increasing global demand for food production in the 
face of rapid urbanization, diminishing arable land, and climate unpredictability. By leveraging controlled 
environments, indoor farms can circumvent many of the challenges faced by conventional agriculture, including 
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seasonal limitations, pest invasions, and water scarcity. The advancement of vertical farming and hydroponic systems 
has further enabled year-round production with higher crop densities and lower input requirements [1]. 

Global trends indicate a shift toward high-efficiency, low-footprint agricultural systems powered by renewable energy 
and precision automation. Countries across Asia, Europe, and North America have invested in next-generation 
greenhouse systems, with emphasis on localizing food production to enhance food security and reduce logistical carbon 
footprints [2]. At the core of these developments is the convergence of agriculture with digital technologies—specifically 
the integration of sensors, Internet of Things (IoT) infrastructure, and cyber-physical systems (CPS)—to enable 
intelligent, adaptive control over indoor environments. 

The move toward data-centric agriculture has also been driven by growing consumer demand for quality, pesticide-free 
produce, as well as policy pushes for climate-resilient farming methods. Indoor agricultural systems are now expected 
not only to deliver yield but also to do so with minimal environmental impact. Thus, harnessing sensor-rich 
environments and real-time data flows to automate operations is not just a matter of efficiency—it is critical to the long-
term sustainability of agriculture itself [3]. 

1.2. The Need for Autonomous Systems in Sensor-Rich Environments 

The proliferation of low-cost environmental and crop-specific sensors has transformed indoor farms into data-intensive 
ecosystems. Parameters such as light intensity, CO₂ concentration, leaf temperature, electrical conductivity (EC) of 
nutrient solutions, and relative humidity are continuously monitored at granular levels. While this influx of data offers 
unparalleled visibility, it also introduces complexity that surpasses the capabilities of human operators to manage 
effectively in real time [4]. 

Traditional rule-based control systems, though functional in stable environments, lack the adaptability needed to 
interpret dynamic interactions among environmental variables and biological responses. The interdependence between 
inputs (e.g., nutrient flow, lighting, and ventilation) and plant outcomes necessitates decision-making that is not only 
rapid but also context-sensitive. In such scenarios, autonomous CPS frameworks—characterized by closed-loop control 
and machine learning-based reasoning—become indispensable [5]. 

These systems enable real-time actuation based on predictive insights rather than preprogrammed thresholds, 
accounting for plant phenotypic feedback and environmental variability. CPS can, for example, adjust irrigation 
frequency based on transpiration rates inferred from leaf temperature and humidity trends, or optimize spectral 
lighting in response to growth stage data captured through computer vision. This real-time adaptiveness enhances 
resource efficiency, maximizes yield, and minimizes operational costs, particularly in resource-constrained setups 
where misallocation can result in significant losses [6]. 

1.3. Research Gaps in Existing CPS-Agriculture Literature 

Despite the promising theoretical foundations of CPS in agriculture, current literature reveals several limitations in their 
practical deployment. Firstly, many studies focus on component-level applications—such as AI-based irrigation 
controllers or light optimization tools—without addressing the full integration of these elements into a unified, 
autonomous system. Such fragmentation limits scalability and undermines the synergistic potential of CPS [7]. 

Secondly, existing CPS frameworks often rely on static models that fail to evolve with plant development or account for 
inter-crop variability. For instance, machine learning models trained on early growth data may become less accurate 
over time if not continuously updated with new observations. This lack of continuous learning impairs long-term 
performance and can lead to suboptimal decisions as conditions shift [8]. 

Another notable gap is the underutilization of cross-domain data fusion techniques. While many sensor modalities are 
present in modern greenhouses, integrating data across physical, chemical, and visual domains for cohesive decision-
making remains a challenge. For example, few models effectively link computer vision data (e.g., leaf color and size) 
with nutrient flow parameters to assess and rectify deficiencies in real time [9]. 

Moreover, economic and hardware constraints present barriers to CPS adoption in small and medium-sized operations. 
Much of the literature assumes access to robust cloud infrastructures and advanced edge devices, overlooking the need 
for lightweight, decentralized models that function efficiently with limited resources. This gap emphasizes the need for 
research into adaptive CPS designs that balance computational complexity with accessibility and cost-effectiveness [10]. 
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1.4 Aim, Objectives, and Research Questions 

This study aims to design and evaluate an integrated CPS framework for indoor agriculture that enables real-time 
adaptive decision-making across diverse environmental and resource constraints. The framework is intended to bridge 
the gap between sensor-generated data and autonomous action, optimizing both crop performance and resource 
allocation. 

The primary objectives are: 

(1) To develop a modular CPS architecture that integrates multi-modal sensor data into a cohesive decision-making 
platform; 
(2) To implement machine learning algorithms capable of continuously updating control strategies based on plant and 
environmental feedback; 
(3) To test the system across different growth stages and environmental settings to evaluate adaptability and 
performance; 
(4) To assess the scalability and economic feasibility of deploying such CPS frameworks in small to medium-scale indoor 
farms. 

To guide these objectives, the study poses the following research questions: 

• How can CPS enable real-time adaptive decision-making in resource-constrained indoor farms? 

• What algorithms best support continuous learning and decision updating in dynamic plant-environment 

systems? 

• How can multi-modal sensor data be fused effectively to improve the accuracy and reliability of CPS-based 

control decisions? 

• What trade-offs exist between system complexity, computational overhead, and practical deployment viability 

in varying farm contexts? 

By addressing these questions, this study contributes to the emerging field of autonomous agronomic systems, offering 
a scalable blueprint for intelligent indoor farming. The research also explores how CPS can be contextualized to local 
environmental and economic constraints, ensuring its relevance and impact across diverse agricultural ecosystems [11]. 

2. Literature Review and Conceptual Foundation  

2.1. Evolution of CPS 

The integration of CPS into agriculture reflects a transformative convergence of digital control, sensing, and mechanical 
systems. Early agricultural practices focused on manual labor, seasonal patterns, and empirical decision-making. With 
technological progression, mechanization became dominant, characterized by the use of tractors, irrigation machines, 
and chemical sprayers. However, these systems lacked dynamic adaptability and real-time intelligence, limiting 
optimization. 

CPS began as an interdisciplinary fusion involving embedded computing, feedback control systems, and physical 
processes. Its early applications in agriculture included temperature monitoring and controlled irrigation. These 
systems were initially static, with limited data responsiveness. The development of distributed sensors, wireless 
communications, and improved actuators marked a significant shift. Mechanisms that once operated independently 
became interconnected, forming a backbone for modern precision agriculture [6]. 

CPS in agriculture gradually evolved from isolated automation to interactive systems capable of real-time decision-
making. The embedding of control loops in physical machinery allowed feedback from environmental variables such as 
soil pH, humidity, and sunlight. This opened doors to automated fertilization, precision seeding, and pest management 
with minimal human intervention [7]. 

Data collection methods transitioned from manual logs to sensor-driven logs, which allowed anomaly detection in crop 
growth cycles. Furthermore, algorithmic advancements permitted the use of historical data patterns to enhance 
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planting decisions. The enhancement of data fusion techniques and the improvement of microcontroller processing 
speeds also contributed to wider CPS adoption in agricultural domains. This continuous evolution of CPS has laid the 
groundwork for sustainable, resource-efficient farming methodologies [8]. 

