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Abstract 

COVID-19 represents a novel variant of the coronavirus disease, having rapidly disseminated across the globe. In recent 
studies pertaining to computer vision, image processing, and classification techniques, numerous methodologies have 
been introduced employing chest X-ray images and computerized tomography (CT) images. This investigation 
introduces novel fused deep features founded on CT and X-ray image classification, with the aim of detecting COVID-19 
disease. The proposed approach encompasses three key phases: deep feature generation, iterative feature selection, 
and classification. During the feature generation phase, well-known pre-trained deep convolutional neural networks, 
namely DenseNet201, MobileNetV2, ResNet18, ResNet50, ResNet101, VGG16, and VGG19, were leveraged. Each 
network model generated 1000 features, which were subsequently fused, culminating in the acquisition of a final 
feature vector comprising 7000 dimensions. In order to distill the most pertinent information, the ReliefF and iterative 
maximum relevance minimum redundancy (RFImRMR) feature selection techniques were employed in the generation 
of the ultimate feature vector. To evaluate the performance of the proposed method, publicly available datasets of CT 
images and X-ray images were employed. Notably, the suggested deep learning approach attained accuracy rates of 
99.33% and 93.10% for COVID-19 detection using CT and X-ray images, respectively. These achieved results serve as 
compelling evidence substantiating the efficacy of the proposed fused deep features and RFImRMR-based COVID-19 
detection. 

Keywords: Fused deep features; COVID-19 detection; RFImRMR feature selection; Computer vision; Image 
Classification; Deep Learn 

1. Introduction

In December 2019, an emergent deadly virus surfaced, rapidly disseminating on a global scale and instigating a 
worldwide pandemic (1, 2). This affliction, denoted COVID-19 by the esteemed World Health Organization (WHO) (3), 
manifests as an acute respiratory illness. Person-to-person transmission serves as the primary means of contagion. 
According to the latest WHO report, the United States has encountered the highest number of cases, with 2,949,455 
instances and 165,311 fatalities. Europe ranks second with 2,191,614 cases and 183,313 deaths. The WHO report, 
encompassing 6,287,771 cases and 379,941 deaths, garners considerable attention worldwide (4). Nations have 
enacted diverse policies and measures in an attempt to mitigate the epidemic, including the quarantine of infected 
individuals, implementation of curfews, temporary suspension of in-person education, mandatory mask usage, 
enforcement of social distancing, and the closure of public venues (5-7). These measures vary due to dissimilar 
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protective policies across nations. Nevertheless, their overarching objective remains consistent: to minimize 
transmission risks, enable early disease detection, isolate infected patients, and diminish the mortality rate (8, 9). 

Typical symptoms associated with COVID-19 encompass cough, fever, and fatigue. In severe cases, patients may 
experience dyspnea, chest pain, loss of mobility, and speech impairment. In conjunction with clinical manifestations, the 
detection of COVID-19 relies on the utilization of CT scans, X-ray images, and pathogenic tests (10-13). Pathogenic tests, 
predicated on the reverse transcription-polymerase chain reaction (RT-PCR) methodology, entail an examination of 
viral RNA. However, in instances where COVID-19 testing is unavailable, CT scans and X-ray images can serve as 
diagnostic aids (4, 14). Such imaging modalities may unveil abnormalities prior to RT-PCR test results turning positive. 
Moreover, high-resolution chest CT scans and X-ray assessments can detect subtle details, including ground-glass 
opacities, thereby rendering them highly sensitive for COVID-19 identification. Consequently, experts gain enhanced 
insight into the spatial distribution of pulmonary lesions via CT scans and X-ray images (15). 

1.1. Motivations 

The primary objective of this study is to introduce a highly accurate approach for COVID-19 detection utilizing CT and 
X-ray images. In this research, we aim to evaluate the effectiveness of deep learning methods in the context of feature 
engineering. Our proposed method involves the utilization of deep fused features and RFImRMR for CT and X-ray image 
classification, with the intention of harnessing the most informative and impactful features to achieve superior 
performance. The feature generation challenge is addressed by employing widely recognized pre-trained convolutional 
neural networks (CNNs). Furthermore, we present a novel iterative and hybrid (two-layered) feature selection 
approach, aiming to select distinctive features effectively and determine the optimal size of the final feature vector. 

As evidenced by the existing literature, numerous works have been introduced to accurately detect COVID-19, 
predominantly utilizing deep learning models. However, these prior models suffer from certain limitations, namely: 

 They solely employ either CT or X-ray image datasets. 

 Generally, a single deep learning model is applied to the image dataset, without leveraging the advantages of 

alternative deep networks. 

 The feature generation phases in previous models are deficient, often lacking a robust feature selector. 

To address these limitations, we have developed novel fused deep features and an RFImRMR feature selector-based 
automatic COVID-19 detection model. Our proposed approach leverages seven transfer learning models for extracting 
deep features, while RFImRMR efficiently selects the most relevant features from the pool of 7,000 generated features. 
To demonstrate the universal classification capability of our model, both CT and X-ray image datasets have been utilized. 

1.2. Proposed Approach 

This study presents a straightforward yet highly effective approach for COVID-19 detection based on CT and X-ray 
images. The approach encompasses three key phases: deep feature generation using seven widely adopted pre-trained 
CNN models, meaningful feature selection employing the proposed RFImRMR feature selector, and classification 
utilizing a deep learning-based classifier. It is well established in the literature that deep learning techniques exhibit 
superior performance in image classification tasks (16, 17). 

