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Abstract 

Bayesian sequential designs are increasingly receiving attention in recent years, especially in clinical trials and 
biomedical research. Bayesian sequential design process can utilize the available prior information of the unknown 
parameters so that a better design can be achieved. In this paper, a hybrid computational method, which consists of the 
combination of a rough global optima search and a more precise local optima search, is proposed to efficiently search 
for the Bayesian A-optimal designs for multi-variable generalized linear models. Specifically, Poisson regression models 
and logistic regression models are investigated. Designs are examined for a range of prior distributions and the 
equivalence theorem is used to verify the design optimality. Design efficiency for various models were examined. 
Furthermore, the idea of the Bayesian sequential design is introduced and the Bayesian three-stage A-optimal design 
approach is introduced for generalized linear models. With the incorporation of the first stage data information into the 
second stage, the second stage data information into the third stage, the three-stage design procedure improved the 
design efficiency and produce more accurate and robust designs. The Bayesian three-stage A-optimal designs for 
Poisson and logistic regression models are evaluated based on simulation studies. The Bayesian three-stage A-optimal 
design is superior to the two-stage A-optimal design approach in terms of design optimality and efficiency criteria. 
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1 Introduction 

Generalized Linear Model is a flexible generalization of the ordinary linear model, and allows the response variable to 
have an error distribution other than normal. Thus, it can be used for the regression of discrete responses, including 
binary and count data which is what we focus on. It is perhaps not too much of an exaggeration to say that the rich 
development of normal-theory linear models has been a major force behind much of statistics and scientific discovery 
in the last century. When data was not quite normal then transformations were used to make the data normally 
distributed with constant variance. For example, Box and Cox (1964) is a widely used method that has garnered more 
than 100,309 citations according to the Web of Science. The need to make the data more like the assumptions of the 
linear model decreased as modern computing power increased. Generalized linear models (GLMs) were developed by 
Nelder and Wedderburn (1972) as a generalization of the linear model to a larger variety of response distributions and 
non-linear relationships between the mean and the variance. GLMs are usually restricted to responses from the natural 
exponential family, but their adoption allowed practitioners to better explore new kinds of data. Responses composed 
of success and failures, counts of pits on a polished surface, and even time between failures all can be represented using 
this technique. Software to fit GLMs is ubiquitous. Applications in the literature are numerous. The complexity of GLMs 
has made experimental design a difficult task. Bayesian D-optimality Chaloner and Larntz (1989) is one approach for 
designing experiments for GLMs. This approach is presently implemented in commercial software. Philosophically, the 
approach is a hybrid of frequentist and Bayesian approaches, somewhat to its own detriment. Issues are identified when 
the Bayesian prior covers models with no active effects. The asymptotic criterion is related to drastically different small-
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sample performance. Ways to determine if a design is suffering from these maladies are suggested. GLMs rely strongly 
on independence of observations, but in many industrial experiments this is simply not true. Generalized linear mixed 
models (GLMMs) are a generalization of generalized linear models in which correlated random effects are introduced 
into the GLM to induce correlation among the observations. Some need exists for general methods to design exact 
experiments for GLMMs. Sung, et al (2019) developed sequential designs for conditionally natural exponential 
responses, and Waite and Woods (2015) developed approximate-block exact-point designs for conditionally natural 
exponential responses. Additional discussion of Waite and Woods (2015) is in Appendix B. Additional work for specific 
responses include Ouwens et al. (2006), and Niaparast and Schwabe (2013). Woods and Van de Ven (2011) provided a 
general method but restricted the model to the form in generalized estimating equations analysis. 

Optimal design is an area of experimental design where a criterion, which will be referred to as a design criterion, is 
optimized with respect to the design points. These design criteria often deal with the variance of parameter estimates 
or some information measure of the design. In this work, a set of four design criteria were investigated to identify a way 
to construct optimal designs for GLMs having random blocks. The four criteria ranged from naively ignoring the 
dependency structure to approximations of the likelihood or score functions. The investigation focused on five models: 
a second order normal model, a first and second order binomial model, and a first and second order Poisson model, 
selected for having sufficiently interesting features in the design space, Atkinson & Woods (2015). 