2.2. Comparative Studies of Traditional vs. CPS-Enabled Systems 

Traditional farming systems operate on static principles of experience and reactive problem-solving. In contrast, CPS-
enabled agriculture introduces proactive intelligence, where embedded systems adjust processes autonomously in 
response to external stimuli. Comparative studies demonstrate clear advantages in yield efficiency, resource utilization, 
and labor reduction when CPS is employed [9]. 

One comparative study highlighted water conservation differences between conventional irrigation and CPS-controlled 
drip irrigation. The latter reduced water consumption by over 30%, with no significant yield reduction. Real-time 
sensing enabled precise application of water based on plant stress indexes, which are otherwise invisible to the naked 
eye. Additionally, fertilizer overuse—a common issue in traditional farming—was notably minimized through CPS 
integration [10]. 

Another example lies in pest management. Traditional spraying schedules rely on intuition and fixed calendars. CPS, 
through environmental sensing and insect pattern analysis, enables targeted pesticide application, reducing chemical 
waste and ecological damage. Crop health analysis using spectral data and drone surveillance enhances disease 
detection before symptoms manifest visibly [11]. 

Moreover, CPS-enabled systems outperform traditional setups in labor efficiency. Mechanisms such as autonomous 
tractors, robotic harvesters, and smart greenhouses reduce human dependency. While traditional farming is inherently 
labor-intensive, CPS streamlines operational workflows through mechanized automation. This does not merely replace 
labor but reallocates it towards high-skill tasks such as monitoring and system calibration [12]. 

Although traditional farming has historically served humanity's subsistence and cultural values, the growing demands 
of food security, climate variability, and sustainability call for systems that offer real-time intelligence and resilience—
features inherently supported by CPS architectures. 

2.3. IoT, Edge, and AI Triad: Foundations and Synergies 

The effectiveness of CPS in agriculture is rooted in the powerful triad of the Internet of Things (IoT), edge computing, 
and artificial intelligence (AI). Each component addresses unique system challenges, and together, they form the 
functional core of modern CPS frameworks. 

IoT devices provide the sensing capabilities necessary for CPS operations. In agriculture, sensors monitor soil 
conditions, detect motion, record environmental variables, and interface with actuators. These devices form the nervous 
system of CPS, converting physical events into digital data [13]. IoT-enabled greenhouses, for example, measure 
temperature and humidity while feeding data to cloud-based dashboards for analytics and alerts. 

However, transmitting vast quantities of data to remote servers introduces latency, which may be detrimental for time-
sensitive agricultural processes. Here, edge computing plays a pivotal role. It enables data processing closer to the 
source—within the farm environment—reducing latency and bandwidth consumption. An edge device could 
autonomously decide to open a greenhouse vent when CO₂ levels exceed safe thresholds, without cloud intervention 
[14]. 

The third component, AI, transforms raw data into actionable intelligence. Machine learning models trained on 
historical crop yield, weather patterns, and disease outbreaks provide predictive capabilities. This includes forecasting 
pest infestations or determining the optimal harvest time based on real-time growth indicators [15]. 

Together, this triad enables an intelligent, distributed, and autonomous CPS ecosystem. The integration reduces human 
decision burden, enhances precision, and ensures robustness against environmental uncertainties. The synergy ensures 
that farming systems not only react but anticipate conditions, ushering in a new era of computational agriculture. 

Importantly, the modularity of this triad means systems can be scaled or customized to suit specific agricultural 
domains—from large industrial farms to smallholder indoor gardens—without a complete redesign. It also enhances 
resilience, as localized AI inference through edge computing reduces dependence on continuous internet connectivity. 
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2.4. Conceptual CPS Architecture for Indoor Cultivation 

Indoor cultivation presents a controlled environment where CPS can be applied with maximal efficacy. Unlike open-
field farming, indoor systems can fully utilize closed-loop feedback mechanisms to regulate environmental variables for 
optimal crop growth. A conceptual CPS architecture for such cultivation involves several integrated layers: sensing, 
control, actuation, communication, and analytics. 

The sensing layer includes devices for detecting light intensity, humidity, CO₂ concentration, nutrient levels, and 
temperature. These sensors feed data into the control unit, which houses edge-processing modules and 
microcontrollers. For example, an Arduino or Raspberry Pi system may process sensor input and generate commands 
based on programmed thresholds [16]. 

The control layer interfaces with actuators that manage lighting (via LED arrays), irrigation (via solenoid valves), and 
ventilation (via servo-controlled fans). Communication protocols such as MQTT or Zigbee ensure reliable data exchange 
between components, even in a mesh topology. 

Data flows from the edge control unit to cloud servers for long-term storage and AI-based analytics. Here, models 
identify patterns or deviations—such as suboptimal growth rates or early disease symptoms—and communicate 
adjustments back to the edge node. The system can autonomously modify nutrient composition in hydroponic systems 
or adjust lighting cycles based on photoperiod models [17]. 

Security and fault tolerance are built into the architecture through backup power supplies, encrypted data transmission, 
and fail-safe overrides. Moreover, the architecture is designed to be modular, allowing scalability for commercial-scale 
production or smaller urban farms. Integration with mobile dashboards enables remote monitoring and manual 
override when necessary, giving farmers complete oversight [18]. 

A significant strength of CPS in indoor cultivation lies in its capability for continuous adaptation. As plant biology 
changes during growth cycles, control systems recalibrate operational parameters in real time. This dynamic 
optimization leads to higher yields, better quality produce, and minimal resource wastage. Furthermore, such 
environments are ideal for data-driven experimentation and AI model refinement, as variables can be tightly controlled. 

This architecture exemplifies the CPS ethos: the seamless fusion of computational logic, sensing networks, and physical 
systems to create intelligent, autonomous, and sustainable agricultural operations. 

 

Figure 1 Proposed conceptual architecture 

3. Materials and methods  

3.1. Study Design and Case Environments 

The empirical study was designed to assess the impact of cyber-physical systems (CPS) on precision agriculture in 
controlled indoor farming scenarios. Two specific environments were chosen for comparative analysis: a vertical 
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hydroponic lettuce farm and a recirculating aquaponic chamber. Both case environments were selected based on their 
relevance to urban agriculture, resource efficiency, and the growing demand for space-saving cultivation models [11]. 

The vertical lettuce farm consisted of stacked trays within a climate-controlled chamber. Each level was independently 
monitored and controlled to allow multi-zone analysis of microclimatic conditions. In contrast, the aquaponic chamber 
integrated aquatic animal life (tilapia) and plant systems, relying on biofiltration and natural nutrient cycling. These 
two systems provided distinct operational constraints—hydroponics required external nutrient delivery, while 
aquaponics involved balancing fish health with plant requirements. 

Each setup occupied less than 50 square meters, optimizing the use of enclosed environments for high-density yield. 
Environmental control systems were enclosed in insulated steel-framed modules with polycarbonate walls to simulate 
greenhouse conditions. The primary goal was to determine how effectively CPS could adaptively regulate variables like 
nutrient flow, light intensity, and temperature within these distinct ecosystems [12]. 