To gauge the effectiveness of the most commonly employed pre-trained CNN models, we introduced a fused deep 
feature generation network/method. This approach leverages these models as feature generators, extracting 1000 
features from each transfer learning model and concatenating them to yield a final feature vector size of 7000. To 
address the issue of feature redundancy and reduce the dimensionality of the feature vector, we propose a two-layered 
feature selector combining ReliefF and iterative mRMR. This selector effectively decreases the size of the final feature 
vector while retaining the most informative features. Subsequently, RFImRMR is applied to the resulting feature vector 
of size 7000. The selected feature vector is then utilized as input for the deep classifier. 

By employing this comprehensive approach encompassing feature generation, selection, and classification, we aim to 
achieve accurate COVID-19 detection using CT and X-ray images. 

1.3. Novelties and Contribution 

The novel contributions of the presented fused deep features and RFImRMR model can be summarized as follows: 
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The model's universality in image classification is demonstrated by testing it on both X-ray and CT images. This 
comprehensive evaluation allows for a broader understanding of the model's capabilities in detecting COVID-19. 

The study highlights the efficacy of seven commonly used deep feature extraction models by employing them for feature 
generation. These models, widely recognized in the computer vision domain, are combined in a hybrid feature 
extraction method. Additionally, the classification performance of these networks is thoroughly analyzed within this 
research. 

A novel feature selection approach is introduced, combining two widely adopted feature selectors. ReliefF, known for 
its ability to identify redundant features, is used to eliminate such redundancies based on negative weights. Iterative 
mRMR is then applied to automatically select the best feature vector. This innovative feature selection function, named 
RFImRMR, addresses the challenge of automatically determining the most informative features. 

The main contributions of this study can be summarized as follows: 

The proposed hybrid and iterative feature selector, RFImRMR, tackles the problem of automatically determining the 
optimal number of features and considers the variable performance of different feature selectors. By leveraging ReliefF 
to identify redundant features and using iterative mRMR to select top features from the non-redundant set, this 
approach provides an effective solution. 

A novel model is introduced that leverages deep features for medical image classification. The primary objective of this 
model is to exploit the strengths of seven transfer learning models collectively. The RFImRMR feature selection method 
is employed to choose the most distinctive and informative features. The presented fused deep feature and RFImRMR-
based model is tested on both CT and X-ray image datasets, demonstrating high accuracies for both. However, it is 
important to note that the success of this model in different scenarios may vary, and further evaluation is needed. 
Furthermore, the model alleviates the challenge of selecting the most suitable pre-trained deep network by 
incorporating seven deep models. 

In summary, this research contributes novel insights in feature selection and deep feature-based medical image 
classification, showcasing the effectiveness of the proposed fused deep features and RFImRMR model in detecting 
COVID-19 from CT and X-ray images. 

2. Literature Review 

Medical professionals widely employ CT scans and X-ray images to monitor disease progression and discriminate 
COVID-19 from other viral infections. The expeditious evaluation they provide serves as an additional rationale for their 
utilization. Extensive research has explored the impact of CT scans and X-ray imaging on COVID-19, leading to the 
development of automated recognition systems tailored for this purpose (18). These automated recognition systems 
streamline specialists' work and mitigate the risks of oversight. Table 1 catalogs select studies focused on COVID-19 
diagnosis employing computed tomography (CT) and X-ray imaging techniques. 

Wang et al. (31) presented a sophisticated model harnessing Inception transfer learning to diagnose COVID-19 from CT 
images. Their system utilized a dataset comprising 1,119 CT images from 259 patients, yielding an impressive accuracy 
rate of 89.5%. Zhao et al. (32) compiled a dataset of CT images with the aim of investigating the impact of such images 
on COVID-19 diagnosis. Transfer learning was applied to the dataset, leading to a favorable evaluation of 275 data 
samples. The resulting accuracy rate reached 84.7%. Another contribution by Wang et al. (12) proposed a deep learning-
based approach for COVID-19 diagnosis. The study involved a total of 630 CT images, divided into 499 training data and 
131 test data. An accuracy rate of 90.8% was attained. The authors also calculated the execution time required for 
COVID-19 diagnosis. While the average time taken by a specialist doctor to diagnose COVID-19 on CT images was 300 
seconds, their proposed method achieved a diagnosis time of merely 1.93 seconds. 

Ardakani et al. (33) devised an automatic detection method utilizing deep learning techniques for COVID-19 diagnosis. 
The study incorporated 1,020 CT images from 108 COVID-19 patients, as well as CT images from 86 non-COVID-19 
patients. The achieved accuracy rate amounted to an impressive 99.51%. Song et al. (34) introduced a deep learning-
based system, named Deep Pneumonia, for diagnosing COVID-19 disease. The system leveraged CT images from 88 
COVID-19 patients, 101 patients with bacterial pneumonia, and 86 healthy individuals. The evaluation metrics for the 
system included an Area Under the Curve (AUC) of 95%, an accuracy of 86.0%, a recall of 96.0%, a precision of 79.0%, 
and an F1-score of 87%. 



World Journal of Advanced Research and Reviews, 2023, 19(01), 914–933 

917 

Table 1 The review of related works 

Study Method Classifier Dataset Type of Images Split ratio The results 
(%) 

Ghassemi et al.  

