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Abstract 

The Beta distribution takes on many different shapes and may be described by two shape parameters, α and β, that can 
be difficult to estimate. Maximum likelihood and method of moments estimation are possible, though method of 
moments is much more straightforward and easier to compute by hand. In this paper, general information about the 
beta distribution were given. Usage areas of Beta distribution are also specified. The method of moment estimators and 
the system of linear equations of the maximum likelihood estimators are presented here. At the end of the investigation, 
it was discovered that the method of moment estimators is most preferable for small sample size (samples less than 50) 
whereas the Maximum Likelihood method is good when the sample size is large, this is because the estimates provided 
by this method are more consistent and asymptotically efficient; that is, they converge in probability to the parameter 
they are estimating and achieve the lower bound on variance.  
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1. Introduction

The beta distribution is a continuous probability distribution that models random variables with values falling inside a 
finite interval. Analysts commonly use it to model the time to complete a task, the distribution of order statistics, and 
the prior distribution for binomial proportions in Bayesian analysis. 

The standard beta distribution uses the interval [0,1]. This range is ideal for modeling probabilities, particularly for 
experiments with only two outcomes. However, other intervals are possible. 

Consequently, numerous studies on the various generalized beta distribution forms were conducted. Chotikapanich, et 
al. (2007) studied a three-parameter Beta-2 model which is a generalized version of the normalized beta distribution; 
also, Ng et al. (2019) introduced the generalized beta model. 

A statistician’s chore, in distinct, often amounts to identifying an eminent probability distribution which sufficiently 
describes the variations found in experimental data. Ill-advisedly, no “best” scheme exists for executing this 
identification. Parameter estimation is a branch of statistics that involves using sample data to estimate the parameters 
of a probability distribution (be it discrete or continuous) this study considers Beta distribution. 

Parameter estimation is la-di-da by the kind of forfeits placed on different kinds of errors in the estimate and even when 
the suitable penalties are agreed on, the “best” estimate may be grim to find. Hitherto for many families of distributions, 
good estimators exist for illustration, maximum likelihood estimators, method of moment estimators, least squares 
estimators among others.  
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The Beta distribution is a continuous probability distribution characterized by two shape parameters, α and β, and is 
used to model singularities that are constrained to be between 0 and 1, such as probabilities, proportions, and 
percentages. The Beta distribution is also used as the conjugate prior distribution for binomial probabilities in Bayesian 
statistics. 

Gelman, et al (2004). With the extensive applicability of the Beta distribution, it is important to estimate, with 
approximately degree of precision, the parameters of the observed data. The study presents a simulation study to 
reconnoiter the efficacy of the two distinct parameter estimation methods for determining the parameters of the 
distribution.  

If a random variable X has a Beta distribution with shape parameters α and β then, it has a probability density function 
(pdf) given as; 

𝑓𝑥(𝑥) =  
Г(𝛼+𝛽)

Г(𝛼)Г(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1, 0 ≤ 𝑥 ≤ 1, 𝛼 > 0, 𝛽 > 0 ………………………………... (1) 

Where 
Г(𝛼+𝛽)

Г(𝛼)Г(𝛽)
= 

1

В(𝛼,𝛽)
 

And В(𝛼, 𝛽) =  ∫ 𝑥𝛼−11

0
(1 − 𝑥)𝛽−1𝑑𝑥 is the integral definition of a beta function Г(𝛼) 𝑎𝑛𝑑 Г(𝛽) are gamma functions, α 

and β are the two positive shape parameters which control the shape of the beta distribution. 

David and Edwards's dissertation on the history of statistics cites the first modern treatment of the beta distribution, in 
1911, using the beta designation that has become standard, due to Corrado Gini, an Italian statistician, demographer, 
and sociologist, who developed the Gini coefficient.  

Vijay (1999), detailed, in reliability safety analysis of civil engineering systems, “we encounter parameters which are 
generally bounded and skewed random quantities.” Exemplifying these parameters are factors of safety or safety 
indexes, variables representing strength of materials, intensity of loads, etc.  

Oboni and Bourdeau C, (1985) abridged use of the beta distribution and investigated its sensitivity to the bound 
locations.  

Harr C (1977) established the ability of the beta Cor Pearson type 1 distribution to approximate most of the geotechnical 
parameters.  

Romesburg (1976) studied that formulation of the problem in terms of smallest order statistics would permit the use 
of the method of maximum likelihood estimation MLE to estimate the parameters of the beta distribution with little 
more effort than MOM. In multivariate cases, however, MOM would be the only practical method for parameter 
estimation. 

Fielitz and Myers (1975) argued for the method of moments (MOM) to estimate the parameters of the beta distribution 
for ease of computation. And concluded that the method of moments is the easiest technique for estimating the 
parameters of the beta distribution.  

Bayes, in a posthumous paper published in 1763 by Richard Price, obtained a beta distribution as the density of the 
probability of success in Bernoulli trials, but the paper does not analyze any of the moments of the beta distribution or 
discuss any of its properties. 

Eugene, et al (2002), introduced the beta-normal distribution, based on a composition of the classical beta distribution 
and the normal distribution. Its importance is more than just generalize the normal distribution. The beta-normal 
distribution generalizes the normal distribution and has flexible shapes, giving it greater applicability. Since then, many 
authors generalized other distributions similar to the beta-normal distribution.  
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2. Material and methods 

The beta-normal distribution is obtained as follows: 

Let,  𝐺(𝑥) = 𝛷 (
𝑥−𝜇

𝜎
)  ………… (2) 

be the cumulative density function of normal distribution with parameters 𝜇 and σ, and 

 𝑔(𝑥) =  𝜙 (
𝑥−𝜇

𝜎
) be the probability density function of the normal distribution. 

