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Abstract 

This research paper presents a comprehensive performance analysis of popular machine learning libraries in Python. 
We compare the efficiency, accuracy, and scalability of scikit-learn, TensorFlow, PyTorch, and XGBoost across various 
machine learning tasks, including classification, regression, and clustering. The study evaluates these libraries using 
standardized datasets and benchmarks, considering factors such as execution time, memory usage, and model 
performance. Our findings provide valuable insights for data scientists and developers in selecting the most appropriate 
library for their specific machine learning projects. The results demonstrate that while scikit-learn excels in simplicity 
and ease of use for traditional machine learning tasks, TensorFlow and PyTorch offer superior performance for deep 
learning applications. XGBoost shows remarkable efficiency in gradient boosting tasks. This analysis aims to guide 
practitioners in making informed decisions when choosing machine learning libraries for their Python-based projects.  
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1. Introduction

Machine learning has become an integral part of various fields, from data analysis to artificial intelligence applications. 
Python, with its rich ecosystem of libraries and frameworks, has emerged as one of the most popular programming 
languages for implementing machine learning algorithms [1]. The availability of numerous libraries, each with its own 
strengths and weaknesses, presents both opportunities and challenges for developers and researchers. 

This study aims to provide a comprehensive performance analysis of four widely used machine learning libraries in 
Python: scikit-learn, TensorFlow, PyTorch, and XGBoost. By comparing these libraries across different machine learning 
tasks and datasets, we seek to offer insights into their relative strengths, limitations, and optimal use cases. 

The research questions addressed in this study are: 

• How do the selected libraries compare in terms of execution time and memory usage for common machine
learning tasks?

• What are the differences in model performance and accuracy across these libraries for various algorithms?
• How do these libraries scale with increasing dataset sizes and model complexities?
• What are the trade-offs between ease of use and performance for each library?

By answering these questions, this study aims to provide a valuable resource for practitioners in choosing the most 
suitable library for their specific machine learning projects. 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2023.20.1.2144
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2023.20.1.2144&domain=pdf


World Journal of Advanced Research and Reviews, 2023, 20(01), 1390-1398 

1391 

2. Background and Related Work 

2.1. Overview of Machine Learning Libraries 

Scikit-learn, developed by Pedregosa et al. [2], is a widely used library for traditional machine learning tasks. It offers a 
consistent interface for various algorithms and is known for its ease of use and extensive documentation. 

TensorFlow, introduced by Abadi et al. [3], is an open-source library primarily focused on deep learning. It provides a 
flexible ecosystem for building and deploying machine learning models, with support for both CPUs and GPUs. 

PyTorch, developed by Paszke et al. [4], is another popular deep learning framework known for its dynamic 
computational graphs and intuitive Python-like syntax. 

XGBoost, created by Chen and Guestrin [5], is a specialized library for gradient boosting, offering high performance and 
scalability for both regression and classification tasks. 

2.2. Previous Comparative Studies 

Several studies have compared the performance of machine learning libraries in Python. Raschka [6] provided an 
overview of scikit-learn and its ecosystem, highlighting its strengths in traditional machine learning tasks. Shatnawi et 
al. [7] compared TensorFlow and PyTorch for deep learning applications, focusing on ease of use and performance. 

However, most existing studies focus on comparing libraries within specific domains (e.g., deep learning) or for 
particular tasks. There is a need for a comprehensive analysis that covers a broader range of machine learning tasks 
and libraries, which this study aims to address. 

3. Methodology 

3.1. Library Selection 

We selected four popular machine learning libraries for this study: 

• Scikit-learn (version 1.0.2) 
• TensorFlow (version 2.8.0) 
• PyTorch (version 1.11.0) 
• XGBoost (version 1.5.2) 

These libraries were chosen based on their popularity, diverse focus areas, and widespread use in both academia and 
industry. 

3.2. Datasets 

To ensure a comprehensive evaluation, we used the following datasets: 

• Iris dataset (classification) 
• Boston Housing dataset (regression) 
• MNIST dataset (image classification) 
• Wine Quality dataset (regression/classification) 

These datasets represent a range of problem types and sizes, allowing for a thorough comparison of the libraries' 
performance across different scenarios. 

3.3. Machine Learning Tasks 

We evaluated the libraries on the following tasks: 

• Binary and multi-class classification 
• Regression 
• Clustering (K-means) 
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• Deep learning (Multi-layer Perceptron and Convolutional Neural Network) 

3.4. Performance Metrics 

The following metrics were used to evaluate the performance of each library: 

• Execution time (training and prediction) 
• Memory usage 
• Model accuracy (classification) or Mean Squared Error (regression) 
• Scalability (performance with increasing dataset size) 

3.5. Experimental Setup 

All experiments were conducted on a machine with the following specifications: 

• CPU: Intel Core i7-10700K @ 3.80GHz 
• RAM: 32 GB DDR4 
• GPU: NVIDIA GeForce RTX 3080 (10 GB VRAM) 
• Operating System: Ubuntu 20.04 LTS 

Python 3.9.7 was used for all experiments, and each library was installed using pip with default configurations. 