2 Material and methods 

Ryan (2003) proposed a Bayesian generalization of Lauter’s criterion for robust optimal design when there is model 
uncertainty. This criterion is then placed in a Bayesian decision theoretical framework and is shown to suggest a 
generalized robust Bayesian A-optimal design criterion. Using generalized Bayesian A-optimality to find the optimal 
design in a water contamination problem, they obtain optimal designs that are quite different from those resulting from 
standard Bayesian A-optimality. 

Even through there are many challenges, some results have been established for optimal designs under generalized 
linear models. Yang and Stufken (2009) provided a new algebraic approach for locally optimal design for GLMs with 
two parameters, which is called the complete class approach. With their results, finding an optimal design can, for many 
optimality criteria, be restricted to a small class of designs, making it a more tractable problem. Further results using 
this approach are obtained for locally optimal design for GLMs with group effects Stufken and Yang (2012) and with 
more than one covariate Yang, et al (2011). Yang et al (2011) studied A-optimal designs and Dp-optimal designs were 
studied in Wu and Stufken (2014).  

A-optimality: A design is A-optimal for  g  if it minimizes the trace of the inverse of the information matrix for 

 g  , or equivalently the covariance matrix for  g  . So 0  is A-optimal for  g   in S if and only if 

     1mino sTr I g Tr I g   


        . Thus, an A-optimal design actually minimizes the average of the 

asymptotic variance of the Maximum Likelihood Estimates of the elements of  g  . 

In spite of these and other contributions in recent years, results and theorems for optimal designs under generalized 
linear models are still very limited. Most of them focus on the model with only main effects as its factorial effects and 
only a few have considered models with interactions. Besides, most known results only provide some general properties 
of optimal designs to help search for them. The explicit expressions of optimal designs are pretty much unknown and 
can only be obtained through algorithms. In addition, full factorial designs are usually considered in known theorems, 
but in reality, we cannot conduct a full factorial design due to the limitation of time, people or money. Therefore, many 
areas still require further study, especially models with interactions and optimal fractional factorial designs. 

In this paper, we explore Bayesian A-optimal designs under generalized linear models focusing on the Logistic and 
Poisson models, which are commonly used for binary and count responses will identify explicitly such models. Under 
the three-stage Bayesian optimal design setting, a hybrid computational technique will be introduced in order to attain 
a global optimal point and hence the equivalence theorem will be used to identify the Bayesian optimal design.  

2.1 Efficiency of the Bayesian a-optimal design 

The goal of the Bayesian A-optimal design is to find design points at which the trace of the Fisher information matrix 
evaluated at the true parameter values is maximized. The A-efficiency is defined as the ratio of the determinant of the 
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Fisher information matrix with the chosen design points to that with the true A-optimal design points at the true 
parameter values, i.e., 
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2.2 Three-stage designs 

In this section, a three-stage experimental design procedure which utilizes Bayesian techniques is implemented for the 
Logistic regression model and the Poisson regression model. This procedure is shown in figure 2 which is a practical 
extension to the two-stage designs of Wang (2018). In addition, a section is devoted to the evaluation of the procedure 
as is a section concerning the sample distribution between the stages. The two-stage procedure in part originated with 
some other two-stage work by Minkin (1987) and Myers, Myers, et al (1987). Myers et al (1987) found and studied two-
stage D-Q (non-Bayesian) optimal designs which were found to be considerably more robust and nearly as efficient as 
the one-stage designs. The main extension from their work and Woods’s work is in the use of Bayesian design and 
Bayesian estimation, hence the extension to the three-stage designs. 

2.3 Three-stage design procedure 

The two-stage procedure uses two design optimality criteria, one in the second stage and one in the third. The second 
stage design should be quite robust to poor parameter guesses while not necessarily being very efficient if parameter 
knowledge is good. 

The set of nonlinear equations one solves to obtain the maximum likelihood estimates (MLE) of  and   is given by 
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            . . . (5) 

Where k is the number of design points, ir  is the number of successes at the ith design point out of nj P is the centered 

logistic model and Q is the centered Poisson model. The likelihood function apart from constants for the centered logistic 
regression model and Poisson regression model is given by 
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The expression for a joint independent normal prior apart from the constants is then 
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Where   and   are random variables and  ,   and  ,   are their respective means and standard deviations. 

