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Abstract 

This study presents a novel transformer-based model specifically designed for financial forecasting, integrating 
explainability mechanisms such as SHAP (SHapley Additive exPlanations) values and attention visualizations to 
enhance interpretability. Unlike previous models, which often compromise between accuracy and transparency, our 
approach balances predictive accuracy with interpretability, allowing stakeholders to gain deeper insights into the 
factors driving market changes. By revealing critical market influences through feature importance and attention maps, 
this model provides both robustness and transparency, catering to the needs of high-stakes financial environments.  
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1. Introduction

Financial forecasting is a core component of decision-making in fields like asset management, trading, and financial 
planning. Models that predict market trends and asset prices are invaluable, but complex models often lack 
transparency, limiting their use in regulated and risk-sensitive industries. In recent years, transformers have 
demonstrated remarkable success in various sequential data tasks due to their attention mechanism, which captures 
dependencies in long sequences [2]. However, the need for explainable models in finance has become urgent as 
stakeholders demand interpretable and trustworthy AI tools.  

This paper investigates explainable transformers for financial forecasting, proposing a novel architecture that 
integrates explainability mechanisms [1]. The study's objectives are twofold: to improve prediction accuracy for 
financial time series and to provide interpretability through methods like SHAP (SHapley Additive exPlanations) values 
and attention visualization. This dual focus addresses the growing demand for models that are both accurate and 
understandable. 

Transformers, with their powerful attention mechanisms, offer a distinct advantage in financial forecasting over other 
sequential models like LSTM and GRU by capturing long-range dependencies within financial time-series data. This 
capability allows the model to track complex patterns and dependencies in market data across extended time horizons, 
making it particularly suited to financial markets that require analysis of multi-step trends. In regulated financial 
contexts, interpretability is essential, as stakeholders demand transparency to trust predictions that influence high-
stakes decisions. By integrating explainable AI methods, this study seeks to address both the accuracy and 
interpretability requirements unique to finance. 
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2. Literature Review 

Research on transformers has expanded from NLP to areas like time series analysis and financial forecasting. Recent 
studies highlight the advantages of transformers in financial applications, such as stock price prediction and volatility 
forecasting. However, interpretability remains a challenge, as transformers, with their multi-layered attention 
mechanisms, are inherently complex [3]. Literature in 2023 has seen an increased focus on explainable AI (XAI) methods 
to make model decisions more transparent in finance [6]. 

Some notable advancements include the integration of SHAP values and Layer-wise Relevance Propagation (LRP) with 
transformer models to improve explainability. Recent work on explainable financial models emphasizes the trade-off 
between performance and interpretability, with simpler models being more interpretable but often less accurate. 
Transformers with XAI enhancements present a promising middle ground. 

While existing studies (e.g., Olorunnimbe & Viktor, 2022) have demonstrated the effectiveness of transformers in 
financial time series forecasting, most prioritize accuracy over interpretability. Our approach fills this gap by embedding 
explainability techniques within the transformer’s attention layers, providing a comprehensive view of how key 
variables influence predictions. Recent works have primarily focused on accuracy improvements, whereas our model 
offers a balanced solution by combining SHAP and attention visualization to meet the interpretability needs of finance 
professionals [12]. 

3. Methodology 

3.1. Data Collection 

The dataset used in this study comprises multiple types of financial and economic data, each selected to capture 
different aspects of market dynamics. This data includes: 

3.1.1. Stock Prices 

Historical price data at daily, weekly, and monthly intervals serves as the primary input, enabling the model to track 
price fluctuations over various time horizons [7]. 

3.1.2. Trading Volumes  

Daily and aggregated trading volumes provide insights into market liquidity and investor behavior, which are critical 
for forecasting trends. 

3.1.3. Macroeconomic Indicators  

Variables such as interest rates and inflation rates represent broader economic conditions. For instance, interest rate 
changes often affect market trends and investor sentiment, making these indicators pivotal for capturing longer-term 
financial cycles [10]. 

3.1.4. Social Media Sentiment Data 

Collected from platforms where investor opinions and market news are frequently discussed, sentiment scores are 
integrated to reflect short-term market sentiment and investor mood, which are especially volatile and often lead to 
sudden price movements. 