(19) 

Cyclic generative adversarial net Softmax 189 samples CT images 70:15:15 Acc: 99.20 

Pre: 98.92 

Rec: 98.92 

F1: 99.10 

AUC: 99.95 

Khozeimeh et al. 

(20) 

Convolutional neural networks, 
Autoencoder 

Convolutional neural 
networks 

520 samples CT images 10 fold cross 
validation 

Acc: 96.05 

Rec: 98.00 

Spe: 93.14 

F1: 96.50 

AUC: 95.55 

Alizadehsani et al. 
(21) 

Generative adversarial networks, Semi-
supervised learning, 

Convolutional neural 
networks 

10.000 
samples 

CT images 80:20 Acc: 99.60 

Sen: 99.39 

Spe: 99.80 

Chaudhary and 
Pachori  

(22) 

Fourier-Bessel series expansion-based 
decomposition 

Softmax 1. 785 
samples 

2. 2481 
samples 

CT images 5 fold cross 
validation 

Acc: 

1. 100.0 

2. 97.60 

Nayak et al. (23) Convolutional neural networks Softmax 406 samples Chest X-ray 
images 

70:30 Acc: 98.33 

Ardakani et al. (24) Statistical analysis Ensemble 612 samples CT images 80:20 Acc: 91.94 

Spe: 90.32 

Sen:93.54 

Waheed et al. (25) Convolutional neural networks, 
generative adversarial networks 

Softmax 1124 samples Chest X-ray 
images 

932 training 

192 testing 

Acc: 95.00 

Sen: 90.00 

Spe: 97.00 

Narin et al. (26) Convolutional neural networks Softmax 1. 3141 
samples 

Chest X-ray 
images 

5 fold cross 
validation 

Acc:  

1. 96.10 



World Journal of Advanced Research and Reviews, 2023, 19(01), 914–933 

918 

2. 1834 
samples 

3. 3113 
samples 

2. 99.50 

3. 99.70 

Pathak et al. (27) Deep convolutional neural networks Softmax 852 samples Chest CT images 10 fold cross 
validation 

Acc: 93.01 

Abbas et al. (28) Convolutional neural networks Softmax 196 samples Chest X-ray 
images 

70:30 Acc: 93.10 

Mangal et al. (29) Deep neural network Deep neural network 6014 samples Chest X-ray 
images 

80:20 Acc: 90.50 

Sen: 100.0 

Pereira et al. (7) Local binary pattern, Elongated quinary 
patterns, Local directional number, 
Locally encoded transform feature 
histogram, Binarized statistical image 
features, Local phase quantization, 
Oriented basic image features, 
Convolutional neural networks 

Predictive Cluster Trees 
and generates a single 
Decision Tree 

1144 samples Chest X-ray 
images 

70:30 F1: 88.89 

Apostolopoulos 
and Mpesiana (30) 

Convolutional neural networks Convolutional neural 
networks 

1427 samples Chest X-ray 
images 

10 fold cross 
validation 

Acc: 96.78 

Sen: 98.66 

Spe: 96.46 



World Journal of Advanced Research and Reviews, 2023, 19(01), 914–933 

919 

Zheng et al. (35) developed a novel model based on deep neural networks specifically designed for COVID-19 diagnosis. 
The proposed system achieved an accuracy rate of 90.1%. Butt et al. (36) contributed a deep learning-based COVID-19 
detection system utilizing CT images. Their dataset consisted of 618 individuals, including 219 COVID-19 cases, 224 
pneumonia cases, and 175 healthy individuals. The accuracy rates calculated reached 86.7%. Lastly, Al-karawi et al. (37) 
introduced a novel method for COVID-19 disease detection named FFT-Gabor, which relies on Fast Fourier Transform 
and Gabor Filter techniques. Their study employed CT images, achieving high accuracy (95.37%), sensitivity (95.99%), 
and specificity (94.76%) values. Loey et al. (38) introduced a study focused on detecting COVID-19 disease using CT 
images, employing transfer learning models such as ResNet50, VGGNet16, AlexNet, GoogleNet, and VGGNet19. The 
ResNet50 architecture emerged as the most effective model, achieving an accuracy ratio of 82.91%. Ozturk et al. (39) 
proposed an automated detection method for COVID-19 disease utilizing X-ray images. The performance of their deep 
learning method was evaluated, resulting in accuracy rates of 98.08% and 87.02% respectively. 

Minaee et al. (40) devised a deep transfer learning model named Deep-COVID for COVID-19 disease detection. The 
classification of COVID-19 disease was conducted based on X-ray images. Notably, the study reported a sensitivity of 
98.00% and a specificity of 90.7% for ResNet18. 

Rajaraman et al. (41) developed a study centered on using convolutional neural networks with chest X-rays for COVID-
19 disease detection. The study encompassed three classes: bacterial, COVID-19, and normal. The weighted averaging 
(pruned) approach achieved an accuracy rate of 99.01%. 

Khan et al. (6) proposed a deep neural network model named CoroNet for COVID-19 detection. The study employed 
chest X-ray images for testing the model's efficacy. In the case of the proposed method involving four classes (normal, 
COVID-19, viral pneumonia, bacterial pneumonia), an accuracy rate of 89.6% was obtained. Furthermore, an accuracy 
rate of 95% was achieved for the three-class scenario (COVID-19, pneumonia, normal). 