3.6. Experimental Procedure 

For each machine learning task and dataset: 

• Data preprocessing was performed using standard techniques (e.g., normalization, encoding categorical 
variables). 

• The dataset was split into training (70%) and testing (30%) sets. 
• Models were trained using each library with default hyperparameters. 
• Performance metrics were measured and recorded. 
• Experiments were repeated 10 times to ensure statistical significance, and average results were reported. 

4. Results and Analysis 

4.1. Classification Performance 

We evaluated the classification performance of the libraries using the Iris dataset for multi-class classification and a 
binary classification task derived from the Wine Quality dataset. 

Table 1 Classification Performance Comparison 

Library Accuracy (Iris) Accuracy (Wine) Training Time (s) Prediction Time (s) Memory Usage (MB) 

Scikit-learn 0.956 ± 0.012 0.892 ± 0.008 0.015 ± 0.002 0.002 ± 0.0001 42 ± 3 

TensorFlow 0.948 ± 0.015 0.885 ± 0.010 0.245 ± 0.020 0.010 ± 0.001 512 ± 15 

PyTorch 0.952 ± 0.014 0.888 ± 0.009 0.220 ± 0.018 0.009 ± 0.001 485 ± 12 

XGBoost 0.960 ± 0.010 0.901 ± 0.007 0.035 ± 0.003 0.003 ± 0.0002 78 ± 5 

The results show that all libraries achieved comparable accuracy on both datasets. XGBoost slightly outperformed the 
others in terms of accuracy, while scikit-learn demonstrated the fastest training and prediction times. TensorFlow and 
PyTorch, being primarily deep learning frameworks, showed higher memory usage and longer training times for these 
relatively simple tasks. 



World Journal of Advanced Research and Reviews, 2023, 20(01), 1390-1398 

1393 

 

Figure 1 Classification Accuracy Comparison 

4.2. Regression Performance 

We evaluated the regression performance using the Boston Housing dataset and the regression task from the Wine 
Quality dataset. 

Table 2 Regression Performance Comparison 

Library MSE (Boston) MSE (Wine) Training Time (s) Prediction Time (s) Memory Usage (MB) 

Scikit-learn 21.8 ± 1.2 0.52 ± 0.03 0.018 ± 0.002 0.002 ± 0.0001 45 ± 3 

TensorFlow 22.5 ± 1.5 0.54 ± 0.04 0.280 ± 0.025 0.012 ± 0.001 525 ± 18 

PyTorch 22.3 ± 1.4 0.53 ± 0.04 0.260 ± 0.022 0.011 ± 0.001 498 ± 15 

XGBoost 20.2 ± 1.0 0.49 ± 0.02 0.040 ± 0.003 0.003 ± 0.0002 82 ± 6 

In regression tasks, XGBoost demonstrated the best performance in terms of Mean Squared Error (MSE). Scikit-learn 
again showed the fastest training and prediction times, while TensorFlow and PyTorch had higher memory usage due 
to their deep learning architectures. 

 

Figure 2 Regression Performance Comparison 
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4.3. Clustering Performance 

We evaluated the clustering performance using the K-means algorithm on the Iris dataset. 

Table 3 Clustering Performance Comparison 

Library Silhouette Score Training Time (s) Memory Usage (MB) 

Scikit-learn 0.553 ± 0.012 0.025 ± 0.002 38 ± 2 

TensorFlow 0.548 ± 0.015 0.180 ± 0.015 485 ± 20 

PyTorch 0.551 ± 0.014 0.165 ± 0.012 460 ± 18 

XGBoost was excluded from this comparison as it does not natively support clustering algorithms. Scikit-learn showed 
the best performance in terms of execution time and memory usage, while maintaining comparable clustering quality 
as measured by the Silhouette score. 

4.4. Deep Learning Performance 

We evaluated the deep learning performance using a Multi-layer Perceptron (MLP) for the Wine Quality dataset and a 
Convolutional Neural Network (CNN) for the MNIST dataset. 

Table 4 Deep Learning Performance Comparison 

Library Accuracy (Wine) Accuracy 
(MNIST) 

Training Time (s) Prediction Time (s) Memory Usage (MB) 

TensorFlow 0.912 ± 0.008 0.992 ± 0.002 15.5 ± 0.5 0.085 ± 0.005 1250 ± 50 

PyTorch 0.910 ± 0.009 0.991 ± 0.002 16.2 ± 0.6 0.090 ± 0.006 1180 ± 45 

Scikit-learn and XGBoost were excluded from this comparison as they do not natively support deep learning 
architectures. TensorFlow and PyTorch showed comparable performance in terms of accuracy, with TensorFlow having 
a slight edge in training time and memory usage. 

 

Figure 3 Deep Learning Performance Comparison 
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4.5. Scalability Analysis 

We evaluated the scalability of each library by measuring the training time and memory usage as the dataset size 
increased. We used the Wine Quality dataset for this analysis, replicating the data to create larger datasets. 

