

eISSN: 2581-9615 CODEN (USA): WJARAI Cross Ref DOI: 10.30574/wjarr Journal homepage: https://wjarr.com/

(REVIEW ARTICLE)

Check for updates

El Ninos: Their magnitudes and durations

Burl Henry *

Senior Engineer. IBM Corp (retired) Villanova, PA, USA.

World Journal of Advanced Research and Reviews, 2023, 19(01), 165–167

Publication history: Received on 25 May 2023; revised on 02 July 2023; accepted on 04 July 2023

Article DOI: https://doi.org/10.30574/wjarr.2023.19.1.1306

Abstract

Between 1900 and 2022, there have been 35 El Nino warming events recorded. An examination of the temperature rise caused by those events has shown that they occurred within the range of 0.029 - 0.54 Deg. C, with those of longer duration generally having the higher temperatures. Their median maximum temperature value was 0.29 Deg. C, and their average value was 0.26 Deg. C.

In all but four instances, they were ended because of the injection of cooling volcanic Sulfur Dioxide (SO2) aerosols into the stratosphere by a VEI4, or larger, volcanic eruption. The exceptions were due to increased levels of industrial SO2 aerosol emissions.

This information can be used to judge whether future El Ninos fall within the normal range, or not, etc.

Keywords: El Ninos; Volcanic effects; Climate Change; SO₂ aerosols

1. Introduction

El Ninos are classified as being Weak (W), Moderate (M), Strong (S), or Very Strong (VS), and it appeared that the maximum temperatures and durations associated with each one could be helpful in determining whether a future El Nino lies within the normal range. Since adverse weather conditions (droughts, floods, fires, hot waves, cold waves, stormy weather, etc.) are associated with El Ninos, this information could be helpful in understanding our weather.

2. Methods

A print-out of the Hadcrut5 average anomalous land/ocean global temperatures [1] was obtained, and the Start and End dates of each El Nino between 1900 and 2022 was marked on the print-out, using data from the National Weather Service Climate Prediction Center [2]. The start and end dates were recorded, along with the highest temperature within that interval, and its date.

3. Discussion

The data obtained is shown in the following Table 1.

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

^{*} Corresponding author: Burl Henry, retired Senior Engineer, IBM Corp, Villanova, PA USA L

 Table 1 Maximum El Nino Temperatures, Deg. C.