Consequently, the posterior likelihood, again apart from the constants, is 
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Taking the log, the posterior likelihood can be written in the following form 
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Differentiating expressions (12) with respect to   yields 
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Simplifying expression 13 we obtain 
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Differentiating expression 12 with respect to   yields 
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After some simplification, expression 17 becomes 
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Equating expressions 19 and 20 to zero produces the set of nonlinear equation which when solved yield the posterior 
mode. The pair of equations 
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Is an adjusted version of the set given by 8 - 12. The adjustment terms keep the estimation of   and   from straying 

too far away from their respective prior means in units of prior variance. If a joint uniform distribution is used as the 
prior, the posterior mode is simply given by the maximum likelihood estimates subject to the constraints that 

ˆ
L U     and ˆ

L U    . The estimates become the nearest endpoint of the prior if the maximum likelihood 

estimates should fall outside the uniform prior. 

The likelihood for the second stage is the same as the likelihood for the double stage experiment.  
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Where 
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Is the probability of success at the 
thi  design point in the second stage, 2r  is a  2 1k   vector of responses in the second 

stage in which each element is the number of successes out of 2 ,in the sample size at the 
thi  design point, 2k  is the 

number of design points in the second stage, and 2x  is a  2 1k   vector of design point locations. We know that the 
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total or joint likelihood can be expressed as a product of the second stage likelihood and the third stage likelihood 
conditioned on the second. 

     2,3 2 3 2 3 2 2 2 3/2 3 2 2 3, ; , , , ; , ; / , ,L r r x x L r x L r r x x          . . . (27) 

Where the conditional likelihood for the third stage given the second stage is given by 
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And 
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Is again the probability of success at the 
thj  design point in the third stage, 3r  is a  3 1k   vector of responses in the 

third stage in which each element is the number of successes out of 3 jn , the sample size at the 
thj  design point, and 

3k  is the number of design points in the third stage. 

In this dissertation, the number of design points in the third stage, 3k is three. In order for the entire three-stage design 

to be highly efficient, it must resemble the optimal 3-level designs. In order to address its goal of robustness, the third 
stage needs just 3 levels to complete a three-stage design which has the complexion of an optimal 3 level design. 

Taking the natural logarithm of equation 29 results in 

2,3 2 3/2LogL LogL LogL           . . . (30) 

After expanding,  
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Equation 31 can then be used directly to find the Fishers information matrix. However, the total or joint Fishers 
information is merely the sum of the individual information matrices formed from equations 24 and 28, the two 
likelihoods. 

The total information matrix for three stage procedure is then 
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The inverse of the information matrix is given by, 
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3 Results and discussion 

Implementation of Bayesian Three-Stage A-Optimal Designs 

Here, we will show examples of Bayesian three-stage D-optimal and A-optimal designs for Logistic regression and 
Poisson regression models. The A-optimality criteria for the second stage design is defined in the previous section, 

which is to choose the design measure   maximizing  1   and minimizing  2  . For the third stage, the design 

criteria are to maximize and minimize the equations defined in (7-8). 

The hybrid computational method discussed previously is used to find the three-stage optimal designs efficiently. 

Thus, we would expect that three-stage designs work better for larger and even smaller samples. In this simulation, we 
choose the total number of sample size n as 200. Suppose that we have n experimental runs in total and we use n2 
experimental runs at the second stage and n3=n-n2 runs at the third stage. One important question is how to allocate 
the n runs optimally to get the best result. In this chapter, the equal sample size is chosen for the second and third stage, 
i.e., n2 = n3 = 100. 

Logistic Regression Models 

The model can be written as  

  ,ij iy Logistic n
            . . . (32) 

Where 
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We define yij in (32) to be the response for the jth replicate of the ith design point and assume it follows a logistic 
distribution with ni as the mean; xi is the regressor vector at the ith point and β is the parameter vector. For the one-
variable and two-variable models, 
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Denote by pi the proportion of whole sample size at ith design point xi, with 
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i = 1, 2, . . . , k. The Fisher information matrix I(β, η) for the logistic regression model can be written as  
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where xi is a p × 1 design vector of the ith design points. 

The regressors here are not limited and for this study we coded x as (0,1). 

The tables below show three applications of the Bayesian A-optimal designs for the Logistic regression models. We will 
use A-efficiency measure described in the previously to evaluate the efficiencies of the Bayesian three-stage design.  