Then, the density function of beta-normal distribution is given by 

𝑓(𝑥; 𝛼, 𝛽, 𝜇, 𝜎) =  
𝜎−1[𝛷(

𝑥−𝜇

𝜎
)]

𝛼−1
[1−𝛷(

𝑥−𝜇

𝜎
)]

𝛽−1

𝐵(𝛼,𝛽)
. 𝜙 (

𝑥−𝜇

𝜎
)……………………………………….. (3) 

Where α>0, β>0, σ>0, 𝜇 ∈ 𝑹 , 𝑥 ∈ 𝑹 

The parameters α and β are the shape parameters characterizing the skewness, kurtosis and bimodality of the beta 
normal distribution. The parameters 𝜇 and σ have the same role as in normal distribution where, 𝜇 is a location 
parameter and σ is a scale parameter that stretches out or shrinks the distribution. 

Cassela, et al (2002) attempted deriving the estimators of α and β using the maximum likelihood method and the method 
of moments estimates. The maximum likelihood is by far the most popular technique for deriving estimators. Recall that 
if 𝑋1, … , 𝑋𝑛  are i.i.d samples from a population with pdf 𝑓(𝑥|𝜃1, … , 𝜃𝑘), the likelihood is defined by  

𝐿(𝜃|𝑥) = 𝐿(𝜃1, … , 𝜃𝑘|𝑥1, … , 𝑥𝑛) =  ∏ 𝑓(𝑥𝑖|𝜃1, … , 𝜃𝑘

𝑛

𝑖=1

 

Intuitively, the MLE is a reasonable choice of estimator. The MLE is the parameter point for which the observed data is 
most likely. If the likelihood function is differentiable (in 𝜃𝑖), possible candidates for the MLE are the values of (𝜃1, … , 𝜃𝑘  
that solve  

𝜕

𝜕𝜃𝑖

𝐿(𝜃|𝑥) = 0, 𝑖 = 1,… , 𝑘 

The solutions to the equation above are only possible for the MLE since the first derivative being 0 is only a necessary 
condition for a maximum, not a sufficient condition. The method of moments is perhaps the oldest method of finding 
point estimators, dating back at least to Karl Pearson in the late 1800s. It has the virtue of being quite simple to use and 
almost always yields some sort of adequate estimate. In many cases, unfortunately, this method is yields estimators that 
may be improved upon. However, it is a good place to start when other methods prove difficult to be solved. 

Let 𝑋1, … , 𝑋𝑛  be a sample from a population with pdf 𝑓(𝑥|𝜃1, … , 𝜃𝑘) . Method of moments estimators are found by 
equating the first k sample moments to the corresponding k population moments, and solving the resulting the system 
simultaneously. 

Kumachov, et al (2006), studied the contoured curves of (𝛾1, 𝛾2). The study showed that the curves exhibit turning 

points when a = b, making 𝛾1 = 0 and 𝛾2 =
3(2𝑎+1)

2𝑏+3
 

When a=b=0, the turning point is at 𝛾2 = 1 and when a=b=1 the turning point is at 𝛾2 = 1.8. Karian also showed that the 
points of (𝛾1, 𝛾2) are bounded by 1 + 𝛾1

2  < 𝛾2 < 3 + 𝛾1
2. 

Some approximations of 𝛾1 and 𝛾2 are; 

𝛾1
2 ≈  

1

𝑎
+ 

1

𝑏
− 

4

𝑎+𝑏
 for a and b large, …………………………………………………………. (4) 
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𝛾1
2  ≈ 4 (

1

𝑎
+

1

𝑏
) −

16

𝑎+𝑏
, ………………………………………………………………………... (5) 

𝛾2  ≈ 3 +
2

𝑎
+

2

𝑏
−

6

𝑎+𝑏
. And ……………………………………………………………………. (6) 

𝛾2 =  3 + 6 (
1

𝑏
+

1

𝑎
) −

30

𝑎+𝑏
 ……………………………………………………………………... (7) 

Kong, et al (2007), introduced the beta-gamma distribution, based on a composition of the classical beta distribution 
and the gamma distribution. The study derived some properties of the limit of the density function and of the hazard 
function. The study also presented an expression for the moments when the shape parameter α is an integer and made 
an application of the beta-gamma distribution.  

The beta-gamma distribution is obtained as follows: 

Let 𝐺(𝑥) =  
Г𝑥
𝜆
(𝜌)

Г(𝜌)
 ……………………………………………………………………………...... (8) 

be the cdf of gamma distribution where;  

Г𝑥(𝜌) =  ∫ 𝑦𝜌−1𝑥

0
𝑒−𝑦𝑑𝑦 ……………………………………………………………………… (9) 

is the incomplete gamma function and 

𝑔(𝑥) =  (
𝑥

𝜆
)

𝜌−1

𝑒−
𝑥

𝜆 ……………………………………………………………………...…… (10) 

is the pdf of the gamma function. 

Then, the density function of the beta-gamma distribution is given by 

𝑓(𝑥; 𝛼, 𝛽, 𝜌, ) =  

𝑥𝜌−1𝑒
𝑥
𝜆Г𝑥

𝜆
(𝜌)𝛼−1[1−

Г𝑥
𝜆
(𝜌)

Г(𝜌)
]

𝛽−1

𝐵(𝛼,𝛽)Г(𝜌)𝛼𝜆𝜌  …………………………………………………… (11) 

Where 𝑎,,ρ,λ,x > 0, is the beta-gamma distribution introduced by Kong (2007). 