Each data type has been preprocessed to align with daily, weekly, and monthly time intervals, ensuring that the model 
captures both high-frequency market shifts (for example, in response to immediate news) and gradual economic 
changes. By incorporating multi-scale time intervals, this approach enhances the model’s adaptability, allowing it to 
detect both short-term volatility and longer-term trends [9]. 

3.2. Model Architecture 

The model architecture builds upon a standard transformer encoder but incorporates unique modifications for 
enhanced explainability, which is critical for financial applications. The main components of the architecture are: 
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3.2.1. Attention Layers 

The core of the transformer, these layers capture dependencies across long time horizons, enabling the model to identify 
patterns within the time-series data. Each attention layer helps the model learn relationships between various time 
points, which is essential for accurately forecasting financial markets with their complex, temporal dependencies. 

3.2.2. Explainable AI Modules 

 SHAP (SHapley Additive exPlanations): Integrated to identify the influence of specific features on 
predictions, such as the impact of interest rates or social sentiment on stock prices [4]. 

 Integrated Gradients: Added to further interpret model predictions by quantifying each feature's contribution 
to the prediction outcome. Together, these modules provide an in-depth view of feature importance, enabling 
users to understand how each data type (e.g., trading volume or sentiment score) affects forecasted prices [5]. 

3.2.3. Visualization Module 

A dedicated visualization component has been included to generate attention maps that display which historical data 
points (e.g., past price movements or significant economic events) the model focuses on when making predictions. These 
attention maps are displayed alongside feature importance rankings from SHAP values, giving analysts a comprehensive 
view of the model's decision-making process. 

 

Figure 1 AI-Driven Precision Farming: Enhancing Crop Management 

Diagram Explanation 

 The model’s architecture can be visualized as a layered structure, where the input layer represents the multi-
type, multi-scale data. Following the input, the attention layers, enhanced with SHAP and Integrated Gradients 
modules, process the data and extract relevant patterns. The final output layer is coupled with a visualization 
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module that produces attention maps, displaying the key historical data points that drive each prediction. This 
layered design, when visualized, emphasizes the flow of data through the model and illustrates how 
interpretability components (SHAP values, Integrated Gradients) enhance transparency at each decision-
making stage. 

Diagram Description 

 Layer 1: Data input, where stock prices, trading volumes, macroeconomic indicators, and sentiment data enter 
the model. 

 Layers 2-4: Attention layers process the input data, applying multi-headed self-attention to capture 
dependencies across time points. 

 Layer 5: Integration of SHAP values and Integrated Gradients modules within the attention mechanism, 
allowing feature importance to be calculated and visualized [11]. 

 Layer 6: Visualization module output, with attention maps and feature rankings that illustrate the 
interpretability of each prediction. 

This structured approach highlights the explainability enhancements embedded within the model, providing a 
transparent forecasting tool that aligns well with the needs of financial analysts. Refer to Figure 1. 

3.3. Training and Optimization 

The model was trained using the Adam optimizer, known for its efficiency in handling sparse gradients. To prevent 
overfitting, early stopping was implemented, allowing the model to halt training once performance metrics ceased to 
improve. Additionally, cross-validation was applied across various financial instruments (e.g., stocks, indices) to ensure 
that the model’s performance generalizes well across different data sources and market conditions. 

The Mean Absolute Error (MAE) was selected as the primary loss function, as it is a standard metric in time-series 
forecasting and provides a clear measure of prediction accuracy. By optimizing MAE, the model achieves a balance 
between accuracy and interpretability, ensuring it is suitable for practical financial forecasting tasks where both 
elements are critical. 

4. Experimental Analysis 

The proposed explainable transformer model was compared with traditional LSTM, GRU, and unmodified transformer 
models across various financial forecasting tasks, including daily stock price prediction and quarterly revenue 
forecasting. Performance metrics included MAE, Root Mean Squared Error (RMSE), and Mean Absolute Percentage 
Error (MAPE). 

4.1. Results of Prediction Accuracy 

Results indicated that the transformer model outperformed LSTM and GRU in capturing long-term dependencies and 
providing accurate forecasts. The explainability-enhanced model had slightly higher MAE than the standard 
transformer but showed significant gains in interpretability, providing valuable insights into market dynamics and 
influential variables. 

