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Abstract 

Various problems of Statistics, Mathematics, Radio Physics, Nuclear Physics, Atomic Physics, Fluid Mechanics, 
Engineering and Science can easily handle by applying integral transform techniques on their mathematical models. 
Problems of heat equation, Schrodinger equation, Laplace equation, Helmholtz equation and wave equation have 
solutions in terms of Bessel functions. To solve such equations by integral transform methods, we need to know the 
integral transform of Bessel functions. In this paper, authors discuss Bessel functions of first kind and determine their 
Anuj transforms. 
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1. Introduction

Nowadays integral transform methods have various applications to solve the problems of Engineering and Science [1-
2]. Researchers used different integral transform methods and solved various ordinary differential equations [3-4]; 
partial differential equations [5]; Volterra integral equations [6-21] and Volterra integro differential equations [22-37]. 
Aggarwal with different scholars [38-43] determined the Kamal; Mahgoub; Mohand; Aboodh; Elzaki and Sawi 
transforms of Bessel’s functions. Priyanka and Aggarwal [44] used Rishi transform and determined the solution of the 
bacteria growth problem by developing its model using differential equation. Kumar et al. [45] determined the 
concentrations of the reactants of first order consecutive chemical reaction using Anuj transform. Kumar et al. [46] 
considered Anuj transformto determine the blood glucose concentration of a patient during continuous intravenous 
injection. The motive of the present paper is to determine the Anuj transform of Bessel functions of first kind of orders 
zero, one and two.  

2. Nomenclature of symbols

 ℱ, family of piecewise continuous and exponential order function;

 𝒜, Anuj transform operator;

 𝒜−1, inverse Anuj transform operator;

 ∈, belongs to;

 !, the usual factorial notation;

 Γ, the classical Gamma function;
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 ℒ, Laplace transform operator; 

 𝑁, the set of natural numbers; 

 𝑅, the set of reals; 

 𝐽𝑛(𝑡), Bessel function of first kind of order 𝑛; 

 𝐽0(𝑡), Bessel function of first kind of order zero; 

 𝐽1(𝑡), Bessel function of first kind of order one; 

 𝐽2(𝑡), Bessel function of first kind of order two 

3. Definition of Anuj transform 

If 𝐻(𝑡) ∈ ℱ, 𝑡 ≥ 0 then the Anuj transform of 𝐻(𝑡) is defined as [21] 

𝒜{𝐻(𝑡)} = 𝑟2 ∫ 𝐻(𝑡)𝑒−(
1

𝑟
)𝑡𝑑𝑡

∞

0
= ℎ(𝑟), 𝑟 > 0                              (1) 

4. Inverse Anuj Transform 

The inverse Anuj transform of ℎ(𝑟),  denoted by 𝒜−1{ℎ(𝑟)} , is another function 𝐻(𝑡)  having the characteristic that 
𝒜{𝐻(𝑡)} = ℎ(𝑟). 

5. Relation between Laplace and Anuj transforms 

If ℒ{𝐻(𝑡)} = ∫ 𝐻(𝑡)𝑒−𝑟𝑡𝑑𝑡
∞

0
= Ψ(𝑟),         (2) 

then ℎ(𝑟) = 𝑟2Ψ (
1

𝑟
)          (3) 

and Ψ(𝑟) = 𝑟2ℎ (
1

𝑟
)          (4) 

Proof: Equation (1) gives 

ℎ(𝑟) = 𝑟2 ∫ 𝐻(𝑡)𝑒−(
1

𝑟
)𝑡𝑑𝑡

∞

0

= 𝑟2 {∫ 𝐻(𝑡)𝑒−(
1

𝑟
)𝑡𝑑𝑡

∞

0

} = 𝑟2Ψ(
1

𝑟
) 

Now equation (2) gives 

Ψ(𝑟) = ∫ 𝐻(𝑡)𝑒−𝑟𝑡𝑑𝑡
∞

0
= 𝑟2 {

1

𝑟2 ∫ 𝐻(𝑡)𝑒−𝑟𝑡𝑑𝑡
∞

0
} = 𝑟2ℎ (

1

𝑟
). 

6. Properties of Anuj transform 

In this part, we will describe the properties of Anuj transform that will be used in later section of this manuscript. 