Johnson, et al (1996) in their comprehensive and very informative monograph on statistical sciences credited Corrado 
Gini as "an early Bayesian” who dealt with the problem of eliciting the parameters of an initial Beta distribution, by 
singling out techniques which anticipated the advent of the empirical Bayes approach.  

Ahmed (2011) provided a characterization of the beta distribution in terms of the failure rate functions. Namely, if X is 
a non-negative continuous random variable with cdf (F) and pdf (f) and mean m, then X has the beta distribution if and 
only if 

𝐸(𝑋|𝑋 ≥ 𝑡) = 𝑚 +
𝑚

𝛼
𝑡(1 − 𝑡)𝜆(𝑡) ………………………………………………………….. (12) 

𝑚 = 
𝛼

𝛼 + 𝛽
 

For the generalized beta distribution with parameter (𝑎, 𝑏, 𝑐, 𝑑), these conditions become  

𝐸(𝑋|𝑋 ≥ 𝑡) =  𝑚 + 
𝑚

𝑏𝑐+𝑎𝑏
(𝑡 − 𝑐)(𝑑 − 𝑡)𝜆(𝑡) ……………………………………………… (14) 

𝑚 = 
𝑏𝑐 + 𝑎𝑏

𝑎 + 𝑏
 

For the power function distribution (the special case of the beta distribution for b=1), the condition reduces to  
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𝐸(𝑋|𝑋 ≥ 𝑡) = 𝑚 + 
𝑚

𝑎
𝑡(1 − 𝑡)𝜆(𝑡) …………………………………………………………. (15) 

𝑚 = 
𝑎

𝑎+1
 . 

Chris Piech (2016) in his lecture on “Beta Distribution” noted that one can set X ∼ Beta (a, b) as a prior to reflect how 
biased one thinks a coin is apriori to flipping it. This is a subjective judgement that represent a+b−2 “imaginary” trials 
with a−1 heads and b−1 tails. If one then observes n + m real trials with n heads one can update one’s belief. The new 
belief would be, X| (n heads in n+ m trials) ∼ Beta (a + n, b + m). Using the prior Beta(1,1) =Uni(0,1) is the same as 
saying, one hasn’t seen any “imaginary” trials, so apriori nothing is known about the coin. This form of thinking about 
probabilities is representative of the “Bayesian” field of thought where computer scientists explicitly represent 
probabilities as distributions (with prior beliefs). That school of thought is separate from the “Frequentist” school which 
tries to calculate probabilities as single numbers evaluated by the ratio of successes to experiments. 

Mark Carpenter and Satya N. Mishra, (2018), conducted a study on the generalized beta distribution and the standard 
beta distribution which is one of the few well-studied distributions with [0,1] support. Oftentimes, the flexibility of the 
standard beta is desired as a model but the [0, 1] support represents an unreasonable restriction. Accordingly, the model 
is transformed by location-scale and/or ratio transformations to expand the support of the distribution and/or add 
flexibility. The several resulting classes of distributions are referred to in an umbrella fashion as the generalized beta 
distributions, which is the parent distribution of the standard beta. The generalized beta is equivalent to the Pearson 
Type I distribution. The extreme flexibility of this class makes it very useful in fitting distributions to data sets similar 
to the way generalized lambda distributions are used. The paper, discussed the properties and draw connections 
between the various forms of the generalized beta distribution. Estimators such as maximum likelihood, method of 
moments, and others are developed, compared, and applied. 

The study adapted the simple random sampling technique for the choice of the samples of the random samples to be 
used in estimating the parameters of the Beta distribution. 

2.1. Maximum Likelihood Estimators (MLE). 

A well-known method of estimating parameters is the maximum likelihood approach and it is, by far, the most popular 
technique for deriving estimators. Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of 
a probability distribution by maximizing a likelihood function, so that under the assumed statistical model the observed 
data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum 
likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become 
a dominant means of statistical inference. 

The likelihood function for an independent identically distributed random samples, say, X1, X2 ,…, Xn from a population 
with probability density function 𝑓(𝑥|𝜃1, 𝜃2, … , 𝜃𝑘) is defined as 

𝐿(𝜃1, … , 𝜃𝑘|𝑥1, … , 𝑥𝑛) =  ∏ 𝑓(𝑥|𝜃1, … , 𝜃𝑘)
𝑛
𝑖=1  ……………………………………………… (16) 

The maximum likelihood estimator (MLE) is the parameter value for which the observed sample is most likely. Possible 
MLEs are solutions to  

𝜕

𝜕𝜃𝑖
𝐿(𝜃𝑖|𝑥) = 0, 𝑖 = 1,… , 𝑘…………………………………………………………………… (17) 

It is easier to work with the log likelihood function, 𝑙𝑜𝑔𝐿(𝜃|𝑥), as derivatives of sums are more easily solved than 
derivatives of products. MLEs are desirable estimators because they are more consistent and asymptotically efficient; 
that is, they converge in probability to the parameter they are estimating and achieve the lower bound on variance, 
Berger (2002).  