Table 1 A one variable Logistic regression model for D-optimal design, n = 200. The true model is 

   
1

1 exp 1.0725 0.0279
n

Age


   
 

       0 11,3 1,2 , 4,2 6,2N I N I   
 

Point True D-optimal Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi 

1 0.5 0.319 0.421 0.812 0.272 0.673 

2 0.5 -0.252 0.212 0.385 0.473 0.328 

 

Table 2 A one variable Logistic regression model for D-optimal design with different priors. 

       0 11,3 1,2 , 4,2 6, 1N I N I    
 

Point True D-optimal Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi 

1 0.5 0.319 0.242 0.415 0.651 0.881 

2 0.5 -0.252 0.232 0.379 0.471 0.865 

       0 11,3 1,2 , 2,2 6, 1N I N I    

 
Point True D-optimal Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi 

1 0.5 0.319 0.113 0.578 0.563 0.792 
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2 0.5 -0.252 0.282 -0.432 0.687 0.654 

Table 3 A one variable Logistic regression model for A-optimal design. n = 200 and n2 = 100 

       0 11,3 1,2 , 4,2 6,2N I N I   
 

Point True A-optimal Design First-Stage Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi Pi Xi 

1 0.5 0.521 0.232 0.573 0.546 0.745 0.572 0.867 

2 0.5 0.238 0.421 0.348 0.529 0.213 0.048 0.291 

       0 11,3 1,2 , 4,2 6, 1N I N I    
 

Point True A-optimal Design First-Stage Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi Pi Xi 

1 0.5 0.521 0.352 0.752 0.598 0.794 0.795 0.623 

2 0.5 0.238 0.423 -0.483 0.531 -0.206 0.606 -0.002 

 

Table 4 A one variable Logistic regression model for A-optimal design. n = 200 and n2 = 100 with different priors 

       0 11,3 1,2 , 2,2 6, 1N I N I    
 

Point True A-optimal Design First-Stage Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi Pi Xi 

1 0.5 0.521 0.322 0.641 0.385 0.706 0.542 0.787 

2 0.5 0.238 0.311 -0.182 0.254 -0.013 0.568 0.365 

 

Table 5 A two variable Logistic regression model for A-optimal design. n = 200 and n2 = 100. The true model is n = 
1/(1+exp(-(-1.1107+0.0279*Age + 0.0018*BMI))) 

       0 11,3 1,2 , 4,2 6,2N I N I   

 
Point True A-optimal Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi 

1 0.3 (1,1) 0.1 (1,1) 0.612 (1,1) 

2 0.3 (1,0.4) 0.1 (1,0.432) 0.452 (1,0.532) 

3 0.3 (0,1) 0.1 (0,1) 0.489 (0.142,1) 
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Table 6 A two variable Logistic regression model for A-optimal design. n = 200 and n2 = 100 with different priors. 

       0 11,3 1,2 , 2,2 6, 1N I N I    

 
Point True A-optimal Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi 

1 0.3 (1,1) 0.1 (1,1) 0.087 (1,1) 

2 0.3 (1,0.4) 0.1 (1,0.043) 0.217 (1,0.321) 

3 0.3 (0,1) 0.1 (0,1) 0.342 (0.241,1) 

3.1 Poisson Regression Models 

A Poisson regression model, is useful in modelling a random variable of counts, is a generalized linear model with 
unknown parameters in the information matrix. The Poisson regression model may be written as 
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where yij is the response for the jth replicate of the ith design point, ix  the regressor vector at the ith point,  the 

parameter vector, and i  the Poisson mean at ith point. We are going to investigate the following one-variable, and two-

variables, respectively, 
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Table 7 A one variable Poisson regression model for A-optimal design. n = 200 and n2 = 100. The true model is ƛ = 
exp(1.2589-0.0011*Age) 

       0 11,3 1,2 , 4,2 6,2N I N I   
 

Point True A-optimal Design First-Stage Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi Pi Xi 

1 0.5 0 0.321 0 0.382 0 0.582 0 

2 0.5 1 0.272 1 0.294 1 0.321 1 

       0 11,3 1,2 , 4,2 6, 1N I N I    
 

Point True A-optimal Design First-Stage Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi Pi Xi 

1 0.5 0 0.324 0 0.533 0 0.621 0 

2 0.5 1 0.432 1 0.540 1 0.702 1 

 

Table 8 A one variable Poisson regression model for A-optimal design. n = 200 and n2 = 100 with different priors. 