3.2. CPS Infrastructure Setup (Sensors, Networks, Actuators) 

The CPS infrastructure for both case environments was designed with modularity and scalability in mind. The setup 
consisted of five major components: sensor arrays, control processors, actuators, network interfaces, and cloud 
endpoints. 

Sensors included pH meters, dissolved oxygen probes, temperature thermistors, relative humidity sensors, and PAR 
(photosynthetically active radiation) sensors. These devices captured real-time data at intervals of five minutes to 
enable responsive control actions. The aquaponic system included additional sensors for ammonia, nitrate, and nitrite 
concentrations in the water to ensure aquatic species viability [13]. 

For networking, a combination of Zigbee mesh and Wi-Fi 802.11n protocols was employed. Zigbee facilitated intra-
system communication among low-power devices, while Wi-Fi served as the backbone for cloud synchronization. The 
network design minimized data collisions and allowed redundant pathways for critical sensor nodes. 

Actuators deployed in the vertical farm included solenoid valves for nutrient and water delivery, stepper-motor-
controlled LED arrays for spectral light manipulation, and servo-controlled exhaust fans for ventilation. In the 
aquaponic chamber, actuators managed water pumps, aeration devices, and fish feeding systems. These actuators were 
controlled via microcontrollers programmed to respond autonomously or through cloud-issued commands [14]. 

The entire infrastructure was anchored on a microcontroller board integrated with a field-programmable gate array 
(FPGA) for real-time signal handling. This arrangement allowed for deterministic control cycles with sub-second 
resolution, crucial for time-sensitive irrigation and temperature correction. 

3.3. Edge Computing and AI Models Used (PID, RL, CNNs) 

To reduce latency and enhance autonomy, an edge computing module was embedded within each CPS node. This 
module consisted of a Raspberry Pi 4 running a lightweight Linux OS with containerized AI models. 

Three types of AI control strategies were implemented: 

1. PID Controllers: These were used for temperature and humidity control. PID tuning was manually adjusted 
during the initial calibration stage using Ziegler–Nichols methods. The controllers were looped with 
temperature sensors and exhaust fans, providing stable thermal conditions across zones [15]. 

2. Reinforcement Learning (RL): RL algorithms, specifically Q-learning, were implemented to optimize nutrient 
delivery in the vertical farm. The agent adjusted nutrient flow rates based on real-time feedback from growth 
rate sensors and root-zone electrical conductivity values. The policy updates were executed locally to ensure 
rapid convergence during growth cycle changes. 

3. Convolutional Neural Networks (CNNs): CNNs were used in visual surveillance tasks to detect leaf 
discoloration, pest presence, and canopy uniformity. Images were captured using a rotating IP camera mounted 
on a rail system. The CNN was trained on a labeled dataset of over 10,000 indoor plant images and executed at 
the edge level for localized anomaly detection [16]. 

This tri-model architecture ensured that both deterministic and probabilistic decisions were accounted for within the 
CPS loop, enhancing the system's overall responsiveness and predictive capacity 
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3.4 Experimental Variables (Nutrients, Light, Temperature) 

The experimental setup manipulated three key environmental variables across both systems: nutrient concentration, 
light characteristics, and ambient temperature. 

Nutrient concentration in the hydroponic farm was varied across five EC (electrical conductivity) levels, ranging from 
1.2 to 2.8 mS/cm. Nutrient recipes were modified weekly to match the lettuce growth stages, ensuring accurate nutrient 
assimilation. In the aquaponic system, nutrient variability emerged naturally from the fish-to-plant biomass ratio and 
water recirculation cycles [17]. 

Lighting conditions were controlled via LED panels supporting adjustable intensity and spectrum. Three light recipes 
were tested: blue-rich (450 nm), red-rich (660 nm), and full-spectrum white. Light cycles followed a 16:8 photoperiod, 
with gradual sunrise/sunset simulation over 30 minutes. These spectral conditions were alternated every 48 hours to 
observe photosynthetic efficiency and morphogenetic responses. 

Temperature was maintained within 20°C to 26°C for optimal lettuce growth and fish health. Environmental setpoints 
were altered in 2°C increments to evaluate thermal resilience of the CPS logic. Independent heating coils and Peltier 
cooling elements enabled precise thermal adjustments in response to external temperature fluctuations. 

All variable manipulations were recorded alongside their corresponding system responses to build a data-rich basis for 
later statistical and machine learning analysis [18]. 

3.5 Data Collection, Calibration, and Preprocessing 

Data collection followed a structured framework. Each sensor node logged readings to a local SQLite database before 
syncing with the cloud database every 30 minutes. This dual-tiered storage mechanism ensured resilience against 
communication failures and allowed for seamless data stitching. 

Calibration procedures were performed bi-weekly. Nutrient sensors were calibrated using reference EC solutions, pH 
meters with standard buffer solutions (pH 4.0, 7.0, and 10.0), and temperature sensors cross-verified with alcohol-
based thermometers. Data from faulty sensors were flagged using Mahalanobis distance checks and removed from 
training datasets [19]. 

Preprocessing steps included: 

• Normalization of continuous variables (e.g., nutrient levels, humidity) using z-score standardization. 

• Image resizing to 256×256 pixels and grayscale augmentation for CNN efficiency. 

• Time alignment for asynchronous sensor readings using interpolation techniques. 

• Outlier removal through interquartile range (IQR) filtering. 

Data streams were tagged with timestamps and categorized by environmental zone, variable type, and actuator 
response. This structured preprocessing pipeline enabled cleaner model training and real-time analytics. 

3.6 Evaluation Metrics (Latency, Yield, Energy, Uniformity) 

The effectiveness of the CPS deployments was measured using four key evaluation metrics: system latency, crop yield, 
energy consumption, and growth uniformity. 

Latency was defined as the time lag between sensor detection and actuator response. Measurements were made using 
timestamp comparisons across logs. Average latency was 1.8 seconds in the hydroponic system and 2.1 seconds in the 
aquaponic system. The edge computing configuration contributed significantly to reduced latency compared to 
centralized cloud-only systems [20]. 

Crop yield was assessed at the end of each growth cycle by measuring fresh weight per plant. The CPS-managed vertical 
farm yielded an average of 210 grams per lettuce head, compared to 180 grams in the manually controlled control group. 
The aquaponic system showed a 14% improvement in fish biomass due to optimized feeding cycles. 
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Energy consumption was monitored using smart meters at the subsystem level (lighting, ventilation, pumping). CPS-
enabled optimizations led to a 19% reduction in energy usage per kilogram of produce by fine-tuning operational cycles 
and eliminating idle times in non-peak periods. 

Growth uniformity was quantified using computer vision metrics. Standard deviation in leaf size and color uniformity 
was measured across zones. The CNN-based system detected and corrected asymmetries early, resulting in a 30% 
improvement in uniformity scores compared to non-CPS systems [21]. 

Collectively, these metrics provided quantifiable evidence that CPS not only enhances control but delivers tangible 
improvements in efficiency, predictability, and scalability. The architecture designed and tested across both 
environments showed promise for broader adoption in precision agriculture applications where space, resources, and 
climate control are paramount. 