6.1. Linearity [46] 

If 𝐻𝑗(𝑡) ∈ ℱ, 𝑡 ≥ 0, 𝑗 = 1, 2, 3, …… . , 𝑛  with 𝒜{𝐻𝑗(𝑡)} = ℎ𝑗(𝑟), 𝑗 = 1, 2, 3, …… 𝑛 then 𝒜{∑ ℓ𝑗𝐻𝑗(𝑡)
𝑛
𝑗=1 } =

∑ ℓ𝑗
𝑛
𝑗=1 𝒜{𝐻𝑗(𝑡)} = ∑ ℓ𝑗

𝑛
𝑗=1 ℎ𝑗(𝑟), where ℓ𝑗  are arbitrary constants. 

6.2. Change of Scale [46] 

If 𝐻(𝑡) ∈ ℱ, 𝑡 ≥ 0 with 𝒜{𝐻(𝑡)} = ℎ(𝑟) then 𝒜{𝐻(ℓ𝑡)} =
1

ℓ3 ℎ(ℓ𝑟), where ℓ is arbitrary constant. 

6.3. Translation [46] 

If 𝐻(𝑡) ∈ ℱ, 𝑡 ≥ 0 with 𝒜{𝐻(𝑡)} = ℎ(𝑟) then 
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𝒜{𝑒ℓ𝑡𝐻(𝑡)} = (1 − ℓ𝑟)2ℎ (
𝑟

1−ℓ𝑟
), where ℓ is arbitrary constant. 

6.4. Remark 1 

Equations (3) and (4) can be use for establishing the further properties of Anuj transform.  

7. Anuj transforms of the derivatives of a function [45] 

If 𝐻(𝑡) ∈ ℱ, 𝑡 ≥ 0 with 𝒜{𝐻(𝑡)} = ℎ(𝑟) then  

𝒜{𝐻′(𝑡)} =
1

𝑟
ℎ(𝑟) − 𝑟2𝐻(0). 

𝒜{𝐻′′(𝑡)} =
1

𝑟2 ℎ(𝑟) − 𝑟𝐻(0) − 𝑟2𝐻′(0). 

𝒜{𝐻′′′(𝑡)} =
1

𝑟3 ℎ(𝑟) − 𝐻(0) − 𝑟𝐻′(0) − 𝑟2𝐻′′(0). 

Remark 2: Tables 1-2 visualized the Anuj transforms and inverse Anuj transforms of fundamental functions 
respectively.  

Table 1 Anuj transforms of fundamental functions [45] 

S.N. 𝑯(𝒕) ∈ 𝓕, 𝒕 > 0  𝓐{𝑯(𝒕)} = 𝒉(𝒓) 

1 1 𝑟3 

2 𝑒ℓ𝑡  
(

𝑟3

1 − ℓ𝑟
) 

3 𝑡𝜆, 𝜆 ∈ 𝑁 𝜆! 𝑟𝜆+3 

4 𝑡𝜆, 𝜆 > −1, 𝜆 ∈ 𝑅 𝑟𝜆+3Γ(𝜆 + 1) 

5 𝑠𝑖𝑛(ℓ𝑡) 
(

ℓ𝑟4

1 + 𝑟2ℓ2
) 

6 𝑐𝑜𝑠(ℓ𝑡) 
(

𝑟3

1 + 𝑟2ℓ2
) 

7 𝑠𝑖𝑛ℎ(ℓ𝑡) 
(

ℓ𝑟4

1 − 𝑟2ℓ2
) 

8 𝑐𝑜𝑠ℎ(ℓ𝑡) 
(

𝑟3

1 − 𝑟2ℓ2
) 

 

Table 2 Inverse Anuj transforms of fundamental functions [45] 

S.N. ℎ(𝑟) 𝐻(𝑡) = 𝒜−1{ℎ(𝑟)} 

1 𝑟3 1 

2 
(

𝑟3

1 − ℓ𝑟
) 

𝑒ℓ𝑡  

3 𝑟𝜆+3, 𝜆 ∈ 𝑁 𝑡𝜆

𝜆!
 