The likelihood function for the beta distribution is  

𝐿(𝛼, 𝛽) =  ∏ [
Г(𝛼+𝛽)

Г(𝛼)Г(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1]𝑛

𝑖=1   = [Г(𝛼 + 𝛽)𝑛Г(𝛼)−𝑛Г(𝛽)−𝑛 ∑ 𝑥𝑖
𝛼−1 ∑ (1 − 𝑥𝑖)

𝛽−1𝑛
𝑖=1

𝑛
𝑖=1 ] 

 ………………………………………………………………………………… (18) 

Taking the log gives 

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Realization_(probability)
https://en.wikipedia.org/wiki/Realization_(probability)
https://en.wikipedia.org/wiki/Point_estimate
https://en.wikipedia.org/wiki/Parameter_space
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𝑙𝑜𝑔𝐿(𝛼, 𝛽) = 𝑛𝑙𝑜𝑔Г(𝛼 + 𝛽) − 𝑛𝑙𝑜𝑔Г(𝛼) − 𝑛𝑙𝑜𝑔Г(𝛽) + (𝛼 − 1) ∑ 𝑙𝑜𝑔𝑛
𝑖=1 𝑥𝑖 + (𝛽 − 1) ∑ 𝑙𝑜𝑔𝑛

𝑖=1 (1 − 𝑥𝑖) 
………………………………………………………………………….. (19) 

To solve for the MLEs of α and β, we take the partial derivatives of the log likelihood function with respect to α and β 

and set the partial derivatives equal to zero and solve for �̂� and �̂�. 

𝜕

𝜕𝛼
𝑙𝑜𝑔𝐿(𝛼, 𝛽) = 𝑛

Г′(𝛼+𝛽)

Г(𝛼+𝛽)
− 𝑛

Г′(𝛼)

Г(𝛼)
+ ∑ 𝑙𝑜𝑔𝑛

𝑖=1 𝑥𝑖 = 0  ………………………………… (20) 

𝜕

𝜕𝛽
𝑙𝑜𝑔𝐿(𝛼, 𝛽) = 𝑛

Г′(𝛼+𝛽)

Г(𝛼+𝛽)
− 𝑛

Г′(𝛽)

Г(𝛽)
+ ∑ 𝑙𝑜𝑔𝑛

𝑖=1 (1 − 𝑥𝑖) = 0 ………………………… (21) 

But, 
Г′(𝛼+𝛽)

Г(𝛼+𝛽)
= 𝜓(𝛼 + 𝛽),

Г′(𝛼)

Г(𝛼)
=  𝜓(𝛼) 𝑎𝑛𝑑 

Г′(𝛽)

Г(𝛽)
=  𝜓(𝛽) ……………………………… (22) 

therefore equations (I) and (II) becomes 

𝑛𝜓(𝛼 + 𝛽) − 𝑛𝜓(𝛼) + ∑ 𝑙𝑜𝑔𝑛
𝑖=1 𝑥𝑖 = 0  ……………………………………..….. (23) 

𝑛𝜓(𝛼 + 𝛽) − 𝑛𝜓(𝛽) + ∑ 𝑙𝑜𝑔𝑛
𝑖=1 (1 − 𝑥𝑖) = 0  ………………………………..……….. (24) 

There is no closed-form solution to this system of linear equations, so the values for 𝛼 ̂ and �̂� iteratively using Newton-
Raphson method in a package called EnvStats in R, a tangent method for root finding. In our case we will estimate 

�̂� = (�̂�, �̂�) iteratively. 

�̂�𝑖+1 = �̂� − 𝐺−1𝑔 ………………………………………………………..……………….. (25) 

g is the vector of normal equations for which we want 

𝑔 = [𝑔1 𝑔2] ………………………………………………………………….………………. (26) 

With 𝑔1 = 𝜓(𝛼 + 𝛽) − 𝜓(𝛼) + 
∑ 𝑙𝑜𝑔𝑛

𝑖=1 𝑥𝑖

𝑛
 and ……………………………………….…….… (27) 

𝑔2 = 𝜓(𝛼 + 𝛽) − 𝜓(𝛽) + 
∑ 𝑙𝑜𝑔𝑛

𝑖=1 (1−𝑥𝑖)

𝑛
 …………………………………………………….. (28) 

This implies that 

𝑔1 = 𝜓(𝛼) − 𝜓(𝛼 + 𝛽) −
1

𝑛
∑ 𝑙𝑜𝑔𝑛

𝑖=1 𝑥𝑖  …………………………………………………….. (29) 

𝑔2 = 𝜓(𝛽) − 𝜓(𝛼 + 𝛽) −
1

𝑛
∑ 𝑙𝑜𝑔𝑛

𝑖=1 (1 − 𝑥𝑖) ……………………………………...……….. (30) 

And G is a matrix of second order derivatives, that is, 

𝐺 =  

[
 
 
 
 
𝜕𝑔1

𝜕𝛼

𝜕𝑔1

𝜕𝛽
𝜕𝑔2

𝜕𝛼

𝜕𝑔2

𝜕𝛽 ]
 
 
 
 

 

where, 

𝜕𝑔1

𝜕𝛼
= 𝜓′(𝛼) − 𝜓′(𝛼 + 𝛽) ………………………………………………………...… (31) 

𝜕𝑔1

𝜕𝛽
= −𝜓′(𝛼 + 𝛽) ………………………………………..………….………………………. (32) 
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𝜕𝑔2

𝜕𝛼
= −𝜓′(𝛼 + 𝛽) ……………………………………………………………………..…….. (33) 

𝜕𝑔2

𝜕𝛽
= 𝜓′(𝛽) − 𝜓′(𝛼 + 𝛽) …………………………………………………………………... (34) 

And 𝜓′(. ) are the trigamma functions defined as 

𝜓′(. ) =  
Г(.)′′

Г(.)
−

Г′(.)2

Г(.)2
 …………………………………………………………………………. (35) 

The solution to these equations is very tedious and may seem difficult to compute so the software packages were used 
to estimate the MLEs, Owen (2008). 