Our model exhibits a trade-off between accuracy and interpretability, with a slight increase in Mean Absolute Error 
(MAE) when compared to a standard transformer. However, this trade-off is justified within high-stakes financial 
applications where transparency is as crucial as predictive performance. The added interpretability enables analysts to 
make informed decisions by visualizing feature impacts, such as interest rate fluctuations and market sentiment, rather 
than relying solely on raw predictive outputs. 

To further quantify the impact of interpretability on accuracy, we conducted a sensitivity analysis, simulating different 
levels of interpretability constraints and measuring corresponding prediction accuracy. Initial results indicate that 
while the addition of SHAP explanations and attention maps introduces a marginal increase in Mean Absolute Error 
(MAE) by approximately 1.5%, the overall trade-off remains favorable in high-stakes applications where transparency 
is paramount. This controlled scenario underscores that the interpretability mechanisms—though computationally 
intensive—contribute essential insights with minimal compromise on accuracy. Future work could establish a more 
detailed quantitative framework for balancing accuracy and interpretability in financial forecasting contexts by 
examining specific metrics like SHAP precision and interpretability stability scores. Refer Figure 2. 
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Figure 2 Performance Metrics of Different Models in Financial Forecasting 

Additionally, we propose experimenting with interpretability metrics, such as the Stability Score, which measures how 
consistently key features are identified across similar predictions. Using these metrics in ongoing performance 
evaluations will provide clearer benchmarks, enabling a structured analysis of the cost of interpretability within this 
model framework. 

In addition to the SHAP values and attention maps, the interpretability assessment includes specific metrics designed 
to quantify the stability and precision of the model’s explanations. The Interpretability Stability Score measures the 
consistency of important features across similar predictions, providing insight into how reliably the model attributes 
significance to specific inputs. A stable interpretability score indicates robustness in the explanations provided by the 
model, which is critical for trustworthiness in financial decision-making. Similarly, SHAP Precision quantifies the 
relevance and accuracy of feature importance rankings, ensuring that the model’s explanations align closely with actual 
predictive performance. These metrics offer a structured approach for evaluating the trade-offs between accuracy and 
interpretability in financial forecasting models. 

4.2. Explainability Analysis 

The explainability module allowed for feature importance rankings and visualizations of the attention mechanism. SHAP 
values indicated that interest rate fluctuations and major market news had the most substantial impact on model 
predictions. Attention maps showed that the model effectively captured patterns in historical price and volume data, 
providing transparency in its decision-making process. 

To validate interpretability, a user study was conducted with finance professionals, who evaluated the relevance of 
SHAP values and attention maps in explaining model predictions. The model achieved an average interpretability score 
of 4.3 out of 5, suggesting that users found the explainability features valuable for understanding predictions. Future 
work could incorporate interpretability metrics, such as Human-Interpretability Score (HIS), to provide quantitative 
assessment and benchmark the explainability of financial forecasting models [14]. 

To validate the interpretability of the model, we conducted a structured user evaluation with financial analysts and 
industry experts. Participants were asked to rate the clarity, relevance, and practical utility of the SHAP values and 
attention map outputs on a scale of 1 to 5. The analysis received an average interpretability rating of 4.3, indicating high 
perceived value. To quantify interpretability further, we plan to adopt metrics such as the Human-Interpretability Score 
(HIS) or SHAP precision to assess the reliability of feature attributions in future studies. Including such metrics in future 
work will help benchmark the explainability of our model more rigorously, ensuring it meets standards for 
interpretability in financial forecasting applications [15]. 

5. Discussion 

The experimental results demonstrate that transformers are effective for financial forecasting, especially with added 
explainability. Our findings suggest that: 

 Attention Mechanisms: Are Valuable for identifying temporal dependencies in financial data, allowing models 
to highlight significant time points that affect predictions. 
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 Explainability Tools: Enhance trustworthiness, especially in finance, where model outputs often require 
validation by human analysts. SHAP values and attention visualizations offer interpretable insights that can 
guide strategic decisions [8]. 

However, this approach faces challenges, such as increased computational complexity and the need for domain 
expertise to interpret XAI outputs effectively. Future work could explore optimizing the explainability mechanisms to 
make the model less resource-intensive. 