Table 1 Sensor Specifications, Roles, and Placement Strategies  

Sensor Type Specification Role in CPS Placement Strategy 

Temperature 
Sensor 

±0.2°C accuracy, 
digital output 

Monitor ambient and substrate 
temperature 

Placed above canopy and near 
root zone per vertical tier 

Humidity Sensor ±2% RH accuracy, 
capacitive type 

Regulate ventilation and detect 
transpiration rates 

Mounted at plant mid-height 
level across zones 

CO₂ Sensor 400–5000 ppm 
range, NDIR type 

Control airflow and optimize 
photosynthesis 

Positioned near ventilation inlet 
and plant canopy 

pH Sensor Range 4–10, ±0.1 pH 
accuracy 

Adjust nutrient dosing in 
hydroponic/aquaponic loops 

Submerged in nutrient 
reservoirs or aquaponic tanks 

EC Sensor 0–5 mS/cm, ±2% FS 
accuracy 

Ensure correct nutrient 
concentration 

Installed inline in irrigation and 
return flow 

PAR Light Sensor 400–700 nm spectral 
response 

Optimize grow light schedules and 
intensity 

Located above canopy and 
adjusted seasonally 

Camera (RGB/IR) 1080p, 30fps, night 
vision ready 

Detect growth anomalies and drive 
AI models 

Rail-mounted, mobile above 
beds, angled perpendicularly 

Dissolved Oxygen 
Sensor 

0–20 mg/L, optical 
sensor 

Maintain aquatic health in 
aquaponic systems 

Positioned in fish tank near 
aeration output 

4. Results and Analysis  

4.1. Environmental Parameter Stability with CPS vs. Manual Systems 

Maintaining environmental stability is crucial for optimal indoor cultivation. In traditional systems, control of 
environmental parameters such as temperature, humidity, and CO₂ levels typically involves scheduled manual 
adjustments or reliance on thermostatic switches. These systems often experience delayed responses to disturbances, 
resulting in wider parameter fluctuations. 

In contrast, CPS-enabled setups demonstrated superior environmental stability due to continuous feedback from 
sensors and real-time decision loops. In the vertical lettuce farm, CPS maintained temperature within ±0.8°C of the 24°C 
setpoint, while the manually controlled counterpart fluctuated by ±2.1°C over the same period. Similarly, relative 
humidity remained within a 5% variance in the CPS configuration but exceeded 11% variance under manual regulation 
[15]. 

The aquaponic chamber showed marked improvement in water pH control, with CPS reducing deviation from 6.8 by 
60% compared to the manually adjusted baseline. These results validate CPS advantages in maintaining tight 
environmental control, crucial for preventing plant stress and aquatic ecosystem imbalance. Moreover, real-time 
parameter adjustments based on instantaneous data allowed CPS to act preemptively, maintaining stability even during 
external thermal disturbances or water influxes. 
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Such resilience was achieved through sensor redundancy and localized PID control loops that processed feedback 
independently, reducing reliance on a centralized processor. This structure contributed to higher uptime and better 
stress tolerance in plant physiological responses [16]. 

4.2. Real-Time Response Performance and Latency Metrics 

One of the fundamental metrics in comparing CPS to traditional control systems is response latency—the time taken 
between detecting a deviation and executing corrective action. Traditional systems often rely on delayed manual input 
or mechanical timers, introducing significant lag into system responses. 

In this study, average latency for the CPS setup was 1.7 seconds across five controlled response scenarios, compared to 
3.3 seconds in the manually controlled setup (Figure 2). CPS latency remained below 2 seconds even under 
simultaneous multi-sensor activation, thanks to decentralized edge computing and optimized communication protocols 
[17]. 

Latency measurements were particularly critical during sudden thermal spikes and nutrient pH swings. CPS systems 
managed to activate ventilation fans and nutrient balancing valves within two seconds of deviation detection. In 
contrast, the traditional system often failed to respond within five seconds, leading to temporary but significant 
environmental disruption. 

In addition to latency, system jitter—or variability in response time—was lower in CPS operations, enhancing 
predictability. The edge processing node buffered sensor data, filtered noise, and ensured deterministic actuation 
timing, all contributing to consistent performance [18]. 

4.3. Crop Yield, Biomass, and Growth Uniformity 

Yield and biomass measurements provided a biological validation of CPS system performance. In the vertical 
hydroponic farm, CPS-enabled beds produced an average lettuce yield of 210 grams per head, compared to 185 grams 
from manually controlled beds (Figure 3). This 13.5% increase was attributed to optimized nutrient flow, precise 
lighting cycles, and stable microclimatic conditions [19]. 

Biomass assessments in the aquaponic chamber also favored CPS-controlled environments. Tilapia mass increased by 
17%, and leaf chlorophyll concentration was consistently higher in CPS zones. Crop canopy uniformity, measured using 
leaf area index (LAI) and image-based standard deviation of canopy height, also improved. CPS zones showed 27% 
lower variance in plant height compared to the control zones, indicating more uniform growth. 

CNN-based image analysis models identified early-stage discrepancies in plant morphology and triggered localized 
lighting and nutrient corrections. These interventions reduced the occurrence of stunted or underdeveloped plants, 
further enhancing overall biomass consistency [20]. 

4.4. Actuation Efficiency and Energy Use Metrics 

Efficiency in actuator operation directly impacts energy consumption, particularly in resource-intensive components 
such as lighting, ventilation, and water pumps. CPS’s ability to implement event-driven actuation—activating systems 
only when needed—contributed significantly to energy savings. 

Smart scheduling based on real-time data allowed lights to dim during periods of high ambient light, while fans operated 
only during humidity surges. Compared to fixed-interval actuation in traditional systems, CPS reduced total actuator 
runtime by 22% across the vertical farm setup [21]. 

Energy audits revealed a 19% decrease in kilowatt-hour (kWh) consumption per kilogram of produce in CPS-enabled 
setups. This was most notable in lighting systems, where adaptive spectral controls minimized unnecessary blue-light 
emissions in late growth stages, cutting energy use by nearly 28%. 

Water pump cycles in the aquaponic system were reduced by intelligent forecasting algorithms that predicted nitrate 
saturation and adjusted flow schedules accordingly. These savings translated not only to reduced electricity bills but 
also prolonged actuator lifespan due to minimized wear and tear [22]. 
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4.5 Model Convergence and AI Decision Accuracy 

Model convergence and decision accuracy are essential indicators of how reliably the CPS can adapt and optimize its 
responses over time. In this study, convergence was measured as the time or iteration count required for machine 
learning models—particularly the reinforcement learning (RL) agents—to reach optimal policies. 

The Q-learning agent used in nutrient optimization converged within 68 episodes, where each episode represented a 
full 24-hour crop cycle. The reward function, designed to balance nutrient cost with growth metrics, stabilized at a 
performance plateau after the 70th iteration, indicating reliable decision-making [23]. 

The CNNs used for image-based canopy monitoring achieved 92.4% classification accuracy on the test set. The false-
positive rate for pest detection was 4.7%, while the model correctly identified early signs of powdery mildew with 
88.9% sensitivity. These accuracies were maintained over a three-week rolling test, validating both convergence and 
consistency. 

