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Abstract 

Malnutrition remains an international concern because it represents a major cause of childhood morbidity and 
mortality. In infants and children malnutrition significant metabolic, hormonal, and immune changes occur with short- 
and long-term effects and outcomes. Thus, studies which contribute to the prevention, amelioration, or rehabilitation 
of the detrimental effect of malnutrition are necessary. Investigations on endocrine, metabolic, and immune changes 
related to severe malnutrition started a long time ago. However, recently there has been little work on these important 
changes, their mechanism/s of action and interactions, and their effect on different systems. The neuroendocrine system 
is the initial response to stress, so it is reasonable to assume that this system also plays a key role in the 
pathophysiological changes during nutritional deprivation. However, many of the newly identified functions/changes 
are better explained by the action of conventional neurotransmitters (e.g., glutamate and GABA) that constitute a 
neuronal circuit. In addition, the mechanistic Target of Rapamycin (mTOR) is an evolutionarily conserved 
serine/threonine kinase has emerged as a sensor for nutrients that has a central joint in cellular metabolism, cell growth, 
and differentiation. Its functions during malnutrition in the central nervous system, endocrine system, and different end 
organs and tissues (liver, pancreas, muscle, and adipose tissue) need elucidation. This article presents a brief review of 
neuroendocrine changes during malnutrition and their effects on the modulation of metabolism, growth, and immune 
functions. The pros and cons of these endocrine changes are discussed as well as their reversibility on nutritional 
rehabilitation. 
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1. Introduction

About 8 million of the world's children under the age of 5 years die every year; undernutrition is the underlying factor 
in 35% of these cases (1–3). The consequences of chronic malnutrition in children are both immediate and long-term 
and include increased morbidity and mortality, poor child growth and development, impaired learning capacity, and 
increased risk of infections. In addition, they have an increased risk of developing non-communicable diseases including 
obesity, diabetes, hypertension, and dyslipidemia. During their adulthood, they have lowered working capacity and 
unfavorable maternal reproductive outcomes. (3-7) However, obesity, as a form of malnutrition, is not a part of this 
review. 

The neuroendocrine system including the hypothalamus, and pituitary gland, and their network connections represent 
a major regulatory system. The hypothalamic hormones control the secretion of the anterior pituitary hormones which 
are necessary for adaptation to internal and external stresses, growth, reproduction, and metabolism. Body homeostasis 
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including linear growth and weight gain is predominantly controlled by hormones secreted by endocrine organs. In 
addition, the neuroendocrine system also cooperates with the immune system in regulating body responses to various 
forms of stress and in modulating responses to stimuli provoking immunologic responses. (8,9) 

Conventionally, neurohormones released by the hypothalamus and the pituitary gland have received much 
consideration owing to the distinctive roles of the end hormones released by their target peripheral organs (e.g., 
glucocorticoids, growth hormone, thyroxine). (10) 

Recent advances have revealed several important metabolic functions of hypothalamic neurohormone-expressing cells, 
many of which are not readily explained by the action of the corresponding classical downstream hormones. These 
newly identified functions are better explained by the action of conventional neurotransmitters (e.g., glutamate and 
GABA) that constitute a neuronal circuit. For example, leptin (secreted by adipose cells) plays an important role in 
regulating energy balance largely through acting on γ-aminobutyric acid (GABA)ergic neurons in the brain. Ghrelin is 
an orexigenic hormone primarily produced in the stomach and increases appetite as well as growth hormone (GH) 
release. Ghrelin antagonizes leptin by reducing the firing of proopiomelanocortin (POMC) neurons by raising the 
frequency of spontaneous synaptic γ-aminobutyric acid (GABA) release onto them. (11-12) 

In addition, the mechanistic Target of Rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase which 
is a member of the PI3K related kinase (PIKK) family, has emerged as a sensor for nutrients that has a central joint in 
cellular metabolism, cell growth, and differentiation, in the central nervous system as well in different tissues (liver, 
pancreas, muscle, and adipose tissue). (13) 

The malnutrition-related immune suppression increases susceptibility to infection and is characterized by recurrent 
infections and chronic inflammation. Both infection and inflammation aggressively contribute to malnutrition which 
causes and perpetuates a vicious cycle. Death rates from diarrhea, pneumonia, measles, and malaria are increased 
considerably in undernourished children. (14) Malnutrition causes immunosuppression through a variety of peripheral 
and central mechanisms, including the involvement of the central nervous system and endocrine system.  