3. Materials and method 

3.1. The used datasets 

This research utilizes two publicly available datasets comprising CT and X-ray images. The CT image dataset consists of 
two classes: normal and COVID-19. The dataset contains a total of 746 CT images, with 349 images classified as COVID-
19 and 397 images classified as normal. These images were sourced from GitHub data repositories, and no ethical 
approval was required for their use (32). To provide a visual representation, Figure 1 displays a selection of sample 
images from this dataset. 

 

Figure 1 Sample images of the CT image dataset used for COVID-19 detection. This dataset contains COVID-19 and 
healthy 

The X-ray image dataset encompasses three classes: Normal, COVID-19, and Pneumonia. It comprises a total of 1125 X-
ray images, including 500 normal, 125 COVID-19, and 500 pneumonia images (39). Figure 2 showcases sample X-ray 
images from this dataset, providing a glimpse into its content.  
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(a) COVID-19 

    

(b) No-findings 

    

(c) Pneumonia 

Figure 2 Sample images of the X-ray image dataset used for COVID-19 detection. This dataset contains COVID-19, No-
findings, and Pneumonia 

3.2. Preliminaries 

In this section, we provide a brief overview of the seven pre-trained CNN models utilized in our study, with more 
detailed information available in references (42-44). These models have gained significant popularity in the field of 
computer vision, making them suitable choices for feature extraction. Each model generates 1000 features through the 
application of its respective pre-trained architecture. The following are the key details of the selected networks: 

 DenseNet 201: The DenseNet architecture (45, 46) achieved the top-1 classification error in the ImageNet 
ILSVRC-2012 dataset competition. It employs approximately 20 million parameters, demonstrating remarkable 
success with half the parameters of other architectures. DenseNet layers establish explicit connections with all 
preceding layers within a pooling zone, facilitating feature reuse and promoting information flow throughout 
the network. 

 MobileNetV2: Developed by the Google team (47), MobileNetV2 builds upon the concepts of MobileNetV1, 
incorporating deeply separable convolutions as an effective building block. Two notable additions in V2 are 
linear bottlenecks between layers and shortcut links between bottlenecks. This lightweight architecture, 
featuring deeply separable convolutional layers, offers flexibility in balancing performance and efficiency by 
adjusting global hyperparameters according to specific problem criteria. 

 ResNet18, ResNet50, and ResNet101: ResNet (48), introduced in 2015, revolutionized deep CNN training by 
addressing the vanishing gradient problem through the inclusion of identity links between layers. ResNet 
architectures, consisting of convolutional, pooling, activation, and fully connected layers, stack these 
components to create deep residual networks. ResNet18 comprises two-layer blocks, while ResNet50 and 
ResNet101 employ three-layer blocks. The FLOP (floating point operations) count for ResNet18 is 
approximately 1.8 billion, while ResNet50 and ResNet101 architectures involve 3.8 billion and 7.6 billion 
FLOPs, respectively. 

 VGG16 and VGG19: Simonyan and Zisserman introduced the VGG network architecture in 2014 (49). VGGnet 
emerged as the winner in the ILSVRC 2014 competition for image localization and classification tasks. The 
hallmark of VGG networks lies in their simplicity, utilizing stacked layers of 3x3 convolutional filters to increase 
depth. The numerical designations "16" and "19" in VGG−16 and VGG−19 signify the respective numbers of 
layers in each architecture. 

3.3. The Proposed Framework 

This research introduces a novel approach for accurate COVID-19 detection by leveraging fused deep features and the 
RFImRMR feature selector. The presented model consists of three key steps: fused deep feature generation, informative 
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feature selection using RFImRMR, and classification employing a deep classifier. To provide a comprehensive 
understanding of the proposed framework, we outline the steps below. 

Step 0: Load the CT or X-ray image. 

Step 1: Apply the DenseNet201, MobileNetV2, ResNet18, ResNet50, ResNet101, VGG16, and VGG19 deep networks to 
the CT or X-ray images. These seven networks have been extensively trained on the ImageNet dataset, which comprises 
millions of images across 1000 categories. By leveraging the knowledge gained from training on ImageNet, these pre-
trained networks can extract optimal features from the medical images. In our approach, we employ the pre-trained 
networks in a feed-forward manner to generate deep features. By utilizing these deep features, abnormalities can be 
easily detected, as the networks capture both low-level and high-level features, thereby enhancing accuracy. 

The proposed fused deep feature generator is a parametric method that can incorporate multiple pre-trained deep 
networks. In this study, we select the widely used seven CNNs, including DenseNet201, MobileNetV2, ResNet18, 
ResNet50, ResNet101, VGG16, and VGG19. DenseNet201 is recognized for its high accuracy, while MobileNetV2 stands 
out as a renowned CNN model. ResNets and VGGNets have gained widespread popularity in various image classification 
applications. By utilizing these seven networks with their default parameters, we harness the effectiveness of these 
networks collectively within our model. 

Step 2: Extract 1000 features from each network. 

Step 3: Concatenate these features to obtain the final feature vector (X) with a size of 7000. 

Step 4: Apply ReliefF (50) to the feature vectors and eliminate features with negative weights. Negative weighted 
features are considered redundant and are therefore removed. 

Step 5: Employ iterative mRMR to select features with positive weights. 

Step 6: Select the feature vector with the minimum loss value, representing the best set of features. 

Step 7: Feed these selected features into the deep classifier to obtain classification results. 

For a visual representation of the proposed framework, refer to Figure 3, which depicts the graphical illustration of the 
fused deep features and RFImRMR-based approach. 
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Figure 3 The schematic expression of the proposed fused deep features and RFImRMR based COVID-19 detection 
method. 