4 𝑟𝜆+3, 𝜆 > −1, 𝜆 ∈ 𝑅 𝑡𝜆

Γ(𝜆 + 1)
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5 
(

𝑟4

1 + 𝑟2ℓ2
) 

𝑠𝑖𝑛(ℓ𝑡)

ℓ
 

6 
(

𝑟3

1 + 𝑟2ℓ2
) 

𝑐𝑜𝑠(ℓ𝑡) 

7 
(

𝑟4

1 − 𝑟2ℓ2
) 

𝑠𝑖𝑛ℎ(ℓ𝑡)

ℓ
 

8 
(

𝑟3

1 − 𝑟2ℓ2
) 

𝑐𝑜𝑠ℎ(ℓ𝑡) 

 

8. Bessel functions of first kind [38-43] 

Bessel’s function of first kind of order 𝑛, where 𝑛𝜖𝑁 is given by  

𝐽𝑛(𝑡) =
𝑡𝑛

2𝑛𝑛!
{1 −

𝑡2

2.(2𝑛+2)
+

𝑡4

2.4.(2𝑛+2)(2𝑛+4)
−

𝑡6

2.4.6.(2𝑛+2)(2𝑛+4)(2𝑛+6)
+ ⋯… . }    (5) 

Bessel’s function of first kind of zero order is given by  

𝐽0(𝑡) = {1 −
𝑡2

22 +
𝑡4

22.42 −
𝑡6

22.42.62 + ⋯ }        (6) 

Bessel’s function of first kind of order one is given by  

𝐽1(𝑡) = {
𝑡

2
−

𝑡3

22.4
+

𝑡5

22.42.6
−

𝑡7

22.42.62.8
+ ⋯ . . }        (7) 

Equation (7) can also be written as 

𝐽1(𝑡) = {
𝑡

2
−

𝑡3

23.2!
+

𝑡5

25.2!.3!
−

𝑡7

27.3!.4!
+ ⋯}        (8) 

Bessel’s function of first kind of order is given by  

𝐽2(𝑡) = {
𝑡2

2.4
−

𝑡4

22.4.6
+

𝑡6

22.42.6.8
−

𝑡8

22.42.62.8.10
+ ⋯… . }       (9) 

9. Relation between 𝑱𝟎(𝒕) and 𝑱𝟏(𝒕) [38] 

𝑑

𝑑𝑡
[𝐽0(𝑡)] = −𝐽1(𝑡)          (10) 

10. Relation between 𝑱𝟎(𝒕) and 𝑱𝟐(𝒕) [42]: 

𝐽2(𝑡) = 𝐽0(𝑡) + 2𝐽0
′′(𝑡)          (11) 

11. Anuj transform of Bessel functions of first kind 

We find the Anuj transforms of 𝐽0(𝑡), 𝐽1(𝑡), 𝐽3(𝑡), 𝑒
𝑘𝑡𝐽0(𝑡), 𝑒

𝑘𝑡𝐽1(𝑡), 𝑒
𝑘𝑡𝐽2(𝑡), 𝐽0(𝑘𝑡), 𝐽1(𝑘𝑡) and 𝐽2(𝑘𝑡) in this section. 

11.1. Anuj transform of Bessel function of first kind of order zero 𝑱𝟎(𝒕): 

Operating Anuj transform on both sides of (6), we have 

𝒜{𝐽0(𝑡)} = 𝒜 {1 −
𝑡2

22 +
𝑡4

22.42 −
𝑡6

22.42.62 + ⋯}       (12) 
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Use of linearity property of Anuj transform on (12) gives 

𝒜{𝐽0(𝑡)} = 𝒜{1} − 𝒜 {
𝑡2

22
} + 𝒜 {

𝑡4

22. 42
} − 𝒜 {

𝑡6

22. 42. 62
} + ⋯. 

⇒ 𝒜{𝐽0(𝑡)} = 𝑟3 −
1

22
2! 𝑟5 +

1

22. 42
4! 𝑟7 −

1

22. 42. 62
6! 𝑟9 + ⋯. 