Investigating the possible relation/s between changes in the neuroendocrine system and immune system represents an 
important step to understand the pathophysiologic mechanisms that contributes to lowered systemic and local 
immunity during chronic malnutrition. (15,16)  

Classical studies analyzed the levels of selected hormones and metabolites in undernourished infants and young 
children and healthy adults subjected to prolonged fasting. Yet link between these hormonal changes and the 
pathogenesis of malnutrition remains inadequately recognized. In this review, we studied the changes of the 
neuroendocrine system reported by different investigators and discussed their possible effects (pros and cons) on body 
homeostasis (metabolic, growth and immune functions) in infants and children during severe malnutrition as well as 
the effect of nutritional rehabilitation on these changes. (17-21) 

2. Discussion 

2.1. General perspectives 

The neuroendocrine system is the initial response to stress, so it is reasonable to assume that this system also plays a 
key role in the pathophysiological changes during nutritional deprivation. In addition to their metabolic effects, recent 
research suggested and proposed an important role of hormonal changes in the control of growth, musculoskeletal 
system, immunity, inflammation, and response to infection. (9) Activation of the HPA axis provides a slower, sustained, 
and amplified physiological response to stress including starvation. Stressor perception is communicated to neurons in 
the PVN which in turn release corticotropin-releasing hormone (CRH) and other releasing factors, from in the median 
eminence. CRH passes through the hypothalamic-pituitary portal circulation to the pituitary and stimulates the release 
of adrenocorticotropic hormone (ACTH) from corticotropes into the systemic circulation. Subsequently, ACTH 
stimulates the adrenal cortex to produce and secrete cortisol. Glucocorticoids act on their receptors throughout the 
brain and body to exert numerous effects, including mobilization of stored energy. Glucocorticoids mobilize fuel from 
the liver via increased gluconeogenesis and from white adipose tissue by increased lipolysis. The net effect is to increase 
the availability of fuel, facilitating a physiological response to the (starvation) threat. (22-24)  

The central nervous system and the autonomic system combine and integrate multiple peripheral signals to control 
appetite. Peripheral hormonal messages indicative of long-term energy whole-body status are produced by adipose 
tissue including leptin, and adiponectin. On the other hand, acute orexigenic (+) ghrelin signal (produced in the gut) and 
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anorexigenic (−) signals such as the gut hormones peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and 
cholecystokinin (CCK), and the pancreatic hormones [insulin, glucagon, amylin, and pancreatic polypeptide (PP)] 
indicate long-term energy status. Proopiomelanocortin (POMC) neurons mainly located in the arcuate nucleus of the 
hypothalamus and the nucleus tractus solitarius of the brainstem are the site of this control. POMC neurons are inhibited 
by energy deficits. During fasting (starvation), for instance, when both glucose and insulin levels drop, certain POMC 
neuronal subsets could either be activated or inhibited, working towards the same goal of increasing plasma blood 
glucose or reducing glucose uptake into peripheral organs, to maintain constant systemic glucose levels. (25-26)  

The functions of the mechanistic mTOR system during malnutrition. In addition to the central mechanisms regulating 
endocrine, growth, and immunological changes during nutritional deprivation stress, control through the Target of 
Rapamycin (mTOR) represents a major cellular control mechanism. The mechanistic mTOR is an evolutionarily 
conserved serine/threonine kinase that is a member of the PI3 K-related kinase (PIKK) family. mTOR emerged as a 
central joint in cellular metabolism, cell growth, and differentiation. It senses the nutrients, energy, insulin, growth 
factors (GH and IGF1), and environmental signals and transmits signals to downstream targets to downregulate nutrient 
and energy use and helps cells survive periods of starvation and intermittent fasting. During malnutrition shortage of 
nutrients (amino acids, glucose) and lower insulin and IGF1 decrease, the mTOR activity which decreases the mTOR 
medicated cellular protein synthesis and lipogenesis and epiphyseal cartilage growth. Notably, mTOR has been also 
implicated in the regulation of both the innate and adaptive immune responses. (27-29) 