Figure 3 illustrates the graphical representation of our approach, where D201, Mv2, R18, R50, R101, V16, and V19 
correspond to DenseNet201, MobileNetv2, ResNet18, ResNet50, ResNet101, VGG16, and VGG19 CNNs, respectively. The 
ReliefF and iterative mRMR boxes signify the RFImRMR feature selector proposed in this study. The features selected 
by RFImRMR serve as the input to the classifier. The depicted steps in Figure 3 provide a visual overview of our method. 
In the subsequent subsections, we delve into the primary phases of our model, elucidating their details. 

3.3.1. Fused Deep Feature Generation 

This phase holds significant importance within the presented framework. The seven CNNs employed in this phase, 
namely DenseNet201, MobileNetv2, ResNet18, ResNet50, ResNet101, VGGNet16, and VGGNet19, were trained using the 
extensive ImageNet dataset (51). These networks serve as feature extractors, yielding 1000 features from each of them. 
The fusion of these extracted features results in a total of 7000 features. Our primary objective revolves around 
proposing a novel feature engineering model, wherein pre-trained networks play a pivotal role. Leveraging the transfer 
learning approach eliminates the need for weight assignment. By utilizing these pre-trained networks alongside the 
feature extraction layer (preceding the softmax layer), deep feature extractors can be employed. These deep feature 
extractors possess several key attributes: they generate features at various levels, ranging from low to moderate and 
high. Through the utilization of a hybrid and iterative feature selector, essential features can be selected. Furthermore, 
this study underscores the elimination of the necessity to train specific CT or X-ray image datasets for accurate COVID-
19 detection. By leveraging the optimal weights acquired through training on the ImageNet dataset, precise biomedical 
image classification models can be proposed. We have validated the validity of this proposition specifically for COVID-
19 in our research. To enhance comprehension of our fused deep feature generation model, we define the feature 
generation function of these networks as follows: 
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𝐷201(. ), 𝑀𝑣2(. ), 𝑅18(. ), 𝑅50(. ), 𝑅101(. ), 𝑉16(. )  and 𝑉19(. )  for DenseNet201, MobileNetv2, ResNet18, ResNet50, 
ResNet101, VGGNet16 and VGGNet19 respectively. Steps of our feature generator are; 

1: Extract 1000 features by using seven used deep feature generation function. 

𝑓𝑡1 = 𝐷201(𝐼𝑘) (1) 
𝑓𝑡2 = 𝑀𝑣2(𝐼𝑘) (2) 
𝑓𝑡3 = 𝑅18(𝐼𝑘) (3) 

𝑓𝑡4 = 𝑅50(𝐼𝑘) (4) 

𝑓𝑡5 = 𝑅101(𝐼𝑘) (5) 

𝑓𝑡6 = 𝑉16(𝐼𝑘) (6) 

𝑓𝑡7 = 𝑉19(𝐼𝑘) (7) 

where 𝑓𝑡𝑘 kth feature of the deep fused features used with a length of 1000 and 𝐼𝑘  represents the kth  CT or X-ray image 
on the used dataset.  

2: Concatenate these feature vectors to obtain final features. 

𝑋((𝑘 − 1) ∗ 1000 + 𝑗) = 𝑓𝑡𝑘(𝑗), 𝑘 = {1,2, … ,7} (8) 

As stated from Eq. 8, the final feature vector (𝑋) has 7000 features. 

3.3.2. Feature Selection 

In this research, we introduce a novel hybrid feature selector that effectively identifies the most distinctive features 
from the pool of 7000 extracted features. This selector combines the ReliefF and iterative mRMR feature selection 
methods, which are widely recognized and proven to be effective in computer vision. However, it is worth noting that 
neither of these methods autonomously determines the optimal number of informative features. 

A relevant study by Huang et al. (52) presented a multilabel feature selection approach that leveraged Relief and mRMR 
to enhance the classification performance of multilabel data. They employed Relief and mRMR jointly to improve the 
success rate of feature selection. In our research, we adopt ReliefF and iterative mRMR as our feature selection methods. 
ReliefF, an advanced variant of the Relief feature selector, assigns weights to each individual feature. It effectively 
identifies redundant features by assigning them negative weights, which can subsequently be eliminated using the 
iterative mRMR. As a result, ReliefF is employed in the initial phase of our proposed RFImRMR method. In the 
subsequent step, the iterative mRMR method is applied to the features selected by ReliefF. The iterative mRMR method 
tackles the challenge of automatically selecting the optimal number of features. The primary objective of the presented 
RFImRMR method is to automatically determine the most suitable number of features per classifier, harnessing the 
effectiveness of both ReliefF and mRMR selectors. 

The mathematical formulation of the ReliefF and mRMR algorithms is as follows: ReliefF utilizes the Manhattan distance 
metric to calculate weights, generating both negative and positive weights. Negative weights are assigned to redundant 
features within the ReliefF method. While the traditional Relief-based feature selection method employs the Euclidean 
distance metric, ReliefF utilizes the Manhattan distance to generate weights. The mathematical representation of the 
weight generation process based on ReliefF is provided in Equations 9-12. 