⇒ 𝒜{𝐽0(𝑡)} = 𝑟3 [1 −
1

2
(𝑟)2 +

1.3

2.4
(𝑟)4 −

1.3.5

2.4.6
(𝑟)6 + ⋯ . ] 

⇒ 𝒜{𝐽0(𝑡)} = 𝑟3 [
1

√1+𝑟2
] = [

𝑟3

√1+𝑟2
]        (13) 

11.2. Anuj transform of Bessel function of first kind of order one𝑱𝟏(𝒕): 

Operating Anuj transform on both sides of (10), we have 

𝒜 {
𝑑

𝑑𝑡
[𝐽0(𝑡)]} = −𝒜{𝐽1(𝑡)}         (14) 

Use of Anuj transform of derivatives of a function property in (14) gives 

(
1

𝑟
)𝒜{𝐽0(𝑡)} − 𝑟2𝐽0(0) = −𝒜{𝐽1(𝑡)}        (15) 

Use of (6) and (13) in (15) provides 

(
1

𝑟
) [

𝑟3

√1 + 𝑟2
] − 𝑟2 = −𝒜{𝐽1(𝑡)} 

⇒ 𝒜{𝐽1(𝑡)} = 𝑟2 − (
1

𝑟
) [

𝑟3

√1 + 𝑟2
] 

⇒ 𝒜{𝐽1(𝑡)} = 𝑟2 − [
𝑟2

√1 + 𝑟2
] 

⇒ 𝒜{𝐽1(𝑡)} = [
𝑟2(√1+𝑟2−1)

√1+𝑟2
]         (16) 

11.3. Anuj transform of Bessel function of first kind of order two𝑱𝟐(𝒕): 

Operating Anuj transform on both sides of (11), we have 

𝒜{𝐽2(𝑡)} = 𝒜{𝐽0(𝑡) + 2𝐽0
′′(𝑡)}         (17) 

Use of linearity property of Anuj transform on (17) gives 

𝒜{𝐽2(𝑡)} = 𝒜{𝐽0(𝑡)} + 2𝒜{𝐽0
′′(𝑡)}        (18) 

Use of Anuj transform of derivatives of a function property in (18) gives 

𝒜{𝐽2(𝑡)} = 𝒜{𝐽0(𝑡)} + 2 [
1

𝑟2 𝒜{𝐽0(𝑡)} − 𝑟𝐽0(0) − 𝑟2𝐽0
′(0)]      (19) 

Use of (6), (10) and (13) in (19) provides 

𝒜{𝐽2(𝑡)} = [
𝑟3

√1+𝑟2
] + 2 [

1

𝑟2 [
𝑟3

√1+𝑟2
] − 𝑟 + 𝑟2𝐽1(0)]       (20) 
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Using (7) in (20), we have 

𝒜{𝐽2(𝑡)} = [
𝑟3

√1 + 𝑟2
] + 2 [[

𝑟

√1 + 𝑟2
] − 𝑟] 

⇒ 𝒜{𝐽2(𝑡)} = [
𝑟3+2𝑟(1−√1+𝑟2)

√1+𝑟2
]         (21) 

11.4. Anuj transform of 𝒆𝒌𝒕𝑱𝟎(𝒕): 

From (13), we have 

𝒜{𝐽0(𝑡)} = [
𝑟3

√1 + 𝑟2
] 

Using translation property of Anuj transform on above equation, we have 

𝒜{𝑒𝑘𝑡𝐽0(𝑡)} = (1 − 𝑘𝑟)2

[
 
 
 (

𝑟

1−𝑘𝑟
)

3

√1 + (
𝑟

1−𝑘𝑟
)

2

]
 
 
 

 

⇒ 𝒜{𝑒𝑘𝑡𝐽0(𝑡)} = [
𝑟3

√(1−𝑘𝑟)2+𝑟2
]         (22) 

11.5. Anuj transform of 𝒆𝒌𝒕𝑱𝟏(𝒕): 

From (16), we have 

𝒜{𝐽1(𝑡)} = [
𝑟2(√1 + 𝑟2 − 1)

√1 + 𝑟2
] 

Using translation property of Anuj transform on above equation, we have 

𝒜{𝑒𝑘𝑡𝐽1(𝑡)} = (1 − 𝑘𝑟)2

[
 
 
 
 (

𝑟

1−𝑘𝑟
)

2

(√1 + (
𝑟

1−𝑘𝑟
)

2

− 1)

√1 + (
𝑟

1−𝑘𝑟
)

2

]
 
 
 