2.2. Method of Moment Estimators (MME) 

The method of moments, is perhaps, the oldest method of finding point estimators, dating back to Karl Pearson in the 
1800s. It has the virtue of being quite simple to use and always yields some sort of estimates. In many cases, 
unfortunately, this method yields estimates that may be improved upon. However, it is a good start when other methods 
prove intractable, Berger (2002). The k-th moment of a beta distributed random X is  

𝜇𝑥(𝑘) = 𝐸(𝑋𝑘) =  
𝐵(𝛼+𝑘,𝛽)

𝐵(𝛼,𝛽)
= ∏

𝛼+𝑛

𝛼+𝛽+𝑛

𝑘−1
𝑛=0  ……………………………………………….. (36) 

Proof; 

By the definition of moments, we have 

𝜇𝑥(𝑘) = 𝐸(𝑋𝑘) = ∫ 𝑥𝑘∞

−∞
𝑓𝑋(𝑥)𝑑𝑥 ………………………………………………………… (37) 

= ∫ 𝑥𝑘1

0

1

𝐵(𝛼,𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥 ………………………………………….…………….… (38) 

= 
1

𝐵(𝛼,𝛽)
∫ 𝑥𝑘1

0
𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥 …………………………………………………………... (39) 

= 
1

𝐵(𝛼,𝛽)
∫ 𝑥(𝛼+𝑘)−11

0
(1 − 𝑥)𝛽−1𝑑𝑥 ………………………………..………………………… (40) 

By the integral representation of the beta function, we have 

= 
1

𝐵(𝛼,𝛽)
∗ 𝐵(𝛼 + 𝑘, 𝛽) …………………………………………………………………….… (41) 

By the definition of the beta function, we have 

= 
Г(𝛼+𝛽)

Г(𝛼)Г(𝛽)
∗

Г(𝛼+𝑘)Г(𝛽)

Г(𝛼+𝛽+𝑘)
 ………………………………………………………………………... (42) 

=
Г(𝛼+𝛽)

Г(𝛼)Г(𝛽)
∗

𝛼∙(𝛼+1)∙…∙(𝛼+𝑘−1)Г(𝛼)Г(𝛽)

(𝛼+𝛽)∙(𝛼+𝛽+1)∙…∙(𝛼+𝛽+𝑘−1)Г(𝛼+𝛽)
 ……………………………………………...…. (43) 

= 
𝛼∙(𝛼+1)∙…∙(𝛼+𝑘−1)

(𝛼+𝛽)∙(𝛼+𝛽+1)∙…∙(𝛼+𝛽+𝑘−1)
 …………………………………………………………………. (44) 

Therefore, 

𝜇𝑥(𝑘) =  ∏
𝛼+𝑛

𝛼+𝛽+𝑛

𝑘−1
𝑛=0  ……………………………………………………………….……….. (45) 

The first moment which is equal to the mean and second of the beta distribution are given as 

𝜇𝑥(1) =  
𝛼

(𝛼+𝛽)
  ………………………………………………………………..……….. (46) 
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𝜇𝑥(2) =  
𝛼(𝛼+1)

(𝛼+𝛽)(𝛼+𝛽+1)
 …………………………………………………..……………………. (48) 

The sample mean and variance are; 

�̅� =  
1

𝑛
∑𝑥𝑖   ………………………………………………………………………………... (49) 

𝑆2 = 
1

𝑛−1
∑(𝑥 − �̅�)2 ………………………………………………………………………… (50) 

Now comparing equation (46) and (49) 

𝑋 ̅ =  
𝛼

𝛼+𝛽
 ……………………………………………………………………………... (51) 

𝛼 =  �̅�(𝛼 + 𝛽) 

𝛼 =  𝛼�̅� +  𝛽�̅� 

𝛼 −  𝛼�̅� =  𝛽�̅� 

𝛽 = (
1

�̅�
− 1)𝛼  ……………………………………..………………………….. (52) 

Comparing equation (49) and (50) 

𝑆2 = 
𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
 ………………………………………………………………………….. (53) 

𝛼𝛽 =  𝑆2(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1) …………………………………………...…………… (54) 

Substituting equation (52) into (54) 

𝛼 × 𝛼 (
1

�̅�
− 1) =  𝑆2(𝛼 + 𝛼 (

1

�̅�
− 1))2(𝛼 + (

1

�̅�
− 1)𝛼 + 1) ………………………… (55) 

𝛼2

�̅�
− 𝛼2 = 𝑆2(𝛼 +

𝛼

�̅�
− 𝛼)2(𝛼 +

𝛼

�̅�
− 𝛼 + 1) ………………………...……………… (56) 

(
1−�̅�

�̅�
)𝛼2 =  𝑆2 𝛼2

�̅�2 (
𝛼+�̅�

�̅�
) …………………………………………...………………… (57) 

(
1−�̅�

�̅�
)𝛼2 = 𝑆2(

𝛼3+�̅�𝛼2

�̅�3 ) multiplying through by �̅� gives …………….……………… (58) 

(1 − �̅�)𝛼2 = 𝑆2 (𝛼3+�̅�𝛼2)

�̅�2  …………………………………..………………………. (59) 

(1 − �̅�)𝛼2 = 𝛼2(
𝑆2𝛼+ 𝑆2�̅�

�̅�2 ) ……………………………….………………………… (60) 