Edge deployment of these models ensured timely inference, while periodic retraining using cloud-aggregated datasets 
prevented performance drift. Model calibration routines were executed weekly, using updated sensor logs and manually 
labeled images to ensure alignment with ground truths [24]. 

4.6 CPS Fault Tolerance and Redundancy Performance 

Fault tolerance is a critical requirement in any autonomous system. CPS systems were tested for resilience against node 
failures, sensor dropouts, and actuator errors. In fault simulation tests, CPS setups recovered from 87% of induced 
failures without external intervention. 

Redundancy was implemented at multiple layers. Each sensor type was paired with a secondary unit at 30 cm spacing, 
allowing real-time cross-verification. Actuators had fallback logic to activate based on predefined thresholds if 
communication with the main controller failed [25]. 

When a temperature sensor failed in the vertical farm, the system rerouted logic through adjacent sensors and 
maintained thermal control with only a 0.5°C deviation. In the aquaponic chamber, a simulated pump failure triggered 
a temporary redistribution of flow via auxiliary lines, ensuring uninterrupted water circulation. 

Error logs and anomaly flags were broadcast to remote dashboards with severity grading, enabling rapid human 
oversight where necessary. These features collectively improved system uptime and ensured minimal disruption to 
plant and aquatic life [26]. 

The ability of CPS to sustain operations under partial failures without immediate human correction reinforces its 
viability in unattended or remote agricultural deployments. Moreover, diagnostic data collected during fault scenarios 
enriched the training datasets, enhancing future model robustness. 

Figure 2 illustrates a consistent performance advantage of CPS systems over traditional control mechanisms. The lower 
and more stable response time across iterations underscores the deterministic nature of CPS actuation and the benefit 
of edge processing for latency-sensitive operations. 
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Figure 2 Response time comparison (CPS Vs Traditional system ) 

As shown in Figure 3, CPS-enabled setups significantly outperformed their traditional counterparts in both crop yield 
and biomass accumulation. The vertical hydroponic farm benefited from real-time nutrient optimization, while the 
aquaponic system showed improved fish and plant growth due to precise ecosystem balancing. The comparative 
evaluation of CPS and traditional agricultural systems confirms the superior performance of CPS in multiple operational 
dimensions. From environmental parameter stability to real-time actuation, CPS configurations demonstrate lower 
latency, higher precision, and greater resilience. AI models embedded within these systems consistently achieve high 
accuracy and fast convergence, further enhancing decision quality. Energy efficiency gains and system redundancy 
elevate CPS not only as a precision tool but as a sustainable and scalable agricultural solution. These results provide a 
compelling case for broader CPS adoption in both urban and industrial farming contexts. 

 

Figure 3 Yield and biomass comparison across setups 
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Table 2 AI Model Performance Metrics summarized in text format 

Model Mean Absolute Error (MAE) Avg Latency (sec) Reward Score (%) 

PID Controller 0.40 0.8 N/A 

Q-Learning (RL) 0.27 2.3 84.5 

CNN (Vision) 0.15 1.1 91.2 

5. Discussion  

5.1. Key Findings: Interpretations and Practical Implications 

This investigation into cyber-physical systems (CPS) for indoor agriculture yielded several meaningful outcomes. CPS-
enabled environments significantly outperformed manually controlled counterparts across metrics including 
environmental stability, yield efficiency, and energy use. Real-time sensing, embedded actuation, and AI-based decision-
making contributed to highly responsive, self-regulating cultivation conditions. 

Perhaps the most important practical implication was the direct translation of environmental consistency into biological 
performance. Lettuce crops exposed to tightly managed CPS systems produced higher yield per unit area and exhibited 
lower variance in morphology. Similarly, fish and plant biomass in the aquaponic system improved under intelligent 
balancing of nutrient and oxygen delivery [19]. 

Additionally, the use of edge computing minimized latency and enabled autonomous action at the local level without 
relying on continuous internet connectivity. This configuration supports deployment in semi-remote or bandwidth-
constrained settings. Overall, the study confirms that CPS offers a viable framework for sustainable, high-precision 
agriculture under resource-limited and space-constrained conditions [20]. 

5.2. Comparison with Prior Research 

Prior work in smart farming predominantly focused on either sensor-based monitoring or isolated automation. For 
instance, legacy systems implemented basic environmental logging combined with manual actuator triggering or used 
timers without adaptive feedback. These systems, while functional, did not achieve dynamic adaptation to real-time 
biological and environmental changes. 

Comparatively, the CPS implementation detailed here aligns with emerging literature advocating integrated, responsive 
systems that close the loop between data sensing and physical response. One such study highlighted that automated 
greenhouses using open-loop controllers faced significant inefficiencies under variable climate inputs. In contrast, our 
CPS models maintained consistent environmental baselines using PID-tuned edge controllers and reinforcement 
learning agents [21]. 

While earlier frameworks often depended heavily on cloud-based AI processing, which introduced latency and 
increased power usage, the edge-oriented CPS described in this study operated with lower data transfer overhead and 
greater control determinism. This differentiator is particularly critical for agricultural applications where timing 
precision and reliability are paramount [22]. 

5.3. System Limitations (Hardware, Network, Data Drift) 

Despite strong performance, several limitations emerged. Hardware limitations included the finite lifespan of sensors 
and actuators. Low-cost pH sensors, for example, exhibited drift after 45 days of continuous use, necessitating 
recalibration. Failure to do so caused inaccurate readings, which led to suboptimal nutrient adjustments in the 
hydroponic system [23]. 

Network instability also posed challenges. While the hybrid Zigbee and Wi-Fi mesh reduced packet loss, high-frequency 
polling intervals sometimes led to congestion, particularly when multiple nodes transmitted simultaneously. Although 
local buffering reduced data loss, temporal misalignment between sensor readings introduced inconsistencies in model 
training. 
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Another significant limitation was data drift in AI models. Environmental dynamics caused shifts in sensor baselines 
over time, which degraded model accuracy. Periodic retraining using labeled data helped mitigate this drift but required 
manual annotation and cloud-based processing during system downtime. CNNs used for canopy assessment, in 
particular, showed reduced sensitivity to early disease onset as plant pigmentation evolved over growth stages [24]. 

Finally, physical modularity introduced complexity in system wiring and power distribution. Adding new sensor-
actuator clusters required recalibration and updated configuration files. While this did not hinder long-term 
performance, it delayed initial scalability and increased installation time. 

5.4. Scalability of Modular CPS in Vertical and Distributed Farms 

Scalability remains one of the most important criteria for widespread CPS adoption in agriculture. The modular 
architecture employed in this study was designed for plug-and-play expansion. Each CPS unit—consisting of sensors, 
actuators, and an edge controller—could operate independently or in networked configurations. This setup proved 
effective for both stacked vertical farms and horizontally distributed aquaponic systems [25]. 

In the vertical farm, CPS clusters were deployed at the tray level, allowing fine-grained environmental control. As trays 
were added, new CPS nodes were integrated with minimal reprogramming. Each tray had autonomy over its 
microclimate, resulting in more efficient use of energy and nutrient resources across layers. 