In the liver, this inhibition of mTOR is required for inhibiting lipogenesis and activation of ketogenesis and it regulates 
the hepatic glucose output and peripheral lipid metabolism. In skeletal muscle, mTORC1 activity exerts a significant 
effect on muscle mass by affecting protein synthesis and degradation (autophagy process). mTOR inhibition increases 
the rate of protein degradation and decreases protein synthesis. (Muscle wasting) and decreases skeletal muscle insulin 
sensitivity. In addition, glucocorticoids may regulate mTOR by modulating the level of both BCAT2 and myostatin to 
regulate catabolism in skeletal muscle. (30-32)  

In the brain, within the hypothalamus, mTOR functions as a cellular signaling hub that integrates internal and external 
cues (which is associated with changes in energy status) to control the central or peripheral tissue functions. mTOR 
plays a critical role in the regulation of food intake and body weight. mTOR combines and coordinates signals from 
various "energy controlling " hormones such as leptin, insulin, IGF-I, and ghrelin. This regulatory mechanism occurs in 
the arcuate nucleus (ARC) of the hypothalamus. Peripheral hormones such as ghrelin and leptin act on 2 types of 
neurons that can analyze the metabolic status of the periphery: 1. The orectic neurons [neuropeptide Y (NPY)/agouti-
related peptide (AgRP) containing neurons and 2. The anorectic neurons [POMC and cocaine- and amphetamine-
regulated transcript (CART)-containing neurons]. (32-34) On the other hand, inhibition of mTOR negatively affects 
immunity because mTOR plays a central role in the differentiation of T-cell subsets, and controls aspects of B-cell and 
antigen-presenting cell (APC) development. (32-36)  

There are bi-directional circuits linking CNS and immune systems. The CNS can connect with the immune system to 
regulate its activity, through the autonomic nervous system, the catecholaminergic pathway, or the neuropeptides, and 
through controlling anterior pituitary hormone release. In this perspective, GH and IGF1, corticosteroids, insulin, and 
leptin can modulate the immune system by different mechanisms. (9) 

3. Hormonal changes and their effect on metabolism, growth, and immunity during malnutrition: 
(figure 2) 

3.1. Adipocyte Hormones 

3.1.1. Leptin  

Leptin secretion and its level in blood are low in all forms of malnutrition (mild, moderate, and severe) due to lower or 
depleted fat mass. (36-38) The leptin level serves as a measure of energy reserves (adipose tissue) and instructs the 
central nervous system to manipulate food consumption and energy spending accordingly. In response to fasting and 
starvation, leptin levels fall rapidly before and out of proportion to any changes in fat mass. Low leptin levels have been 
documented in all studies of children with malnutrition despite the lack of standardization of the timing of the collection 
of samples. (39) The fall in serum leptin concentration leads to neurohumoral and behavioral changes, trying to 
preserve energy reserves for vital functions. Emerging evidence suggests that starvation hypo-leptinemia increase the 
activity of the hypothalamic-pituitary-adrenal axis, promoting white adipose tissue (WAT) lipolysis, increasing hepatic 
acetyl-CoA concentrations, and maintaining euglycemia. In addition, leptin is also responsible for facilitating the shift 
from a dependence upon glucose metabolism (absorption and glycogenolysis) to fat metabolism (lipolysis increasing 
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gluconeogenesis). This function sustains the supply of energy substrates to the brain, heart, and other vital organs. In 
this way, a leptin-mediated glucose-fatty acid cycle appears to maintain glycemia and permit survival in starvation. (37-
40)  

Leptin promotes IFN-γ secretion by memory T cells, inhibits Th2 responses, and induces activation markers (CD69, 
CD25, and CD71). In addition to inducing lymphopoiesis, leptin seems to deliver survival signals to T cells (94) In innate 
immunity, leptin enhances the activity of neutrophils by the release of oxygen free radicals. It stimulates the migration 
of immune cells at the sites of inflammation through increasing intercellular adhesion molecule-1 (ICAM-1). Moreover, 
leptin activates the monocytes and dendrite cells (DCs) that in turn leads to the production of pro-inflammatory 
cytokines such as TNF-α, and IL-6 along with IL-12, a key cytokine that facilitates the shifting of T-cells toward the Th1 
phenotype. Leptin also promotes DCs survival by triggering the activation of nuclear factor-kappa B (NF-kappa B) (41-
44)  