 

Figure 4 Scalability Analysis 

Table 5 Scalability Analysis (Training Time in seconds) 

Dataset Size Scikit-learn TensorFlow PyTorch XGBoost 

1,000 0.02 ± 0.002 0.25 ± 0.02 0.22 ± 0.02 0.03 ± 0.003 

10,000 0.15 ± 0.01 0.85 ± 0.05 0.80 ± 0.04 0.18 ± 0.01 

100,000 1.25 ± 0.08 3.50 ± 0.20 3.30 ± 0.18 1.40 ± 0.09 

1,000,000 12.5 ± 0.5 28.0 ± 1.5 26.5 ± 1.3 13.8 ± 0.6 

The scalability analysis shows that scikit-learn and XGBoost scale more efficiently with increasing dataset sizes 
compared to TensorFlow and PyTorch. This is likely due to the optimized implementations of traditional machine 
learning algorithms in scikit-learn and XGBoost, while TensorFlow and PyTorch have more overhead associated with 
their deep learning architectures. 

5. Discussion 

5.1. Performance Trade-offs 

Our analysis reveals several key trade-offs among the evaluated libraries: 

• Execution Time vs. Flexibility: Scikit-learn consistently demonstrates the fastest execution times for traditional 
machine learning tasks, but it lacks the flexibility and advanced features offered by deep learning frameworks 
like TensorFlow and PyTorch. 

• Memory Usage vs. Capabilities: TensorFlow and PyTorch generally have higher memory requirements, but they 
offer powerful capabilities for complex models and GPU acceleration. 

• Ease of Use vs. Performance: Scikit-learn provides a user-friendly interface and is ideal for quick prototyping, 
while libraries like XGBoost offer superior performance at the cost of a steeper learning curve. 

• Scalability vs. Feature Set: Scikit-learn and XGBoost show better scalability for larger datasets in traditional 
machine learning tasks, while TensorFlow and PyTorch excel in handling complex deep learning models. 
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5.2. Library Strengths and Weaknesses 

5.2.1. Scikit-learn 

• Strengths: Ease of use, fast execution for traditional ML tasks, excellent documentation 
• Weaknesses: Limited support for deep learning, less optimized for very large datasets 

5.2.2. TensorFlow 

• Strengths: Powerful deep learning capabilities, extensive ecosystem, good performance on GPUs 
• Weaknesses: Steeper learning curve, higher memory usage for simple tasks 

5.2.3. PyTorch 

• Strengths: Dynamic computational graphs, intuitive Python-like syntax, strong community support 
• Weaknesses: Slightly higher memory usage, less optimized for traditional ML tasks 

5.2.4. XGBoost 

• Strengths: Excellent performance for gradient boosting, good scalability 
• Weaknesses: Limited to tree-based models, less suitable for other ML paradigms 

5.3. Implications for Practitioners 

Based on our findings, we recommend the following guidelines for practitioners: 

• For traditional machine learning tasks with smaller to medium-sized datasets, scikit-learn is the most suitable 
choice due to its ease of use and fast execution times. 

• For deep learning projects, especially those requiring complex architectures or GPU acceleration, TensorFlow 
and PyTorch are recommended. The choice between them often comes down to personal preference and 
specific project requirements. 

• For gradient boosting tasks or when dealing with large tabular datasets, XGBoost is the optimal choice due to 
its performance and scalability. 

• For projects that require a mix of traditional and deep learning approaches, consider using a combination of 
libraries (e.g., scikit-learn for preprocessing and XGBoost for modeling, with TensorFlow for deep learning 
components). 

When working with very large datasets, carefully consider the trade-offs between execution time and memory usage. 
In some cases, distributed computing frameworks may be necessary  

6. Conclusion 

This study provides a comprehensive performance analysis of four popular machine learning libraries in Python: scikit-
learn, TensorFlow, PyTorch, and XGBoost. Our findings highlight the strengths and weaknesses of each library across 
various machine learning tasks, dataset sizes, and performance metrics. 

Key conclusions from our analysis include: 

• Scikit-learn excels in traditional machine learning tasks, offering fast execution times and ease of use. 
• TensorFlow and PyTorch demonstrate superior performance in deep learning applications, with slight 

differences in their strengths. 
• XGBoost shows remarkable efficiency in gradient boosting tasks and good scalability for large datasets. 
• The choice of library should be based on the specific requirements of the project, considering factors such as 

the type of machine learning task, dataset size, required flexibility, and available computational resources. 

Future research directions could include: 

• Expanding the analysis to include more specialized libraries and emerging frameworks. 
• Investigating the performance of these libraries in distributed computing environments. 
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• Exploring the impact of hyperparameter tuning and advanced optimization techniques on the relative 
performance of these libraries. 

• Analyzing the energy efficiency and carbon footprint of different machine learning implementations, which is 
becoming increasingly important in the context of sustainable AI [8]. 

In conclusion, this study provides valuable insights for data scientists and machine learning practitioners in selecting 
the most appropriate library for their specific needs. As the field of machine learning continues to evolve rapidly, staying 
informed about the performance characteristics of different tools and frameworks will remain crucial for developing 
efficient and effective machine learning solutions.  
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