In distributed farms, where different cultivation chambers operated in parallel, modularity allowed specialization. For 
instance, one aquaponic unit focused on leafy vegetables while another supported fruiting plants, each with tailored 
nutrient and lighting regimes. Shared dashboards allowed centralized monitoring, while control actions remained local 
to reduce communication delay and potential cross-interference. 

This structure supports expansion across larger facilities without compromising responsiveness or increasing systemic 
fragility. It also facilitates interoperability across multiple vendors, allowing farms to incorporate best-in-class 
components from different manufacturers without proprietary lock-in [26]. 

5.5. Recommendations for Practical Deployment 

To ensure successful deployment of CPS in real-world agricultural environments, several recommendations emerge 
from this study: 

5.5.1. Prioritize Sensor Quality and Redundancy 

Given that sensor accuracy directly impacts CPS reliability, farms should invest in high-quality sensors with proven 
longevity. Redundancy—such as dual sensor placement with cross-validation logic—can prevent erroneous data from 
compromising system decisions [27]. 

5.5.2. Use Edge Computing for Autonomy 

Edge nodes should be the default processing centers for time-sensitive decisions. These nodes can operate offline during 
temporary network outages, ensuring uninterrupted control. This approach also limits cloud dependency, which is often 
a bottleneck in rural or infrastructure-poor regions. 

5.5.3. Integrate Visual Feedback and Manual Overrides 

hile CPS reduces the need for constant human monitoring, it should not eliminate visibility. Figure 4 presents an 
example dashboard that combines system alerts, actuator status, and live environmental data. Such interfaces facilitate 
trust and allow operators to intervene during model misclassifications or mechanical faults. 

5.5.4. Develop a Modular Configuration Repository 

Standardized configuration templates should be created to simplify the onboarding of new CPS nodes. These templates 
can automate calibration routines, default thresholds, and communication protocols, significantly reducing system 
setup time. 

5.5.5. Implement Continuous Model Updates with Version Control 

AI models used in CPS must be versioned and periodically updated. Local retraining should be automated where 
possible, with logs maintained to track model changes and performance regressions. 



World Journal of Advanced Research and Reviews, 2023, 20(02), 1563–1584 

1576 

5.5.6. Plan for Power and Thermal Redundancy 

Even short power interruptions can disrupt plant growth cycles or aquatic life. Farms should deploy uninterruptible 
power supplies (UPS) and passive cooling solutions to maintain system stability during outages or thermal surges. 

5.5.7. Align CPS Goals with Crop Type and Facility Layout 

A one-size-fits-all CPS is rarely optimal. Configurations should be tailored to specific crops, their light and nutrient 
needs, and the physical layout of the growing environment. For instance, vining plants may require 3D monitoring and 
trellis-integrated actuation, while root crops may demand subsurface moisture control. 

By incorporating these considerations, practitioners can maximize the effectiveness, reliability, and longevity of CPS 
systems, thereby advancing food production in a sustainable and data-driven manner. 

 

Figure 4 Visual Dashboard Snapshot of Real-Time Control Interface 

Figure 4 illustrates a typical CPS operator dashboard designed for indoor agriculture. The interface displays real-time 
values for temperature, humidity, and CO₂ concentration. It also shows actuator states such as fan, nutrient pump, and 
lighting spectrum. Graphical widgets and alerts summarize system health, with color-coded messages indicating 
normal, warning, or critical states. 

Live graphs enable temporal trend analysis, allowing users to validate AI decisions or intervene when deviations occur. 
These dashboards serve both as monitoring tools and educational aids, especially for small-scale farmers transitioning 
into smart farming. Customizable layouts and remote access features ensure scalability for farms with multiple CPS 
nodes or geographically dispersed facilities. 

This section synthesized the empirical insights from deploying CPS in indoor agriculture, offering evidence-based 
interpretations and pragmatic recommendations. CPS demonstrated superior performance across yield, energy, and 
reliability metrics, though challenges such as sensor drift and data model maintenance persist. Nonetheless, the modular 
design and edge-driven intelligence pave the way for scalable and resilient applications in future farming. With the right 
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strategies, CPS can become a cornerstone of precision agriculture—bridging the gap between biological processes and 
autonomous engineering systems. 

6. Case Studies and Implementation Insights  

6.1. Case 1: Modular CPS in Multilevel Leafy Green Facility 

A multilevel vertical farming system was deployed to evaluate the efficacy of a modular CPS architecture in managing 
microclimates across stacked cultivation layers. Each level featured autonomous sensor clusters, actuator pairs 
(ventilation fans and solenoid-controlled nutrient valves), and local edge processing units. A total of twelve trays—each 
1.2 m²—were organized across four vertical tiers within a sealed grow chamber [23]. 

The environmental variables monitored included temperature, humidity, and light intensity per tray. Each 
microcontroller ran a PID controller configured for rapid realignment of variables within set thresholds. For example, 
if the upper tier experienced temperature rise due to heat stacking, fan speeds were adjusted locally without affecting 
adjacent zones. This ensured energy-efficient responses and minimized disruption to overall farm operations [24]. 

Results showed a yield increase of 14% per square meter compared to the baseline manual configuration. Furthermore, 
nutrient use dropped by 21% due to event-driven irrigation, activated only when substrate moisture dropped below 
sensor-calibrated levels. System uptime exceeded 98.6% across 30 days of operation. 

Despite the operational success, challenges emerged in sensor calibration drift across trays. Lower-tier sensors, exposed 
to condensate buildup, required weekly cleaning to avoid corrosion-based signal distortion. Power distribution also had 
to be segmented to prevent overload during simultaneous lighting cycles. These limitations highlighted the need for 
fault-tolerant infrastructure within stacked configurations [25]. 

6.2. Case 2: AI-Aided CPS in Aquaponics Loop 

In this case, CPS was applied to a recirculating aquaponic system integrating fish tanks and hydroponic grow beds. The 
system relied on dual-layer sensing: aquaculture sensors tracked dissolved oxygen, pH, ammonia, and temperature, 
while grow beds used moisture, light, and EC sensors. A convolutional neural network (CNN) was deployed on an 
NVIDIA Jetson Nano device to analyze real-time images of lettuce canopies for growth uniformity and disease markers 
[26]. 

The AI model was trained using 10,000 labeled images representing multiple growth phases and anomalies such as 
yellowing, curling, and fungal spots. Outputs were processed through edge computing to trigger lighting spectrum shifts 
and adjust oxygenation cycles in the aquatic zone when growth deviation was detected. For instance, a drop in canopy 
density would prompt lighting corrections or water flow increases to maintain plant vigor. 

In terms of performance, the AI-aided CPS achieved 91.5% disease detection accuracy and reduced average nutrient 
usage by 18% across a 40-day growth period. Fish health also improved, with a 9% increase in average biomass gain 
due to better water quality management. Notably, the system exhibited high responsiveness; ammonia spikes were 
corrected within 3.2 seconds, compared to over 7 seconds under manual control in previous experiments [27]. 

However, the CNN occasionally misclassified benign leaf edge curling as disease in low light, triggering false actuation 
events. This was addressed by introducing a confidence threshold and a verification loop involving operator feedback. 
Retraining the model with evening-light images reduced false positives by 36% in subsequent cycles. 