       0 11,3 1,2 , 2,2 6, 1N I N I    
 

Point True A-optimal Design First-Stage Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi Pi Xi 

1 0.5 0 0.152 0 0.241 0 0.407 0 

2 0.5 1 0.074 1 0.102 1 0.191 1 

 

Table 9 A two variable Poisson regression model for A-optimal design. n = 200 and n2 = 100. The true model is ƛ = 
exp(1.3288 - 0.0013*Age – 0.0077*Study) 

       0 11,3 1,2 , 4,2 6,2N I N I   
 

Point True A-optimal Design First-Stage Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi Pi Xi 

1 0.3 (0,1) 0.231 (0,1) 0.272 (0,1) 0.632 (0,1) 

2 0.3 (1,0) 0.218 (1,0) 0.187 (1,0) 0.752 (1,0) 

3 0.3 (1,1) 0.178 (1,1) 0.062 (1,1) 0.392 (1,1) 

       0 11,3 1,2 , 2,2 6, 1N I N I    
 

Point True A-optimal Design First-Stage Design Second-Stage Design Third-Stage Design 

Pi Xi Pi Xi Pi Xi Pi Xi 

1 0.3 (0,1) 0.201 (0,1) 0.272 (0,1) 0.721 (0,1) 

2 0.3 (1,0) 0.327 (1,0) 0.232 (1,0) 0.762 (1,0) 

3 0.3 (1,1) 0.301 (1,1) 0.420 (1,1) 0.672 (1,1) 
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3.2 Evaluation of Bayesian Three-Stage A-Optimal Designs (CHD)  

3.2.1 A-Efficiency  

The goal of A-optimal design is to minimize the trace of the inverse of the Fisher information matrix at the true 
parameter values. Thus, a logical way to evaluate a three-stage design is to compare the trace of the inverse of the Fisher 
information matrix of the three-stage design to that of the two-stage true A-optimal design. 

We define A-efficiency as follows: 

       . . . (39) 

Table 10 Comparisons of the A-efficiency between the Bayesian one-stage, two-stage and three-stage A-optimal designs 
for one-variable Logistic regression models. n = 200, n2 = 100 and N = 100. 

   
1

1 exp 1.0725 0.0279
n

Age


   
 

Prior One Stage Two Stage Three Stage 

Β0 ~ N(1,2) I[0,2] 

Β1 ~ N(3,2) I[0,6] 

0.8529 0.9219 0.9832 

Β0 ~ N(1,2) I[0,2] 

Β1 ~ N(2,6) I[0,6] 

0.8254 0.8021 0.9781 

Β0 ~ N(1,2) I[0,2] 

Β1 ~ N(1,3) I[0,6] 

0.8926 0.8835 0.9920 

Β0 ~ U[0,2] 

Β1 ~ U[-4.5,5.5] 

0.6732 0.8751 0.9103 

Β0 ~ U[0,2] 

Β1 ~ U[0,5] 

0.9721 0.9722 0.9702 

 

Table 11 Comparisons of the A-efficiency between the Bayesian one-stage, two-stage and three-stage A-optimal designs 
for one-variable Logistic regression models. n = 200, n2 = 100 and N = 100 with different priors. 

   
1

1 exp 1.0725 0.0279
n

Age


   
 

Prior One Stage Two Stage Three Stage 

Β0~N(1,3) I[-1,2] 

Β1~N(-4,2) I[-6,2] 

0.8893 0.8890 0.9874 

Β0~N(1,3) I[-1,2] 

Β1~N(-4,2) I[-6,-1] 

0.9805 0.9821 0.9903 

Β0~N(1,3) I[-1,2] 

Β1~N(-2,2) I[-6,-1] 

0.8531 0.8865 0.9721 

Β0 ~ U[-1,2] 

Β1 ~ U[-8,0] 

0.8843 0.8904 0.9904 

Β0 ~ U[-1,2] 

Β1 ~ U[-6,0] 