These important functions explain how leptin deficiency negatively influences cellular immunity and predisposes to 
infection. Leptin deficiency in both mice and humans results in severe immune defects characterized by a decrease in 
total lymphocytes, CD4+ helper T cell number, increased thymocyte apoptosis, and a shift from the Th1 toward Th2 
phenotype. These changes increase susceptibility to intracellular infections. The systemic leptin deficiency in 
malnutrition correlates with several bacterial, viral, and parasitic infections due to defective cytokine production. These 
include tuberculosis, pneumonia, sepsis, colitis, viral infection, leishmaniasis, trypanosomiasis, amoebiasis, and malaria. 
(44) In 77 edematous and non-edematous undernourished children a diminished leptin level was the most reliable 
biochemical predictor of mortality. (45,47)  

3.1.2. Adiponectin  

Bartz et al reported decreased Adiponectin in their undernourished children which increased significantly on 
nutritional rehabilitation. (46) Adiponectin is one of the key adipocyte-derived hormones that regulate systemic or 
tissue lipid and glucose metabolism. Contrary to the action of other adipocyte-derived hormones, adiponectin improves 
insulin sensitivity and enhances lipid and glucose metabolism. It increases fatty acid oxidation in the liver and muscle. 
It promotes insulin-sensitizing and fat-burning which can be useful during malnutrition. Adiponectin plays a role in 
insulin sensitivity by impacting insulin sensitivity in skeletal muscle and liver and increasing insulin release from beta 
cells. Low adiponectin (secreted by adipocytes) may lead to impaired insulin secretion and decreased insulin sensitivity 
in these children. (48-51) The anti-inflammatory properties of Adiponectin are due to its suppression of M1 macrophage 
activation and supporting M2 macrophage proliferation. It decreases inflammation, apoptosis, and oxidative injury in 
muscle, heart, and brain. Its decrease during malnutrition may encourage the inflammation process and increase 
oxidative tissue injury. (52)  

3.2. Gut hormones  

The gastrointestinal (GI) tract is the body's largest endocrine organ producing hormones that have important sensing 
and signaling roles in the regulation of energy homeostasis. (53) Ghrelin is a multifaceted gut hormone with many 
functions including stimulating food intake, fat deposition, and growth hormone release. Ghrelin regulates glucose 
hemostasis by inhibiting insulin secretion and regulating gluconeogenesis/glycogenolysis. Ghrelin shares in 
maintaining glucose homeostasis during starvation through increasing glucose synthesis and release by activating 
gluconeogenesis and/or increasing growth hormone. Bartz et al reported hyper-ghrelinemia in undernourished 
children. (46) The high Ghrelin stimulates GH secretion which promotes lipolysis and maintains blood glucose through 
stimulating hepatic gluconeogenesis. The lipolytic and gluconeogenic effects of GH are independent of IGF-I. (53-56) 
GLP-1 is secreted in the small intestine in response to nutrients. It promotes glucose-dependent insulin secretion, 
decelerates gastric emptying, and reduces food intake.  

On the other hand, intraluminal nutrients, particularly fats stimulate the secretion of PYY by enteroendocrine cells. PYY 
inhibits gastric emptying and induces satiety. Levels of GLP-1 and PYY at baseline were found to be considerably higher 
in undernourished infants compared to normal infants and children and declined sharply during outpatient RUTF 
treatment. The significant increase of these GI hormones during malnutrition helps to delay gastric emptying and give 
longer time for nutrient absorption. Low levels of leptin and adiponectin and high levels of PYY were correlated with 
mortality in these children. (57)  

Many undernourished children living in low-income countries (LICs) suffer from environmental enteric dysfunction 
(EED). EED refers to a subclinical enteropathy characterized by mucosal inflammation and villus blunting mediated by 
T cell activation. Exposure to intestinal pathogens and intestinal dysbiosis (an imbalance of the microorganisms within 
the intestine), as a consequence of poor sanitation and possibly specific micronutrient deficiencies (e.g., zinc, vitamin D, 
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vitamin A, and protein), lead to intestinal inflammation and disruption of intestinal barrier function. The damaged 
barrier function permits the translocation of pathogens (bacteria and bacterial products from the intestine to the 
mesenteric and systemic circulation. This exposure activates innate immune cells in the mesenteric lymph nodes, liver, 
and systemic circulation to generate proinflammatory cytokines. (58,59) 