𝑊𝑅(𝑓𝑡𝑖) = 𝑊𝑅(𝑓𝑡𝑖) −
∑ 𝑑𝑖𝑠𝑡(𝐴, 𝑇, 𝑁)𝑘

𝑗=1

𝑛 ∗ 𝑘
+

∑ [
𝑃𝑟(𝐶)

1 − 𝑃𝑟(𝑅)
∗ ∑ 𝑑𝑖𝑠𝑡(𝐴, 𝑇, 𝑀)𝑘

𝑙=1 ]𝐶≠𝑐𝑙𝑎𝑠𝑠(𝑅)

𝑛 ∗ 𝑘
 

(9) 

𝑑𝑖𝑠𝑡(𝐴, 𝐿1, 𝐿2) = {
0, 𝐿1 = 𝐿2 
1, 𝐿1 ≠ 𝐿2

 (10) 

𝑑𝑖𝑠𝑡(𝐴, 𝐿1, 𝐿2) =
|𝐿1 − 𝐿2|

𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛

 (11) 

The mRMR feature selection algorithm is the minimum redundancy maximum relevance (mRMR) algorithm, which is 
selected by simultaneously optimizing the minimum redundancy and maximum relevance conditions. Either the 
redundancy between features or the relevance between features and corresponding classes is measured by mutual 
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information (MI) in the mRMR algorithm. In order to calculate the similarity among features and feature tags, MI should 
be calculated as the formula below. 

𝐼(𝑋, 𝑌) = ∑ ∑(𝑥, 𝑦)  log ( 
𝑝(𝑥, 𝑦)

𝑝1(𝑥) 𝑝2(𝑦)
)

𝑥∊𝑋𝑦∊𝑌

 
(12) 

The schematic explanation of the presented RFImRMR is denoted in Figure 4.  

 

Figure 4 The graphical explanation of the RFImRMR selector 

Steps of the RFImRMR are; 

1: Apply ReliefF on the features extracted (𝑋) and calculate 7000 weights. 

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑅𝑒𝑙𝑖𝑒𝑓𝐹(𝑋, 𝑡𝑎𝑟𝑔𝑒𝑡) (13) 

2: Select positive weighted features.  

𝑓𝑅(𝑖) = 𝑋(𝑗), 𝑖𝑓 𝑤𝑒𝑖𝑔ℎ𝑡(𝑗) > 0 𝑎𝑛𝑑 𝑖 = 𝑖 + 1 (14) 

where 𝑓𝑅 represents selected features by ReliefF. 

3: Employ mRMR to generate sorted indices. 

𝑖𝑑𝑥 = 𝑚𝑅𝑀𝑅(𝑓𝑅) (15) 

where 𝑖𝑑𝑥 defines sorted indices. 

4: Create a loop to 100 from 1000 for iterative feature selection using 𝑖𝑑𝑥. 

𝑓𝑠ℎ−99(𝑗) = 𝑓𝑠ℎ−99(𝑖𝑑𝑥(𝑗)), ℎ = {100,101, … ,1000}, 𝑗 = {1,2, … , ℎ} (16) 

5: Calculate loss values by using the nearest neighbor (NN) classifier. NN is one of the fastest classifiers for the 
small/medium datasets. The loss value calculator is selected as DNN to decrease the computational complexity of the 
proposed RFImRMR feature selector. 
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𝑙𝑜𝑠𝑠(ℎ − 99) = 𝑘𝑁𝑁(𝑓𝑠ℎ−99, 𝑡𝑎𝑟𝑔𝑒𝑡, 10) (17) 

where 𝑙𝑜𝑠𝑠 represents loss value, and to calculate loss value 10-fold CV is used. 

6: Calculate the index of the minimum error value. 

[𝑚𝑖𝑛𝑖, 𝑖𝑛𝑑𝑒𝑥] = min (𝑙𝑜𝑠𝑠) (18) 

𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + 99 (19) 

where 𝑚𝑖𝑛𝑖 and 𝑖𝑛𝑑𝑒𝑥 are minimum value and index of the minimum values. 

7: Select the last features by using 𝑖𝑛𝑑𝑒𝑥 value calculated. 

𝑜𝑝𝑡(𝑗) = 𝑓𝑠𝑖𝑛𝑑𝑒𝑥−99(𝑖𝑑𝑥(𝑗)), 𝑗 = {1,2, … , 𝑖𝑛𝑑𝑒𝑥} (20) 

The RFImRMR feature selector, as presented in this research, effectively identifies and selects a subset of features that 
exhibit superior discriminatory capabilities from the initial set of 7000 features. Specifically, on the CT image dataset, 
the RFImRMR selector identifies and retains 841 features out of the total 7000 features. Similarly, on the X-ray image 
dataset, the RFImRMR selector intelligently chooses 578 features from the initial pool of 7000 features. This selective 
feature extraction process ensures that the resulting feature set maintains high relevance and discriminative power, 
contributing to the accurate detection and classification of COVID-19 cases. 

3.3.3. Classification 

For classification purposes, we employed a Deep Neural Network (DNN)(53) classifier in this study. To ensure robust 
validation and testing, a 10-fold cross-validation (CV) strategy was adopted. The DNN utilized is a backpropagation 
network, and we employed the scaled conjugate backpropagation (tainscg) algorithm to determine the optimal weights 
of the network. 

In the backpropagation algorithm, we employed a scaled conjugate gradient (SCG) optimization technique, setting the 
learning rate to 0.7, momentum to 0.3, and batch size to 100. To explore the remaining DNN hyperparameters, we 
conducted an exhaustive manual search procedure, calculating the classification accuracy using 10-fold cross-validation 
for each parameter configuration. 