Dividing through by 𝛼2 and multiplying by �̅�2 gives 

(1 − �̅�)�̅�2 =  𝛼𝑆2 + 𝑆2�̅� …………………………………………………………… (61) 

(1 − �̅�)�̅�2 − 𝑆2�̅� =  𝛼𝑆2 ………………………………………………………..….. (62) 

Dividing through by 𝑆2 gives 

(1−�̅�)�̅�2− 𝑆2�̅�

𝑆2 =  𝛼 …………………………………………………………………….. (63) 

Now, 
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𝛽 =  (
1−�̅�

�̅�
) × �̅� [

�̅�(1−�̅�)

𝑆2 − 1] ………………………………………………………. (64) 

Therefore, the Method of moments estimators for the beta distribution are 

�̂� =  �̅� [
�̅�(1−�̅�)

𝑆2 − 1] …………………………………………………………………. (65) 

�̂� = (1 − �̅�) [
�̅�(1−�̅�)

𝑆2 − 1] …………………………………………………………………….. (66) 

This paper estimated the following parameter values of the beta distribution as tabulated below 

Table 1 Parameter values considered  

Parameter  

Α 0.5 1 1.5 1 2 

Β 0.5 1 1.5 2 2 

 
The parameter values were chosen due to their special properties as described below: 

 when α=β=0.5, the distribution is an Arcsine distribution with the following properties  

𝑓(𝑥) =
1

𝑥√𝑥(1−𝑥)
, 0 < 𝑥 < 1 …………………………………………………. (67) 

𝐹(𝑥) =  
2

𝜋
arcsin (√𝑥), where Г (

1

2
) =  √𝜋 ………………………...…….…. (68) 

 When α=β=1, the distribution approximates to the Uniform distribution with mean 0.5, variance 0.125, both 

skewness and kurtosis are zero. 

 When α=1 and β=2, the distribution approximates to the triangular distribution with its pdf given as 

𝑓(𝑥; 1,2) =  
(1−𝑥)

𝐵(1,2)
= 2 − 2𝑥 …………………………………………….…………… (69) 

𝐹(𝑥) = 2𝑥 − 𝑥2 …………………………………………………………………….... (70) 

 when α=β=2 the distribution takes on a Parabolic shaped. 

 When α=β=1.5 the distribution is a Wigner Semicircle distribution. 

In the equations above, 𝑓(𝑥)is the probability density function and 𝐹(𝑥) is cumulative distribution function. We apply 
the MLE and MOM methods for determine the point estimates for the two-parameter beta distribution.  

The two parameter estimation methods were applied to the simulated beta distributed random variables generated 
from R using the package called EnvStats with different parameter combinations, and therefore different shapes, to 
examine the performance of the two estimation methods. The two-point parameter estimators are said to adequately 
estimate the parameters of the beta distribution if they obtain estimates close to the actual values used to generate the 
data. The effect of sample size on the performance of each of the estimators was considered by simulating samples of 
size 50, 100, 500 and 1000. The mean squared error (MSE), bias and variance of each estimator were calculated for 
every combination of parameters and sample size used in the simulation study to determine the goodness of the 
estimates from the two methods. 

For the simulation study, realizations from the beta distribution were obtained using the R command 
rbeta(n,shape1,shape2), where n is the desired sample size, shape1 is the desired α, and shape2 is the desired β. The 
five (5) parameter combinations examined in this study were chosen to capture the range of profiles of the beta 
distribution. 

These five (5) combinations may be found in Table 1 and Figure 1. 
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3. Results and discussion 

 

Figure 1 Parameter Estimates 

Figure five (5) above is the legend to the Figures six 6 through eleven (11) which are graphs of the estimates of the 
parameters from the maximum likelihood and method of moment estimators. 

Table 2 Parameter estimates for Beta (0.5,0.5) 

Sample size (n)  α = 0.5 β = 0.5  

MLE MME MLE MME 

50 0.5417264 0.5095458 0.4680386 0.6098021 

100 0.3927370 0.3743463 0.4025905 0.3567893 

500 0.5419481 0.5285822 0.5178041 0.4989743 

1000 0.5250422 0.5260358 0.5268454 0.5200939 

 

 

Figure 2 Graph of Estimates for Beta (0.5,0.5) from MLE and MoM methods 

In Figure six (6), it evident that the maximum likelihood estimates give estimates that are close to the true parameters 
as shown in the plots, MLE (blue) is closer to the true parameter (black) than the MoM (red). 

In Table 2, both methods appear to be consistent except for the case when the sample size is 100. The maximum 
likelihood method gives the most efficient estimate, this is shown in Table 3 as the variance of the estimates from the 
MLE appears to be relatively small as compared to the MME.  
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Table 3 Properties of the estimates for beta (0.5, 0.5) 

(α=0.5,β
=0.5) 

n=50 n=100 n=500 n=1000 

MLE MME MLE MME MLE MME MLE MME 

Mean 0.5364876 0.4330998 0.4723382 0.49782 0.490165 0.5096278 0.5149026 0.4942909 

Variance 0.1237302 0.1138298 0.1554563 0.1291051 0.1188201 0.1259534 0.1203437 0.1226355 

Standard 
Deviation 

0.3517531 0.3641289 0.3923291 0.389989 0.3484024 0.3558872 0.3508694 0.3513045 

Bias 0.0364876 -0.06690018 -0.0276618 -0.00218002 -0.00983503 0.009627838 0.01490263 -0.005709054 