Zonulin is a hormone secreted mainly from the liver, but also from enterocytes, adipose tissue, brain, heart, immune 
cells, lungs, kidney, and skin. It is a master modulator of the intercellular tight junctions, important in antigen trafficking, 
and is a key player in regulation of the mucosal immune response. Zonulin is a marker of intestinal permeability. Its 
concentrations correlate significantly with total calorie-, protein-, carbohydrate intake. Zonulin plays a role in the 
pathogenesis of malabsorption in two forms of malnutrition (anorexia nervosa and celiac disease) and probably has an 
important role in the pathogenesis of wasting. During malnutrition, Zonulin levels may increase due to inflammation, 
infection, injury, or poor diet and enhance intestinal permeability which leads to paracellular passage of non-self-
antigens (D) into the lamina propria (loose connective tissue in the mucosa), where these foreign antigens interact with 
the immune system. It has been shown that serum zonulin levels and other markers of barrier dysfunction is correlated 
with stunted growth in EED patients. (60)  

In mice, it has been demonstrated that vitamin D deficiency (VDD), a common association in undernourished children, 
could lead to a significant upregulation in mRNA expression of the jejunum zonulin level with increase of serum level of 
zonulin. (60) Directly blocking zonulin by larazotide acetate (AT-1001), a first-in-class TJ regulator, is currently used in 
phase III clinical trials for celiac disease to improve intestinal barrier function. (61) The first randomized controlled 
phase IIb trial of an anti-inflammatory drug for environmental enteric dysfunction (EED) using aminosalicylate 
mesalazine proved its safety with modest reductions in several inflammatory markers compared to placebo. Before 
mesalazine treatment the IGF-1 concentration was negatively correlated with several inflammatory markers. With 
mesalazine treatment for 56 days, there was an increase in the IGF-1 level and decreases in the inflammatory marker 
concentrations that correlated with linear growth. (62)  

3.3. Insulin and glucose homeostasis  

Severe malnutrition predisposes children to develop either hypo- or hyperglycemia. During severe malnutrition, 
depleted glycogen stores and adipose tissue reserves have been correlated to hypoglycemia. In severely 
undernourished children, especially edematous forms hepatic glucose synthesis has been observed to be low. Hormonal 
changes with impaired insulin responses have been reported in severely undernourished children. Insulin responses to 
oral glucose and to a meal are strongly impaired in both kwashiorkor and marasmus, with low glucose clearance. Low 
insulin state decreases tissue and fat anabolism and permits the catabolic activity of other hormones to break down 
glycogen and fat to assure energy supply for vital organs and prevent hypoglycemia. Plasma insulin increases 
significantly during catch-up growth with nutritional rehabilitation. (63- 66) In addition, severe malnutrition, especially 
the edematous form, is associated with an impaired glucose absorption and decreased glucose absorption correlates 
with oxidative stress (infection and inflammation) in these children. (67,68)  

In a meta-analysis review of 16 studies, Ledger et al reported that the prevalence of hypoglycemia in severely 
undernourished infants across studies based on of proportions was 9%. Meta-analysis results showed that 
hypoglycemia was associated with a higher chance of mortality during hospitalization in children with SAM (dys-
adaptation). According to the GRADE evaluation, the certainty of the evidence for the prevalence of hypoglycemia was 
low and for hyperglycemia was very low. (68)  

Recent findings have shown an important role for insulin in shaping the immune response during an infection. This 
includes the ability of insulin to modulate immune cell differentiation and polarization as well as the modulation of 
effector functions such as biocidal ROS production. On the other hand, both through a direct and indirect effects 
inflammatory mediators can control serum insulin levels. Therefore, low insulin status in severely undernourished 
children may adversely affect their immune response during an infection. (69)  