0.8932 0.9327 0.9684 

 
 

trueoptA

truerdstage

rdstage
XI

Xtr
effA





,

3

3

,
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Table 12 Comparisons of the A-efficiency between the Bayesian one stage, two-stage and three-stage A-optimal designs 
for two-variable Logistic regression models. n = 200, n2 = 100 and N = 100 

n = 1/(1+exp(-(-1.1107+0.0279*Age + 0.0018*BMI))) 

Prior One Stage Two Stage Three Stage 

Β0 ~ N(1,2) I[0,2] 

Β1 ~ N(3,2) I[0,6] 

0.7983 0.8807 0.9023 

Β0 ~ N(1,2) I[0,2] 

Β1 ~ N(2,6) I[0,6] 

0.8805 0.8832 0.8987 

Β0 ~ N(1,2) I[0,2] 

Β1 ~ N(1,3) I[0,6] 

0.8795 0.8953 0.9945 

Β0 ~ U[0,2] 

Β1 ~ U[-4.5,5.5] 

0.8634 0.8742 0.9832 

Β0 ~ U[-2,2] 

Β1 ~ U[0,5] 

0.8906 0.8998 0.9964 

 

Table 13 Comparisons of the A-efficiency between the Bayesian one stage, two-stage and three-stage A-optimal designs 
for two-variable Logistic regression models. n = 200, n2 = 100 and N = 100 with different priors. 

n = 1/(1+exp(-(-1.1107+0.0279*Age + 0.0018*BMI))) 

Prior One Stage Two Stage Three Stage 

Β0~N(1,3) I[-1,2] 

Β1~N(-4,2) I[-6,-1] 

0.8845 0.8931 0.9852 

Β0~N(1,3) I[-1,2] 

Β1~N(-2,2) I[-6,-1] 

0.8956 0.8894 0.9890 

Β0~N(1,3) I[-1,2] 

Β1~N(-1,3) I[-6,-1] 

0.8826 0.8935 0.9847 

Β0 ~ U[-1,2] 

Β1 ~ U[-8,0] 

0.9004 0.9097 0.9906 

Β0 ~ U[-1,2] 

Β1 ~ U[-6,0] 

0.9306 0.9598 0.9978 

 

Table 14 Comparisons of the A-efficiency between the Bayesian one-stage, two-stage and three-stage A-optimal designs 
for one-variable Poisson regression models. n = 200, n2 = 100 and N = 100. 

ƛ = exp(1.2589-0.0011*Age) 

Prior One Stage Two Stage Three Stage 

Β0 ~ N(1,2) I[0,3] 

Β1~N(0.5,6)I[0,5] 

0.8972 0.8997 0.9945 

Β0 ~ N(1,2) I[0,3] 

Β1 ~ N(1,6) I[0,5] 

0.9042 0.9132 0.9894 

Β0 ~ N(1,2) I[0,3] 

Β1 ~ N(1,3) I[0,5] 

0.8807 0.8935 0.9725 
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Β0 ~ U[-1,3] 

Β1 ~ U[-5.5,6.5] 

0.8846 0.8952 0.9957 

Β0 ~ U[-1,3] 

Β1 ~ U[0,5] 

0.8849 0.8972 0.9877 

 

Table 15 Comparisons of the A-efficiency between the Bayesian one-stage, two-stage and three-stage A-optimal designs 
for one-variable Poisson regression models. n = 200, n2 = 100 and N = 100 with different priors. 

ƛ = exp(1.2589-0.0011*Age) 

Prior One Stage Two Stage Three Stage 

Β0~N(1,3) I[-1,3] 

Β1~N(-4,6) I[-6,0] 

0.8763 0.8876 0.9907 

Β0~N(1,3) I[-1,3] 

Β1~N(-4,3) I[-6,0] 

0.8732 0.8895 0.9896 

Β0~N(1,3) I[-1,3] 

Β1~N(-2,3) I[-6,0] 

0.8807 0.8974 0.9963 

Β0 ~ U[-1,3] 

Β1 ~ U[-8,0] 

0.8794 0.8805 0.9842 

Β0 ~ U[-1,3] 

Β1 ~ U[-6,0] 

0.8746 0.8945 0.9942 

 

Table 16 Comparisons of the A-efficiency between the Bayesian one-stage, two-stage and three-stage A-optimal designs 
for two-variable Poisson regression models. n = 200, n2 = 100 and n3 = 100 

ƛ = exp(1.3288 - 0.0013*Age – 0.0077*Study) 