MSE 0.1250616 0.1183054 0.1562214 0.1291099 0.1189168 0.1260461 0.1205658 0.1226681 

 

Table 4 Parameter estimates for the Beta (1,1) 

Sample size (n)  α = 1 β = 1  

MLE MME MLE MME 

50 0.8721207 0.7774687 0.9387141 0.8092706 

100 1.000432 1.066623 1.813092 1.912086 

500 0.9786284 0.9567314 1.0293154 1.0048733 

1000 0.9886397 0.9750243 0.9415424 0.9386461 

 

 

Figure 3 Graph of estimates for Beta (1,1) from both MLE and MoM 

Both methods over-estimated the parameter α which makes the plots right skewed on the graph in Figure seven (7) 
above. 
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Table 5 Properties of the estimates for Beta (1,1) 

(α=1,β=1) n=50 n=100 n=500 n=1000 

MLE MME MLE MME MLE MME MLE MME 

Mean 0.4651984 0.4532159 0.3265646 0.4102596 0.5022884 0.5033177 0.4976819 0.4952415 

Variance 0.06286783 0.08156651 0.05839583 0.0615938 0.08206677 0.08498205 0.08540052 0.08867845 

Standard 
Deviation 

0.3387106 0.2924843 0.2371998 0.2328596 0.2967503 0.2915168 0.2922337 0.2977893 

Bias -0.5348016 -0.5467841 -0.6734354 -0.589740 -0.4977116 -0.4966823 -0.5023181 -0.5047585 

MSE 0.3488806 0.3805394 0.5251244 0.4042544 0.3297837 0.3316754 0.337724 0.3434596 

Both methods gave estimates which are greater than 1 for the parameter β when the sample size is 100. From table 4 
the variance of the maximum likelihood estimators appears to be the smallest, there the maximum likelihood estimators 
are most efficient. Both methods are consistent as the sample size increases. Looking at the biases, the maximum 
likelihood methods tend to be unbiased as the difference between the expected values of the estimated parameters and 
the true parameters tends to zero as the sample size increases.  

Table 6 Parameter estimates for Beta (1.5,1.5) 

Sample size (n)  α = 1.5 β = 1.5 

MLE MME MLE MME 

50 1.410892 1.365026 1.592117 1.563280 

100 1.816022 1.821379 1.598315 1.569878 

500 1.395002 1.362485 1.483906 1.449812 

1000 1.504829 1.538588 1.464962 1.486546 

 

 

Figure 4 Graph of estimates for Beta (1.5,1.5) from both MLE and MoM 

From Figure eight (8) above is the graph for the beta (1.5,1.5) which is also called the Wigner semi-circle distribution, 
the method of moments estimators plots is left skewed which indicates that the estimate for the parameter β is greater 
than the true parameter of β which is 1.5.  
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Table 7 Properties of the estimates for Beta (1.5,1.5) 

(α=1.5,β=1.5
) 

n=50 n=100 n=500 n=1000 

MLE MME MLE MME MLE MME MLE MME 

Mean 0.4966661 0.451472 0.5489327 0.490126
7 

0.0678343
6 

0.4739501 0.508601
6 

0.4937091 

Variance 0.0491644
7 

0.0461503
8 

0.0487570
5 

0.056889
7 

0.0652553
1 

0.0678343
6 

0.568225 0.0622354
5 

Standard 
Deviation 

0.2217306 0.2148264 0.22081 0.238515
6 

0.2554512 0.2604503 0.753807 0.2494703 

Bias -1.003334 -1.048528 -0.9510673 -1.009873 -1.019851 -1.02605 -0.991398 -1.006291 

MSE 1.055843 1.145561 0.9532861 1.076734 1.105352 1.120613 1.551096 1.074857 

From table 7 above, the Maximum likelihood method gives the most efficient, most consistent and an unbiased estimate 
relative to the method of moment. The difference in the estimates given by the two methods do not vary significantly 
much.  

Table 8 Parameter estimates for Beta (1,2) 

Sample size (n)  α = 1 β = 2 

MLE MME MLE MME 

50 1.104358 1.061187 2.365482 2.247744 

100 0.9815375 0.9858293 1.9190667 1.9123410 

500 1.023645 1.014421 2.047710 2.052318 

1000 1.029208 1.016262 2.038727 2.008221 

 

 

Figure 5 Graph of estimates for Beta (1,2) from both MLE and MoM 

The beta (1,2) which is also called the triangular distribution is shown in Figure nine (9) above, both methods appear 
to be close to the true parameters  
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Table 9 Properties of the estimates for Beta (1,2) 

(α=1,β=2) n=50 n=100 n=500 n=1000 

MLE MME MLE MME MLE MME MLE MME 

Mean 0.3182735 0.3207039 0.3383907 0.3401558 0.3332878 0.3307817 0.3354726 0.3360118 

Variance 0.04854211 0.05055846 0.05739686 0.05757825 0.05457815 0.05443309 0.05480194 0.05543765 

Standard 
Deviation 

0.2203227 0.2248521 0.2395764 0.2399547 0.2336197 0.233309 0.2340981 0.235452 

Bias -0.6817265 -0.6792961 -0.6616093 -0.6598442 -1.166712 -1.169218 -1.164527 -1.163988 

MSE 0.5132932 0.5120017 0.4951237 0.4929727 1.415796 1.421505 1.410926 1.410306 

From table 8, overleaf both methods gave estimates almost exactly to the Beta (1,2) but from when both methods were 
tested for efficiency, the maximum likelihood is the most efficient with the smallest bias and mean square error.  