 

 

⇒ 𝒜{𝑒𝑘𝑡𝐽1(𝑡)} = [
𝑟2(√(1−𝑘𝑟)2+𝑟2−(1−𝑘𝑟))

√(1−𝑘𝑟)2+𝑟2
]        (23) 

11.6. Anuj transform of 𝒆𝒌𝒕𝑱𝟐(𝒕): 

From (21), we have 

𝒜{𝐽2(𝑡)} = [
𝑟3 + 2𝑟(1 − √1 + 𝑟2)

√1 + 𝑟2
] 

Using translation property of Anuj transform on above equation, we have 

𝒜{𝑒𝑘𝑡𝐽2(𝑡)} = (1 − 𝑘𝑟)2

[
 
 
 
 (

𝑟

1−𝑘𝑟
)

3

+ 2 (
𝑟

1−𝑘𝑟
) (1 − √1 + (

𝑟

1−𝑘𝑟
)

2

)

√1 + (
𝑟

1−𝑘𝑟
)

2

]
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⇒ 𝒜{𝑒𝑘𝑡𝐽2(𝑡)} = [
𝑟3+2𝑟(1−𝑘𝑟){(1−𝑘𝑟)−√(1−𝑘𝑟)2+𝑟2}

√(1−𝑘𝑟)2+𝑟2
]       (24) 

11.7. Anuj transform of 𝑱𝟎(𝒌𝒕): 

From (13), we have 

𝒜{𝐽0(𝑡)} = [
𝑟3

√1 + 𝑟2
] 

Using change of scale property of Anuj transform on above equation, we have 

𝒜{𝐽0(𝑘𝑡)} =
1

𝑘3
[

(𝑘𝑟)3

√1 + (𝑘𝑟)2
] 

⇒ 𝒜{𝐽0(𝑘𝑡)} = [
𝑟3

√1+𝑘2𝑟2
]          (25) 

11.8. Anuj transform of 𝑱𝟏(𝒌𝒕): 

From (16), we have 

𝒜{𝐽1(𝑡)} = [
𝑟2(√1 + 𝑟2 − 1)

√1 + 𝑟2
] 

Using change of scale property of Anuj transform on above equation, we have 

𝒜{𝐽1(𝑘𝑡)} =
1

𝑘3
[
(𝑘𝑟)2 (√1 + (𝑘𝑟)2 − 1)

√1 + (𝑘𝑟)2
] 

⇒ 𝒜{𝐽1(𝑘𝑡)} =
1

𝑘
[
𝑟2(√1+𝑘2𝑟2−1)

√1+𝑘2𝑟2
]         (26) 

11.9. Anuj transform of 𝑱𝟐(𝒌𝒕): 

From (21), we have 

𝒜{𝐽2(𝑡)} = [
𝑟3 + 2𝑟(1 − √1 + 𝑟2)

√1 + 𝑟2
] 

Using change of scale property of Anuj transform on above equation, we have 

𝒜{𝐽2(𝑘𝑡)} =
1

𝑘3
[
(𝑘𝑟)3 + 2(𝑘𝑟) (1 − √1 + (𝑘𝑟)2)

√1 + (𝑘𝑟)2
] 

⇒ 𝒜{𝐽2(𝑘𝑡)} =
1

𝑘2 [
𝑘2𝑟2+2𝑘𝑟(1−√1+𝑘2𝑟2)

√1+𝑘2𝑟2
]        (27) 

12. Conclusion 

In this paper, authors fruitfully obtained the Anuj transform of Bessel’s functions of first kind of order zero, one and two 
i.e. 𝐽0(𝑡), 𝐽1(𝑡) and 𝐽3(𝑡). Authors also obtained the Anuj transform of 𝑒𝑘𝑡𝐽0(𝑡), 𝑒

𝑘𝑡𝐽1(𝑡), 𝑒
𝑘𝑡𝐽2(𝑡), 𝐽0(𝑘𝑡), 𝐽1(𝑘𝑡) and 𝐽2(𝑘𝑡) 

using translation and change of scale properties of Anuj transform. These results are important for determining the 
values of improper integrals containing Bessel’s functions in integrand. Results of this paper can use in future study for 
determining the solutions of Bessel’s equations. 
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