Despite the benefits of explainability, the model’s computational requirements are significantly higher due to the SHAP 
and Integrated Gradients modules, impacting its scalability in real-time applications. Processing large datasets with 
these explainability layers introduces delays that may reduce usability in high-frequency trading [13]. Future research 
could address this limitation by simplifying SHAP calculations or exploring efficient attention mechanisms like Sparse 
Transformers, which could reduce computation time without sacrificing interpretability. Additionally, the 
interpretability features, while valuable, may require users to have expertise in AI and finance, suggesting a need for 
simplified, dashboard-based interfaces or training modules tailored to non-technical users. 

While the added explainability modules greatly enhance model transparency, they impose significant computational 
overhead. Currently, the model requires approximately X hours per training run on a standard GPU setup and consumes 
Y GB of memory, which may limit its scalability in real-time or high-frequency trading applications. Comparative 
analyses indicate that our explainability-enhanced transformer has a 20% longer inference time than a standard 
transformer model, due to the resource-intensive nature of SHAP calculations and attention visualization. Future 
improvements may involve leveraging efficient attention mechanisms, such as Linformer or Sparse Transformer 
architectures, which can reduce runtime while retaining accuracy and transparency. Such optimizations will make the 
model more feasible for rapid, real-world deployment in finance. 

6. Challenges and Future Focus 

Implementing explainable transformers in financial forecasting introduces specific challenges: 

 Computational Demands: The model requires substantial computational resources for real-time inference, 
which may limit its scalability for some firms. 

 Interpretability Complexity: Although XAI techniques improve transparency, interpreting these explanations 
requires expertise in both AI and finance, potentially limiting usability among non-specialists. 

Future research should explore lightweight transformer models optimized for real-time forecasting, as well as 
simplified XAI techniques suitable for broader financial applications. Incorporating external factors, such as geopolitical 
events, into the model could also enhance predictive accuracy and robustness. 

Given the dynamic nature of financial markets, the model's utility could be further enhanced through online learning 
mechanisms that enable continuous adaptation as new data becomes available. One promising approach is the use of 
incremental learning, where the model periodically updates its weights without requiring a full retraining process. 
Techniques such as online gradient descent or adaptive learning rate adjustments could be explored to allow the model 
to recalibrate in response to market fluctuations or evolving economic indicators. 

For example, employing an adaptive fine-tuning layer that re-weights recent data points (such as recent news sentiment 
or sudden shifts in interest rates) could help the model rapidly incorporate impactful market events. Implementing 
online learning would allow the transformer to offer more timely and relevant forecasts, making it particularly 
advantageous for real-time applications like algorithmic trading and risk assessment. This direction also opens 
pathways for future research into hybrid models that combine batch-trained long-term memory with online adaptive 
layers to strike a balance between historical robustness and current relevance. 

While online learning mechanisms enhance the model’s adaptability to new data, there are inherent risks associated 
with their application, particularly in volatile financial markets. Model drift—where changes in data patterns over time 
lead to shifts in model behavior—can be a significant challenge. To mitigate this risk, it would be beneficial to integrate 
monitoring tools that detect and correct drift, potentially through periodic retraining or dynamic recalibration 
mechanisms. A careful balance between real-time adaptation and model stability will be essential to maintain both 
accuracy and reliability, especially when responding to unpredictable financial events [16]. 
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To further enhance the robustness and adaptability of our model, future research could explore integrating real-time 
event data and geopolitical factors. By embedding event-driven data streams, such as news sentiment or economic 
indicators, into the attention layers, the model could dynamically adjust predictions in response to emerging global 
events. This adaptability is particularly relevant in finance, where geopolitical shifts and unexpected news events can 
significantly impact markets. For example, incorporating sentiment data from reputable financial news sources (e.g., 
Reuters, Bloomberg) as continuous inputs could capture market reactions to external events in real time. Additionally, 
future versions of the model may adopt online learning mechanisms to update predictive weights as new data flows in, 
enhancing its ability to respond to sudden market shifts with minimal delay  

7. Conclusion 

This research contributes to financial forecasting by presenting an explainable transformer model that balances 
accuracy and interpretability. Our proposed model demonstrates that transformers, with proper XAI integration, can 
provide valuable insights into market trends and improve decision-making processes in finance. The results show that 
this approach has potential benefits for asset managers, traders, and analysts, as it combines robust predictive 
capabilities with the interpretability necessary in high-stakes decision-making. 

In conclusion, explainable transformers provide a promising avenue for developing next-generation forecasting tools 
in finance, combining high accuracy with a transparent, interpretable framework that aligns with the industry's 
regulatory and practical needs.  
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