Table 10 Parameter estimates for Beta (2,2) 

Sample size (n)  α = 2 β = 2 

MLE MME MLE MME 

50 2.484930 2.477630 2.890436 2.950747 

100 1.943518 1.872087 2.136747 2.066923 

500 1.937936 1.946307 1.909107 1.922622 

1000 2.113234 2.145247 2.133996 2.166377 

 

 

Figure 6 Graph of estimates for Beta (2,2) from both MLE and MoM 

In the figure above, estimates from the maximum likelihood estimators appear to be close to the true parameters as 
compared to the method of moments.  
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Table 11 Properties of the estimates for Beta (2,2) 

(α=2,β=2
) 

n=50 n=100 n=500 n=1000 

MLE MME MLE MME MLE MME MLE MME 

Mean 0.4622811 0.4564219 0.4763215 0.4752684 0.5037469 0.5030609 0.4975558 0.4975496 

Variance 0.03899028 0.03859465 0.0473993 0.05049359 0.05157494 0.05134407 0.04764305 0.04706545 

Standard 
Deviation 

0.1974596 0.1964552 0.2177138 0.2247078 0.2271012 0.2265923 0.2182729 0.2169457 

Bias -1.537719 -1.961405 -1.523678 -1.524732 -1.496253 -1.496939 -1.502444 -1.50245 

MSE 2.40357 2.421228 2.368995 2.3753 2.292402 2.292171 2.304982 2.304423 

The estimates estimated for the parabolic Beta (2,2) distribution by the two methods were consistent as the sample 
sizes increased. Both methods are consistent but ML estimates are efficient in all sample sizes as it has the least variance. 

4. Conclusion 

The method of moment technique is recommended for the estimations of parameters if the experimenter wishes to do 
so without a software, this is because of the simplicity of the method of moment estimators of the beta distribution. The 
maximum likelihood technique is very tedious and difficult to compute without the use of a software package. Both 
methods proved to be consistent. The method of moments and maximum likelihood over-estimated the parameters 
when the sample size is 100. The efficiency test showed the maximum likelihood method gives the most consistent, 
efficient and sufficient estimates as it does so by differentiating the logs of the likelihood function, by so doing the it 
minimizes the error thereby making it the best method for estimating the shape parameter of the beta distribution.  

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest to be disclosed 

References 

[1] Arjun K. Gupta and Saraless Nadarajah (2018), Handbook of Beta Distribution and its Applications, CRC Press, 
600 Broken Sound Parkway, NW Suite 300, Boca Raton, 3,33-229. 

[2] Ahmed, A.A. (2011) Financial Performance Evaluation of Some Selected Jordanian Commercial Banks. 
International Research Journal of Finance and Economics, 68, 50-63. 

[3] Casella G, Robert C P and Wells M. T. (2002). Lecture Notes-Monograph Series 342–347 

[4] Eugene, N., Lee, C., Famoye, F. (2002), Beta Normal distribution and its applications. Vol. 31, 496-513. 

[5] Fielitz, B.D and Myers, B.L., (1975), Estimation of parameters in the beta distribution. Decision Sciences, Vol.6, 
No.1, 1-12. 

[6] Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2004) Bayesian Data Analysis. 2nd Edition, Chapman & 
Hall/CRC. 

[7] Claire Elayne Bangerter Owen (2008), Parameter Estimation for the Beta Distribution, BYU ScholarsArchive, 
Provo, Utah, 1-3 and 8-12. 

[8] Chotikapanich, D.; Rao, D.S.P.; Tang, K.K (2007). Estimating income inequality in China using grouped data and 
the generalized beta distribution. In Review of Income and Wealth; Wiley: Hoboken. Vol. 53, 127 – 147.       

[9] Granadesikan, R.S. Pinikham & Laura P. Hughes (1997), Maximum Likelihood Estimation of the Parameters of 
the Beta Distribution from Smallest Order Statistics, Technometrics.Vol.9 No.4, 607-620. 

[10] Harr, M.E (1977), Mechanics of Particle Media; A Probabilistic Approach. McGraw-Hill Book Company, New York. 



World Journal of Advanced Research and Reviews, 2023, 19(01), 815–830 

830 

[11] Johnson N L, Kotz S and Balakrishnan N 1996 Continuous univariate distributions, Computational Statistics & 
Data Analysis vol 2 

[12] Kong.L., Carl L, and Sepanski, J.H. (2007), On the properties of Beta-Gamma Distribution, Journal of modern 
Applied Statistical method; Vol. 6 187-211. 

[13] Kumachov, Muchadin and Vamling, Karina. 2006. ?rgativnostb v cërkesskich jabikach Circassian clause structure. 
Malmö: Malmö Univ., IMER. xxxi+210pp. (In Russian with an introduction and summary in English). 

[14] Ng, D.W.W.; Koh, S.K.; Sim, S.Z.; Lee, M.C (2019). The study of properties in generalized beta distribution. IOP 
Conf. Series J. Phys. 

[15] Vijay P. Singh (1999), Entropy-Based Parameter Estimation in Hydrology, Kluwer Academic Publishers, London, 
275-281.  

[16] Oboni, F and Boudreau, P.L, (1985), Simplified use of the beta distribution and sensitivity to Bounded locations. 
Structural safety, Vol.3 63-66. 

[17] Chris Piech (2016). Beta Distribution, handout Number 22, 1-2. 

[18] Romesburg, H.C., (1976). Estimation of Parameters in the beta distribution, comment Decision science, vol.7, 162.  