3.4. Hypothalamic Pituitary adrenal (HPA) and GH (HPG) axes:  

HPA Axis Cortisol increases markedly in children with malnutrition, especially those with infection. Hypercortisolemia 
causes muscle wasting both in vivo and in vitro by increasing protein breakdown and reducing protein synthesis. 
Metabolically, raised cortisol levels increase the availability of all fuel substrates by mobilization of glucose, free fatty 
acids, and amino acids from endogenous stores which reduces muscle mass and may enhance energy expenditure. The 
release of amino acids from muscle provides good substrate for gluconeogenesis during malnutrition which guards 
against hypoglycemia. (70) On the other hand, cortisol excess can adversely arrest bone growth in these children. (this 
spares energy for the major metabolic processes during malnutrition) (71,72)  
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In addition, glucocorticoids inhibit many of the initial events in inflammatory and immune responses. High cortisol 
inhibits the vasodilation and vascular permeability that occurs following inflammatory insult and decreases leukocyte 
emigration into inflamed sites, effects that require new protein synthesis. High cortisol represses transcription of many 
genes encoding pro-inflammatory cytokines and chemokines, cell adhesion molecules and key enzymes involved in the 
initiation and/or maintenance of the host inflammatory response. High cortisol can alter leukocyte 
distribution/trafficking, death/survival and, significantly, alter cellular differentiation programs, thus shaping the 
subsequent response. These different effects can be shared in the compromised immune and inflammation responses 
in undernourished infants. In fact, serum cortisol concentration was shown to be associated with severity and mortality 
in patients with pneumonia. (72-74) 

3.5. Hypothalamic pituitary- growth hormone -IGF1 axis 

An appropriate balance between the immune and GH-IGF systems is necessary for normal growth and immunity. In 
humans, GH is a critical factor to increase the rate of lipolysis during fasting. Growth hormone levels are high in children 
with malnutrition and represent an important means of mobilizing fat stores and maintaining euglycemia in states of 
under-nutrition. Yet, if the GH-IGF-I axis remained intact during states of nutritional deprivation, the elevated levels of 
GH would result in elevated IGF-I levels, leading to increased energy expenditure which is a clear disadvantage that 
compromises survival during malnutrition. Therefore, GH resistance, with an inability of GH to appropriately generate 
IGF-I production, is likely an adaptive mechanism to preserve calories during periods of under-nutrition. Protein 
deficiency not only results in GH resistance but also likely results in a state of end-organ resistance to IGF-I, with the 
result inhibiting growth. There appears to be a good adaptive mechanism where growth arrest spares energy necessary 
for survival. (72, 76) Zinc, magnesium, and vitamin B6 deficiencies that occur in many children with malnutrition have 
been associated with GH resistance and reduced IGF-I levels, although the mechanisms of each are unknown. (77)  

Growth hormone and IGF-1 have important immunoregulatory effects. In a large cohort of undernourished children, 
infection and inflammation were associated with GH resistance, a low level of IGF-1, as well as with growth impairment. 
(78) In addition, GH and IGF-1may act to protect the host from lethal bacterial infection by promoting the maturation 
of myeloid cells, stimulating phagocyte migration, priming them to produce superoxide anions and cytokines, and 
enhancing opsonic activity. Therefore, GH resistance and low IGF1 may compromise these immunoregulatory functions 
during malnutrition and infection. (72,78,79) Moreover, IGF-I plays an essential role in the growth, stimulation, 
proliferation, and function of T cells. IGF-I regulates various aspects of T-cell, B-cell, and monocyte function through its 
interactions with IGF-IR. IGF-I can prolong lymphocyte survival through activation of T cell Akt. (80) 

IGFs depress proinflammatory cytokine signaling by increasing IL-10 secretion and via JNK and NF-κB pathways. 
Therefore, in malnutrition IGF1 deficiency may negatively affect the functions of lymphocytes and predispose to 
infection as well as inflammation. Patients with inflammatory bowel disease (IBD) with low IGF1 have associated high 
inflammatory activity (ESR, CRP, and IL6). Suppression of inflammation by prednisolone or infliximab increased the 
IGF-1 levels and suppressed the inflammatory process. (80,81,82)  