Prior One Stage Two Stage Three Stage 

Β0 ~ N(0,3) I[-1,1] 

Β1~N(0.5,3) I[-1,1] 

Β2~N(1,2) I[0,3] 

0.8974 0.8979 0.9896 

Β0 ~ N(0,3) I[-1,1] 

Β1 ~ N(0.5,1) I[-1,1] 

Β2~N(1,2) I[0,3] 

0.8867 0.8945 0.9947 

 

Table 17 Comparisons of the A-efficiency between the Bayesian one-stage, two-stage and three-stage A-optimal designs 
for two-variable Poisson regression models. n = 200, n2 = 100 and n3 = 100 with different priors. 

ƛ = exp(1.3288 - 0.0013*Age – 0.0077*Study) 

Prior One Stage Two Stage Three Stage 

Β0~N(2,1) I[1,3] 

Β1~N(-1,1) I[-2,0] 

Β2~N(-3,1) I[-4,0] 

0.8732 0.8721 0.9768 

Β0~N(2,1) I[1,3] 0.8977 0.8989 0.9975 
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Β1~N(-1,1) I[-2,0] 

Β2~N(-3,1) I[-6,0] 

4 Conclusion 

Tables 6-8 show the simulated Bayesian three-stage A-efficiency values for the Poisson regression models given in 
Tables 9–10 and more. In Tables 8 and 9, we list the simulated Bayesian three-stage A-efficiency values for the logistic 
regression models given in Tables 2–3 and more.  

Using the simulated results from Tables 1–17, we have the following comments and conclusions.  

 In general, Bayesian three-stage A-optimal designs achieve better A-efficiency than the two-stage design.  
 The three-stage design is more effective for the cases with less A-efficiency in the second stage. The A-efficiency 

difference due to the prior knowledge on parameters is reduced using the three-stage approach. For the designs 
with the two-stage A-efficiency about 70 − 80%, the three-stage design can increase it to around 96%. For those 
with the two-stage A-efficiency about 70 − 80%, the three-stage design can increase it to around 97%. For the 
designs with good A-efficiency in the second stage, the third-stage design does not have much space to improve it. 
For example, in Table (10) on first two cases of right side, the two-stage designs already achieve the A-efficiency 
of 90% and 92%, respectively, while the three-stage designs have the A-efficiency 97% and 98%, respectively.  

 The mode of the truncated normal prior or the center of the uniform prior is a very important factor to the A-
efficiency. In the situation that all the other factors (variance and range) are the same, the design can achieve 
greater A-efficiency when the mode of the truncated normal prior or the center of the uniform prior is on the true 
parameter values. This result can be easily seen from several examples in Tables 16 and 17.  

 As the prior uncertainty (variance and range) increases, the A-efficiency of the two stage and three-stage design 
usually decreases. It is true in general when the mode of the truncated normal prior or the center of the uniform 
prior the A-efficiency is on the true parameter values. But when they are not on the true parameter values, the A-
efficiency could be better in the case that larger uncertainty is assumed on the prior. This can be seen from the 
second and third examples on the left side of Table 12. In such cases, the true parameter values get higher 
probability densities with more spread prior so that a better A-efficiency can be achieved.  

We have investigated the Bayesian three-stage A-optimal design for generalized linear models. Particularly, we 
discussed the one-variable and two-variable Logistic and Poisson regression models. We presented the procedure and 
algorithm of the Bayesian three stage A-optimal design. We illustrated the Bayesian two-stage A-optimal design 
procedure by using examples of representative Logistic and Poisson regression models and listed the true, second-stage 
and third-stage A-optimal design points with the proportions of the associated sample size. It can be concluded that if 
the second-stage design is not really optimal, once the data are observed, the third-stage design usually tries to balance 
the design from the second-stage and make the overall design close to the true A-optimal design.  

Due to the dependence between the third-stage design and the second-stage data, it is very complicated to use the 
expected Fisher information matrix for the three-stage designs. We discussed how to use simulation to approximate the 
Fisher information matrix, which further enabled us to compute A-efficiency of the two-stage design. We evaluated the 
performance of the three-stage designs in terms of the A-efficiency for various Poisson and Logistic regression models. 
It has been demonstrated that three-stage designs are more efficient and robust than two-stage designs. 
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