6.3. Deployment Challenges and Resolution Strategies 

While both case studies demonstrated strong outcomes, deployment challenges provided valuable insight into real-
world CPS scalability. Hardware fragility was one recurring issue. In both projects, pH and EC sensors exhibited 
functional decline within 60 days, prompting a move toward more robust, industrial-grade alternatives for long-term 
use [28]. 

Network issues also required resolution. In the multilevel farm, packet loss occurred during high-load data 
transmission, especially when all trays attempted to sync at once. This was mitigated by implementing staggered polling 
cycles and using Zigbee mesh topology to offload central bandwidth. In the aquaponic system, electromagnetic 
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interference from pump motors disrupted sensor readings. Shielded cabling and spatial separation of power and data 
lines improved signal fidelity. 

Another challenge was data drift and model aging. Over time, the CNN in Case 2 lost predictive reliability due to changing 
leaf textures in later growth stages. Weekly retraining with updated image sets was instituted, along with cloud-based 
logging to create a rolling dataset archive for continuous improvement [29]. 

Lastly, scalability posed wiring and configuration issues in the vertical farm. The addition of new modules required 
physical rewiring and integration into the software interface. To streamline this, a configuration auto-discovery 
protocol was implemented using mDNS and default firmware templates, enabling new nodes to self-register and sync 
with minimal manual intervention. 

Table 3 summarizes the key specifications, outcomes, and failure points for both case studies, providing a concise 
snapshot for future replication and scale planning. 

Table 3 Case Study Metrics—Setup Specifications, Outcomes, and Failure Points 

Parameter Case 1: Multilevel Farm Case 2: Aquaponics CPS 

System Area 4.8 m² (12 trays) 6.2 m² (aquatic + grow beds) 

Edge Processor ESP32 with PID loop Jetson Nano with CNN inference 

Sensors Temp, RH, light, moisture pH, DO, ammonia, EC, canopy cam 

Actuators Fans, nutrient pumps, LEDs Aerators, flow pumps, LEDs 

AI Integration PID + threshold logic CNN + rule-based control 

Yield Increase +14% vs. baseline +11% plant, +9% fish biomass 

Nutrient Efficiency 21% reduction 18% reduction 

Response Latency 2.5 seconds 3.2 seconds 

Major Failure Points Sensor corrosion, power overload Image misclassification, EMI 

Resolution Measures Sensor shielding, power zoning Retraining loop, cable shielding 

 

7. Security, Ethics, And Future Outlook  

7.1. CPS Vulnerabilities in Indoor AgTech (Data/Control Layer Risks) 

Cyber-physical systems (CPS) in agriculture integrate data sensing, control algorithms, and mechanical actuation—
forming a closed loop that is highly dependent on digital infrastructure. This architecture, while powerful, introduces 
several vulnerabilities, particularly at the data and control layers. These risks are exacerbated in indoor agricultural 
environments where physical redundancy is often limited. 

One core vulnerability lies in data integrity. Sensor spoofing or miscalibration can produce faulty environmental 
readings, leading to incorrect decisions by the control logic. For instance, a manipulated temperature sensor may 
prompt excessive ventilation, disrupting plant growth and wasting energy. Without layered validation or consensus 
protocols, these systems lack robust self-correction mechanisms [27]. 

The control layer also poses risks. Many systems rely on embedded firmware to make actuation decisions, which, if not 
properly encrypted or authenticated, can be overwritten or hijacked. Malicious actors targeting Wi-Fi or Zigbee 
networks can inject rogue commands into actuators, disrupting irrigation cycles or triggering system-wide failures [28]. 

Additionally, CPS nodes are frequently configured for remote access via unsecured interfaces. Open ports and outdated 
authentication protocols leave them vulnerable to intrusion. Unlike data centers, indoor farms often lack formal 
cybersecurity frameworks, making them attractive targets for low-skill cyberattacks [29]. 
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These digital vulnerabilities can cascade into biological consequences—crop loss, contamination, and system 
downtime—underscoring the need for risk-aware system design, network segmentation, and encrypted 
communication protocols. 

7.2. Ethical Challenges of Fully Autonomous Decision-Making 

As CPS transitions from assisted control to full autonomy, ethical concerns intensify. Agricultural decisions once made 
by experienced growers are now increasingly delegated to AI-driven platforms. While efficiency gains are undeniable, 
the ethical implications of unaccountable automation in food systems require critical attention. 

One challenge involves accountability during system failure. If an autonomous CPS over-irrigates and causes root rot, 
who is held responsible—the farmer, the developer, or the machine? This ambiguity complicates insurance frameworks 
and erodes user trust. The absence of legal precedence for AI-driven agricultural malpractice leaves ethical gaps in risk-
sharing [30]. 

Furthermore, machine decision-making lacks contextual nuance. AI may choose to cull an entire crop section based on 
disease probability without considering regenerative treatments or cultural significance. Unlike human operators, 
algorithms do not possess embedded value systems or empathy, making their actions purely utilitarian [31]. 

Ethics also intersect with data use. Indoor CPS platforms collect vast quantities of environmental and biological data, 
some of which could be proprietary. When cloud-based AI services process this data, concerns about ownership, 
consent, and commercial exploitation arise. Farmers may unknowingly train vendor-owned models while receiving no 
share of resulting benefits or insights [32]. 

To address these challenges, transparent algorithmic design, opt-in data governance models, and clear lines of liability 
must become standard practice before CPS autonomy is scaled across food production ecosystems. 

7.3. Toward Self-Learning, Self-Healing Agronomic Platforms 

The future of CPS lies in systems that not only automate, but also self-adapt and self-repair. Self-learning platforms use 
feedback from real-time data to refine control logic and predictions without manual reprogramming. In agriculture, this 
means that lighting schedules, irrigation cycles, and nutrient delivery can be optimized dynamically based on historical 
performance and changing growth patterns [33]. 

Reinforcement learning (RL) offers a promising framework here. Unlike static rule sets, RL agents interact with the farm 
environment, receive performance feedback, and adjust actions over time. In one prototype, an RL-based CPS learned 
to reduce water usage by 18% while maintaining crop yield by continuously updating its policy based on evaporation 
and absorption rates [34]. 

Equally critical is self-healing capacity. CPS nodes must detect internal anomalies—like sensor drift or actuator lag—
and execute predefined mitigation routines. This could include automatic failover to backup sensors, real-time alert 
generation, or execution of safe mode protocols to prevent damage. Such resilience ensures continued operation in the 
face of hardware degradation or partial system failures. 

Advances in federated learning and edge inference can further enhance autonomy. With federated models, knowledge 
acquired in one facility can be transferred to others without exposing raw data, preserving privacy while accelerating 
system evolution. These developments push CPS from being mere tools into becoming intelligent partners in 
agricultural decision-making [35]. 

7.4 Policy and Standardization Pathways for CPS in Farming 

To safely scale CPS in agriculture, coordinated policy and regulatory frameworks are urgently needed. Current 
agricultural standards primarily address chemical safety, food handling, and manual equipment. Digital control systems, 
by contrast, operate in a regulatory vacuum, where interoperability, cybersecurity, and algorithmic accountability 
remain unaddressed. 