Through this meticulous process, we identified the best-performing DNN architecture, consisting of three hidden layers 
with 200, 100, and 50 nodes, respectively. This architecture demonstrated superior performance in terms of 
classification accuracy (refer to Fig. 5). 

 

Figure 5 The presentation of Deep Feature Extraction and Deep Learning Model 
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4. Results 

The proposed model was implemented in the MATLAB programming environment (version 2019a). We leveraged the 
pre-trained networks defined in the feature extraction phase to conduct our experiments. Specifically, we extracted 
1000 features from the fully connected layers of these networks. To combine these features, a basic MATLAB code was 
developed for feature concatenation. 

For the RFImRMR feature selection method, we coded a dedicated function in MATLAB to facilitate its implementation. 
To assess the model's performance, we employed the widely adopted 10-fold cross-validation (CV) technique to 
compute various measurements. The DNN classifier was utilized to obtain the classification results. 

To evaluate the model's effectiveness, we computed several performance metrics using the confusion matrices obtained. 
These metrics include accuracy, balanced accuracy, precision, recall, F1-score, specificity, geometric mean, false-
negative rates, and false-positive rates. The mathematical definitions of these performance metrics can be found in 
Table 2. 

Table 2 Performance metrics used for evaluation of the proposed model. To calculate these performance metrics 
number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) should be used 

Name Equation Equation number 

Accuracy 𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

(21) 

Balanced accuracy/ unweighted 
average recall 

1

𝐶
(

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
+

𝑡𝑛

𝑡𝑛 + 𝑓𝑝
) 

(22) 

Precision 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

(23) 

Recall/ Sensitivity 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

(24) 

F1 
2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(25) 

Specificity 𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

(26) 

Geometric mean √𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (27) 

The comprehensive evaluation of the proposed fused deep features and RFImRMR-based COVID-19 detection approach 
was carried out using nine predefined performance metrics. The resulting confusion matrices for each dataset can be 
found in Tables 3 and 4. 

Table 3 Confusion matrix of CT Dataset 

Actual class Predicted class Recall 

COVID-19 Healthy 

COVID-19 347 2 99.42% 

Healthy 3 394 99.24% 

Precision 99.14% 99.49% 99.33% 
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Table 4 Confusion matrix of the X-ray Dataset 

Actual class Predicted class Recall 

Normal COVID-19 Pneumonia  

Normal 461 0 39 92.20% 

COVID-19 0 122 3 97.60% 

Pneumonia 38 3 459 91.80% 

Precision 92.38% 97.60% 91.61% 93.10% 

 

These tables present the precision, recall, and accuracy values achieved by the proposed per classifier. Specifically, the 
X-ray image dataset attained a classification accuracy of 93.10%, while the CT image dataset achieved an accuracy of 
99.33%. The corresponding measurements for each dataset can be found in Table 5. 

Table 5 The Performance Metrics (%) of the proposed Framework using DNN 

Measurement X-ray CT 

Accuracy 93.10±0.3 99.33±0.16 

Balanced accuracy/ unweighted average recall 93.87±0.1 99.33±0.17 

Precision 93.87±0.08 99.14±0.7 

Recall/ Sensitivity 93.87±0.1 99.42±0.19 

F1 93.87±0.23 99.28±0.08 

Specificity 92.20±0.76 99.24±0.01 

Geometric mean 93.83±0.25 99.33±0.18 

 

Table 5 showcases the remarkable performance of the proposed approach in achieving a classification accuracy of 
99.33% for the CT image dataset. This dataset consists of two classes, namely COVID-19 and healthy. Conversely, the X-
ray image dataset comprises three classes: Normal, COVID-19, and Pneumonia. Our deep fused method has achieved a 
commendable classification accuracy of 93.10% for this dataset. 

Through experimental studies, it has been observed that utilizing 7000 features obtained from seven distinct CNN 
architectures, without incorporating feature engineering, yielded a success rate of 97.31% for the CT image dataset and 
90.76% for the X-ray image dataset. To facilitate a comprehensive comparison of the proposed fused deep features and 
ImRMR-based COVID-19 detection model across the datasets, the results have been graphically depicted in Figure 6. 
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Figure 6 Results of our proposal. Acc, Bacc, Pre, Rec, F1, and GM express accuracy, balanced accuracy, precision, recall, 
F1-score, specificity, and geometric mean consecutively 

5. Discussions 

 

Figure 7 Distribution of features according to deep networks. The final feature vector consists of 135 features of 
DenseNet201, 144 features of MobileNetv2, 167 features of ResNet18, 83 features of ResNet50, 173 features of 

ResNet101, 51 features of the VGGNet16, and 88 features of VGGNet19. This distribution belongs to the CT image 
dataset. 

This study presents a novel COVID-19 detection model that utilizes fused deep features and the RFImRMR feature 
selector. The primary goal of this COVID-19 detection model is to achieve exceptional classification performance by 
leveraging pre-trained deep networks and employing iterative and hybrid feature selectors. In the context of feature 
engineering, this research focuses on evaluating the efficacy of deep learning methods. Consequently, the proposed 
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RFImRMR aims to identify the most influential features. The RFImRMR methodology comprises two essential layers: 
ReliefF and iterative mRMR. The initial set of 7000 extracted features is passed through ReliefF, which selects 5351 
features with positive weights. Subsequently, iterative mRMR assesses these selected features and identifies the 841 
most informative features for the CT image dataset. In the case of the X-ray image dataset, the RFImRMR selector 
chooses 578 features. As mentioned in the feature generation section, seven distinct deep networks are employed, thus 
resulting in the final feature vector encompassing features from these networks. To provide a comprehensive 
understanding of the impact of each deep network, the number of features contained within each network is depicted 
in Figure 7. 