		Maximum	El Nino Te	mperature	es, Deg. C.				
						Max Temp	Cause of		
		Date, if not	Maximum	Hadcrut5	Temps	Increase*	El Nino		Publishe
El Ninos		at end	Temp.	Start	End	Deg. C.	Ending		Rating
1800 Doc-1	900 Oct		-0.065	-0.406	-0.065	0 2/1	Dona luar	21800Nov	
1899 Dec-1900 Oct 1902 Apr-1903 Apr		1903 Feb	-0.003	-0.400	-0.003		Dona Juana1899Nov Pele 1902 May		
1902 Apr-1903 Apr 1904 Oct-1906 Apr		1902 LED	-0.24	-0.451	-0.388		Lolobau 1904 Aug		
1904 Oct-1908 Apr 1911 Oct-1912 May			-0.104	-0.335	-0.104		Ksudach 1907 Apr		
1913 Oct-1912 May			-0.555	-0.343	-0.333		Novarupta 1912 Jun		
1913 Oct-1914 Apr 1914 Nov-1915 Apr			-0.083	-0.438	-0.083		Colima 1913 Jun		
1918 Aug-1919 Jul		1918 Oct	-0.119	-0.13	-0.083		Arigan 1917 Apr		
1923 Aug-1924 Mar		1918 Oct 1923 Nov	-0.034	-0.324	-0.176		Manam 1919 Aug		
1925 Jul-1926 Aug		1926 Jan	0.088	-0.331	-0.1		Raikoke 1924 Feb		
1930 Jul-1931 Jul		1920 Juli 1930 Nov	-0.088	-0.188	-0.088		KamagaTake '29 Jun		
1939 Nov-1940 Jun		1939 Dec	0.334	0.021	0.000		-	D2 1939-40	
1940 Oct-1942 Mar		1942 Jan	0.258	0.096	-0.042		Rabaul 19		
1951 Jun-1952 Feb		1951 Sep	0.132	0.06	0.068		Ambrym 2		W
1953 Jan 1954 Mar		1951 Sep	0.225	-0.009	-0.183		Bagama 1		W
1957 Mar-1958 Aug		1958 Jan	0.225	-0.198	-0.019			los 1955Jul	S
1958 Oct-1959 Apr		1556 5411	0.026	-0.019	0.015			ny '56 Mar	M
1963 May-1964 Mar		1963 Sep	0.122	-0.147	-0.383			3 Mar VEI6	
1965 Apr-1966 May		1965 Oct	-0.106	-0.229	-0.218		Shiveluch		S
1968 Sep-1969 Apr			0.049	-0.226	0.049		Awu 1966 Aug		M
1969 Jul-1970 Feb			0.064	-0.189	0.064		Fernandina1968 Jun		W
1972 Apr-1973 Apr			0.199	-0.128	0.199			02 1972-73	S
1976 Aug-1977 Mar			0.075	-0.242	0.075		Tolbachik		W
1977 Aug-1978 Feb		1977 Nov	0.121	0.13	0.074		Augustine		W
1979 Sep-1980 Mar				0.171	0.217			ra '79 Nov	W
1982 Mar-1983 Jul		1983 Jan	0.358	-0.187	0.115		Pagan 198		VS
1986 Aug-1988 Mar		1988 Jan	0.459	0.088	0.385		Chikurachki '86 Nov		S
1991 Apr-1992 Jul		1992 Jul	0.467	0.436	0.005		Kelut 1990 Feb		S
1994 Aug-1995 Apr		1995 Feb	0.64	0.173	0.427	0.467	Lascar 1993 Apr		М
1997 Apr-1998 Jun			0.668	0.378	0.668		(-) 5 Mt SO2 1997-98		VS
2002 May-2003 Mar		2003 Jan	0.654	0.503	0.484	0.151	Shiveluch 2001 May		М
2004 Jun-2005 May		2004 Dec	0.651	0.311	0.553	0.34	Reventador '02 Nov		W
2005 Aug-2007 Feb		2007 Jan	0.893	0.581	0.64	0.312	Sierra Negra '05 Oct		W
2009 Jun-2010 Apr			0.834	0.623	0.834	0.211	Chaiten 2008 May		М
2014-Sep-2016 May		2016 Feb	1.224	0.757	0.88	0.467	/ (-)23Mt SO2 2014-16		VS
2018 Aug-2019 Jul		2019 Mar	1.076	0.735	0.857	0.341	Bogoslof	2017 May	W
					Range:		0.545 Deg.	C.	
					Median	0.29	Deg. C.		
During the	El Nino				Average		Deg. C.		
					Durations	: 6-23	Months , A	Average 10	.5 Month

The Hadcrut5.0 data set was used, since it has fewer upward temperature adjustments than NASA/GISS, hopefully giving a more accurate range of El Nino temperatures.

The Table includes the names of the volcanoes that terminated the El Ninos, and the dates of their eruptions, which occurred, on average, 16 months earlier.

The actual cause of all El Nino events was addressed in an earlier article "The Definitive Cause of La Nina and El Nino Events" [3], which found that they formed when there was a decrease of about 2 Megatons in the amount of SO2 aerosols in the atmosphere, either from a volcanic-induced El Nino, or from global "Clean Air" efforts.

It was suggested that their effects could be minimized by the careful injection of SO_2 into the atmosphere.

4. Conclusion

The maximum temperatures recorded for all El Ninos within the past 122 years were within the range of 0.03-0.5 Deg. C, with a median of 0.3 Deg. C. Their durations were within the range of 6-23 months (average 10.5), with most being ended by a volcanic eruption.

If longer intervals between eruptions should occur, it would be expected that higher El Nino temperatures would be experienced, as happened during the Medieval Warm Period (MWP) (circa 950 AD-1250 AD, for example, when there were very few volcanic eruptions.

References

- [1] Hadcrut5.0 1880-present <u>https://uea.uk/cru/data/temperature/HadCRUT5.0Analysis_gl.txt</u>
- [2] Cold and Warm Episodes by Season <u>www.nws.noaa.gov</u>
- [3] The Definitive Cause of La Nina and El Nino Events <u>https://doi.org/10.30574/wjarr.2022.17.1.0124</u>
- [4] Volcanoes of the World, 3rd edition (2020, Smithsonian Institution, Siebert, et al.