On the other hand, pro-inflammatory cytokines, which increase in severe forms of malnutrition especially those with 
infection, induce a dysregulation in GH–IGF axis and IGF system, both at central and peripheral levels. In the brain, 
inflammation/infection determines a dysregulation of GH secretion. (83)  

In the liver, TNF-α, a pro-inflammatory cytokine can cause GH resistance mainly through downregulation of liver GH 
receptor expression. Additionally, the predominance of proinflammatory cytokines decreases IGF sensitivity by 
enhancing IGFBP production and by decreasing signaling through the (insulin receptor signaling) IRS/ Akt pathway. 
(83,84) During malnutrition, GH and IGF-1 resistance are also present in the growth plate. In these children and infants’ 
abnormalities in IGF binding proteins (IGFBPs), with low IGFBP 3 levels, lead to a decline in IGF bioavailability. 
MicroRNAs (miRNAs) genes are known to regulate GH, IGF1, IGF2, and IGF1R in the context of body growth. During 
malnutrition, miRNAs targeting genes within the GH–IGF axis and IGF system are dysregulated. (83) The increase in 
local muscle cytokines produced during inflammation makes the muscle GH-resistant and reduces its own IGF-I 
production. Both decreased IGF-I production by muscle, and lower muscle sensitivity to the anabolic effects of IGF-I, 
may contribute to muscle wasting observed in response to severe malnutrition. (83,84) Myokines secreted by the 
skeletal muscle itself in response to inflammation have been implicated as autocrine and paracrine mediators of 
cachexia, as well as potential modulators of this debilitating condition. (85)  

The first randomized controlled in the initial management of severely acutely undernourished children with 
environmental enteric dysfunction (EED) using aminosalicylate mesalazine proved its safety with modest reductions in 
several inflammatory markers compared to placebo. Before mesalazine treatment, the IGF-1 concentration was 
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negatively correlated with several inflammatory markers. With mesalazine treatment for 56 days, there was an increase 
in the IGF-1 level and decreases in the inflammatory marker concentrations that correlated with linear growth. (86)  

3.6. Effect of Nutrition rehabilitation on hormonal changes and inflammatory markers 

 

Figure 1 mTOR complex role in the pathogenesis of nutritional stunting and wasting in children. 

 

 

Figure 2 The interaction between malnutrition, central (hypothalamic pituitary) and peripheral (IGF1, FT4, insulin) 
endocrine organs 

Nutritional replacement in children with severe malnutrition can normalize the GH/IGF-I axis. Within two weeks of 
refeeding, IGF-I concentrations can double or triple and after 50 days of intensive inpatient nutritional therapy, basal 
GH and IGF-I levels are indistinguishable from controls. (57, 72, 87) Nutritional interventions are associated with early 
increases in IGF-I levels, even before changes in anthropometric measures are observed. In addition, the blunted 
increase in GH concentrations following arginine stimulation testing also resolves with treatment. In one study on 
undernourished infants and toddlers, insulin levels rose 50% during formula feeding, whereas leptin and IGF-I levels 
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increased nearly 3-fold. GH fell by 21% and cortisol levels also declined. In addition, after 2 weeks of formula feeding, 
leptin, and insulin levels increase significantly with refeeding while ghrelin, cortisol, and PYY decrease significantly. 
There were downward trends in almost all inflammatory cytokines. (57, 72, 87. 88) Therefore, it is understandable that 
all the consequences of low IGF1 (Metabolic – immune and growth) are correctable when proper nutrition restores the 
normal IGF1 level necessary for catch-up growth during rehabilitation.  

4. Conclusion 

In summary, it appears that in infants and children. the endocrine changes in response to malnutrition mediate an 
adaptation process that secures energy substrates to vital organs and prevents hypoglycemia through a catabolic 
process (high GH, high cortisol, and low insulin, IGF1, and leptin) involving lipolysis, gluconeogenesis, and muscle 
wasting. Meanwhile, this process impairs/stops linear growth (low IGF1) to spare energy. These endocrine changes 
however may have a negative effect on systemic immune and inflammatory responses to infections (high cortisol, low 
IGF1, and low insulin) which are commonly associated with malnutrition. However, on nutritional rehabilitation, all 
these endocrine changes are easily reverted to normal even before any change occurs in the anthropometric data. 
(Weight gain).  
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