One immediate need is for communication protocol standards. As farms deploy heterogeneous sensors and actuators, 
incompatibility hampers integration. Regulatory bodies should endorse open-source standards like MQTT and OPC UA, 
ensuring device-level interoperability and reducing vendor lock-in [36]. 
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Second, cybersecurity baselines must be defined. Mandatory encryption for sensor data, firmware authenticity checks, 
and minimum access control requirements can prevent most common attacks. CPS deployments should be audited 
under a digital equivalent of good agricultural practices (GAP), assessing not just safety but system resilience [37]. 

AI accountability is another frontier. Guidelines must stipulate transparency in algorithm design, including explainable 
AI mandates for control models that affect food production. Farmers should have the right to audit the logic behind 
critical decisions, particularly those involving crop loss or environmental deviation. This is especially vital for legal 
protection in regions where CPS may be used for high-value or food-security-critical crops. 

Finally, education and training must complement regulation. Farmers transitioning to CPS platforms require basic 
digital literacy, cybersecurity awareness, and troubleshooting skills. Policy must include provisions for capacity 
building, subsidies for technology adoption, and inclusion of smallholder operators to avoid deepening agricultural 
inequality [38]. 

By building robust legal and ethical scaffolding around CPS, policymakers can help ensure that this transformative 
technology serves as a sustainable and inclusive force in agriculture. 

 

Figure 5 Vision map of self-regulating CPS-driven farm ecosystem (2035) 

8. Conclusion 

8.1. Recap of Contributions 

This work has provided a comprehensive exploration of cyber-physical systems (CPS) as applied to indoor agriculture, 
detailing the evolution, architecture, real-world case implementations, performance outcomes, vulnerabilities, and 
future trajectories. It examined how CPS, powered by edge computing, artificial intelligence, and modular hardware 
frameworks, transforms traditional agricultural practices into adaptive, intelligent, and autonomous operations. 
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Key contributions include the design and analysis of modular CPS setups tailored for vertical farms and aquaponic 
systems. The study demonstrated that intelligent environmental control using sensors, actuators, and AI models 
significantly enhances productivity, reduces resource consumption, and improves consistency in crop outcomes. With 
measurable improvements in yield, nutrient efficiency, and growth uniformity, CPS systems show tangible advantages 
over legacy manual or timer-based alternatives. 

In-depth performance evaluations covered latency, energy use, actuation efficiency, and AI model convergence. The 
findings were further substantiated through real-world deployments, each revealing both operational benefits and 
practical challenges. Technical shortcomings such as sensor drift, model misclassification, and network interference 
were addressed through targeted resolution strategies, making the recommendations viable for adoption at both 
experimental and commercial scales. 

Ethical concerns and risks related to data privacy, autonomous decision-making, and CPS vulnerabilities were critically 
assessed, balancing the drive for automation with human oversight and accountability. Together, these contributions 
serve as a practical and conceptual blueprint for future applications of CPS in controlled-environment agriculture. 

8.2. System-Level Impact and Commercial Relevance 

At a systemic level, CPS technology represents a paradigm shift in agricultural operations, merging engineering 
precision with biological complexity. Traditional agriculture has long operated under reactive principles, where human 
intervention follows the detection of environmental stress or plant irregularities. CPS replaces this with a proactive, 
data-driven model that senses, decides, and acts in real-time, thereby enabling preventive intervention and optimized 
growth cycles. 

The impact of CPS spans several core areas: 

• Operational Efficiency: Automated monitoring and control minimize downtime, reduce reliance on labor, and 

eliminate inefficiencies associated with manual oversight. This is particularly relevant in regions facing 

agricultural labor shortages or increased energy costs. 

• Environmental Sustainability: CPS optimizes resource consumption by delivering water, nutrients, and light 

based on actual plant demand rather than schedule-based systems. This reduces waste and supports 

sustainable intensification, a growing imperative in urban and peri-urban farming. 

• Product Quality and Consistency: Standardized environmental control through CPS ensures more uniform 

crop quality, which is essential for supply chain reliability and premium market access. 

• Risk Reduction and Traceability: Integrated data logging allows growers to maintain traceability records and 

comply with food safety standards. Real-time alerts and anomaly detection reduce biological risk, allowing 

rapid corrective measures in response to system deviations. 

In commercial terms, CPS lowers the barrier to entry for precision agriculture by enabling plug-and-play modules that 
small and medium-scale producers can adopt incrementally. Edge computing further ensures that even operations in 
bandwidth-constrained environments can benefit from intelligent automation without full dependence on cloud 
infrastructure. 

Scalability is also commercialized through modularity. A vertical grower can start with a single CPS-enabled tray and 
scale to dozens with uniform software and control logic. This flexibility supports both centralized industrial farms and 
decentralized distributed food systems, aligning with the growing demand for hyper-local, fresh, and traceable produce. 

From a business perspective, CPS-enabled systems open new revenue streams in agriculture-as-a-service, smart 
farming subscriptions, and AI-driven crop consulting. Vendors and developers of CPS platforms stand to benefit from a 
growing ecosystem that includes hardware, software, analytics, and training services. As the technology matures, CPS 
will not only enhance production capacity but also reshape agrifood business models entirely. 

8.3. Research Roadmap for Adaptive, Intelligent Agronomy 

The next phase of CPS in agriculture must transcend automation and pursue true adaptation and autonomy. The 
research roadmap must focus on five core areas that will define the future of intelligent agronomic systems: 
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Context-Aware Learning Systems: Future CPS platforms must embed machine learning models capable of 

adapting to site-specific conditions such as microclimates, water quality, plant species, and seasonal shifts. Transfer 

learning and few-shot learning will be instrumental in tailoring AI logic without requiring massive datasets for each 

deployment. 

Interdisciplinary Sensor Fusion: Advancements in multi-modal sensing—combining visual, chemical, acoustic, 

and spectral inputs—will enhance system perception. Fusing these inputs at the edge will yield more accurate 

diagnoses of plant health, stress response, and ecosystem dynamics. 

Biological-Cyber Feedback Integration: CPS must evolve to respond not just to environmental triggers but to 

biological signals from plants themselves. Biosensors embedded in root zones or canopies could provide direct 

feedback on nutrient absorption, photosynthetic efficiency, or disease resistance. Integrating such feedback will 

create biologically symbiotic control systems. 

Decentralized Multi-Agent Coordination: As CPS nodes proliferate across large farms or multiple facilities, 

coordination becomes critical. Multi-agent systems should be able to communicate and collaboratively manage 

resources, ensuring that local decisions align with global farm goals. Blockchain-like consensus models may be 

explored to ensure trust and traceability across distributed systems. 

Ethical and Inclusive AI Governance: Beyond technical innovation, research must embed frameworks for 

explainable AI, fairness in automation, and equitable access. CPS systems must be designed to support—not 

displace—farmers, especially in developing regions. Participatory design processes, where growers co-create with 

technologists, will ensure relevance and adoption. 

In summary, the roadmap must balance ambition with pragmatism. While full autonomy is a compelling vision, CPS 
adoption will grow incrementally through hybrid systems that blend automation with human control. Adaptive 
learning, responsive architecture, and embedded ethics will form the foundation of the next generation of agronomic 
platforms. 
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