Table 6 Previous studies using XRAY images 

Study Used dataset Method Accuracy (%) 

(39) 125 COVID-19 
500 Healthy 500 Pneumonia 

DarkCovidNet 87.02 

(4) 25 COVID-19 
25 Healthy 

COVIDX-Net 90.0 

(54) 224 COVID-19 
504 Healthy 700 Pneumonia 

VGG-19 93.48 

(55) 25 COVID-19 
25 Healthy 

ResNet50þ SVM 95.38 

 

(56) 

100 COVID-19 
200 Healthy  

322 Pneumonia 

Convolutional neural 
network 

95.74 

(57) 135 COVID-19, 150 Healthy 150 
Pneumonia  

F-transform, MKLBP and 
SVM 

97.01 

(58) 150 COVID-19 
150 Healthy 

ShuffleNet+NCA+Relief 99.98 

Proposed Method 
500 Normal, 125 COVID-19, and 
500 Pneumonia  

Fused deep feature& 
RFImRMR 

93.10 

 

Table 7 Previous studies using CT images 

Study Used dataset Method Accuracy (%) 

(38) UCSD-AI4H CGAN 82.9 

(32) UCSD-AI4H  TL+CSSL 89.1 

(34) 777 COVID-19 
708 Healthy (Private Dataset) 

DRE-Net 86.0 

(36) 219 COVID-19 
175 Healthy 224 Pneumonia 

(Private Dataset) 

ResNet Location 
Attention 

86.7 

(31) 325 COVID-19 
740 Healthy (Private Dataset) 

M-Inception 89.5 

(35) 313 COVID-19 
229 Healthy (Private Dataset) 

DeCoVNet 90.8 

(37) 275 COVID-19 
195 Healthy (Private Dataset) 

FFT-Gabor 95.4 
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(59) UCSD-AI4H Deep Learning+NCA 88.0 

(60) UCSD-AI4H FDEPFGN 95.54 

Proposed Method UCSD-AI4H 
Fused deep feature& 
RFImRMR 

99.33 

Upon reviewing the existing literature, it becomes evident that the recommended method showcased the highest 
performance rate compared to previous studies. Table 6 provides an overview of academic research utilizing CT images 
for COVID-19 detection. By comparing the performance metrics reported in these studies, it is apparent that our 
proposed approach outperforms the alternatives, emphasizing its superiority in terms of accuracy and efficacy. 

While the literature lacks a substantial number of studies focusing on the diagnosis of COVID-19 using CT images, Table 
7 provides insights into the existing research endeavors. Notably, our proposed study achieved an impressive success 
rate of 99.33% (as indicated in Table 7). It is worth highlighting that our study surpasses the performance of the studies 
listed in Tables 6 and 7, exhibiting a remarkable success rate that is 15% higher than those using the same dataset. This 
significant margin underscores the efficacy and triumph of our proposed approach. 

The advantages of the chest CT and X-ray image classification method, based on our novel deep feature extraction and 
RFImRMR feature selection techniques, can be summarized as follows: 

Advantages: 

• Introduction of a pioneering pre-trained deep feature extraction method. 
• Proposal of an innovative RFImRMR feature selection method. 
• Attainment of impressive accuracies of 93.10% and 99.33% for the X-ray and CT image datasets, respectively. 
• Cognitive nature of the method, eliminating the need to set millions of parameters as in deep learning networks. 
• Outperformance of seven comparative studies employing chest CT and X-ray images (See Tables 6 and 7). 
• Demonstration of the universal classification capability of our proposal, utilizing both CT and X-ray image 

datasets. 

However, it is important to acknowledge certain limitations of our study, which include the following: 

Limitations: 

• The potential for utilizing a larger dataset to enhance the robustness of the tests. 
• Exploration of more lightweight models for efficient classification of these images. 

6. Conclusion 

Amidst the global turmoil caused by the pandemic in 2020, numerous studies have emerged focusing on the detection 
of COVID-19 utilizing CT and X-ray images. In line with this context, our study presents a novel method for diagnosing 
COVID-19 from CT and X-ray images, employing a deep feature and RFImRMR-based cognitive approach. To assess the 
effectiveness of our proposed method, various performance metrics including Accuracy, Balanced 
Accuracy/Unweighted Average Recall, Precision, Recall/Sensitivity, F1 score, Specificity, Geometric Mean, False-
positive rate, and False-negative rate were computed for both image datasets. Remarkably, the proposed method 
outperformed all other approaches in both datasets. It is worth noting that the Deep Neural Network (DNN) exhibited 
the highest classifier performance among the methods evaluated. 

Looking ahead, we envision the introduction of CNN-based architectures specifically designed for mobile programming, 
facilitating the detection of COVID-19. Furthermore, research and development efforts will be directed towards 
providing support for medical professionals in detecting COVID-19 from chest CT and X-ray images. Additionally, a 
concerted effort will be made to collect a more extensive collection of chest CT and X-ray images, enabling the detection 
of various lung diseases related to COVID-19. 

By pursuing these future endeavors, we aim to make significant advancements in the field of COVID-19 detection, 
further empowering healthcare professionals in combating the pandemic. 
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