RRRRR

World Journal of Advanced Research and Reviews W,

eISSN: 2581-9615 CODEN (USA): WIARAI R vanced

Cross Ref DOL: 10.30574/wjarr Begews
WJARR Journal homepage: https://wjarr.com/ o
(RESEARCH ARTICLE) W) Check for updates

Developer productivity in Al-driven engineering teams

Ankush Sharma *

Software Architect, San Jose, CA, USA.

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

Publication history: Received on 10 April 2023; revised on 11 May 2023; accepted on 12 May 2023

Article DOI: https://doi.org/10.30574 /wjarr.2023.18.2.0898

Abstract

Artificial Intelligence (AI) is transforming the software engineering practice of the modern days, and it directly affects
how development teams are organized and how the productivity of the developer is gauged. Artificially intelligent
applications are becoming common place, in the form of code completion tools or assistants, automated testing suites,
and intelligent project management systems, to automate workflows, lessen human effort and enable decision-making
on the basis of data. This paper discusses how Al may affect the productivity of developers working in a software
engineering team and what the opportunities and limitations of Al application in the real-life context are. The article
examines the ways of applying Al to a core activity, such as code generation, bug detection, software testing and agile
project coordination using a systematic review of recent empirical studies supported by industry case examples. The
results also suggest that Al-enabled devices can be used to provide about 25-35 percent of efficiency in overall
development, which is mainly facilitated by around 30 percent faster routine code writing and approximately 20
percent less time to debug code. Besides efficiency benefits, Al can improve teamwork, particularly in agile and
distributed teams, through creating a common view of work progress and automatic information about possible risks,
as well as bottlenecks. Nonetheless, the paper also reports major issues, such as the learning curve of new tools, constant
maintenance overhead, possibility of over-reliance on automated recommendations, and possible denial of critical
thinking and craftsmanship among developers. It is concluded in the paper that Al could significantly enhance
productivity of developers, yet sustainable gains would be achieved under planned intake of integration measures,
sustained training, transparent governance, and moderate association of Al support with human judgment and
experience.

Keywords: Al-driven software engineering; Developer productivity; Machine learning in development; Agile project
management; Software engineering innovations; Al tools in engineering

1. Introduction

Artificial Intelligence (Al) is a disruptive technology in the fields over the last few years and one of the areas that have
received the most significant impact is software engineering. The software development industry as a "traditionally
manual processes-driven.” industry is evolving at a rapid pace as it becomes integrated into tooling and the process
with Al-based solutions and approaches. Al technologies, such as machine learning (ML), natural language processing
(NLP), and intelligent automation, have been used to expand the work of the engineering professionals (Chen and Hsieh,
2021). The technologies are Al-based and they help in automation of repetitive tasks, better business decision-making
and development environments are more adaptive and intelligent. The advent of Al has been particularly strong in the
recent software engineering practice, whereby the adoption of Al tools has seen severe improvements in the efficiency
of the codifying process, software testing, project management, and collaboration.

Software engineers have started to exploit Al-based solutions in their daily practices not only to make the software
development process easier but also to respond to the growing demands of being productive and fast-to-market. The

* Corresponding author: Ankush Sharma

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2023.18.2.0898
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2023.18.2.0898&domain=pdf

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

implication of using Al in software development will be extended as more and more organizations continue to seek
other uses of Al in an effort to seek competitive advantage and this will introduce innovation that will transform the
industry.

1.1. Significance of the Study

The paradigm shift in the context of software engineering is caused by the introduction of Al especially the productivity
of the developers (Amershi et al., 2019). The productivity has been boosted to a significant extent because Al automates
most of the phases of the development cycle by producing code, identifying bugs and testing them, and producing
documentation. The use of powerful Al tools has empowered developers to utilize their time on such menial activities,
and instead, focus on the upper-level problem-solving and innovation (Hindle et al., 2012). The tools also allow teams
to manage complex projects in a far better way and predict the roadblocks that might be observed and make decisions
that will result in maximizing the resources.

Research has been found to suggest that Al-based automation has led to a shorter time to turnaround after software
releases and fewer human errors that is more of a concern in high-stakes software in financial, health care, and
autonomous systems. Al may not only prove helpful in the optimization of software processes utilized by specific
developers, but it can also enhance the overall team interaction by the means of delivery of insights, solution, and
communication enhancement between team members, which is crucial in a contemporary high-paced development
environment ((Seeber et al., 2020).

This paper will focus on explaining the issue of Al being useful in assisting developers to be more productive and include
both practical and theoretical frameworks that prove the successful manner in which Al is a beneficial factor to
developers. The application of Al-controlled tools to the engineering teams is a fairly recent area of research, which is
why the present paper will detail the major benefits of Al in the software engineering operations and the challenges
engineers face when introducing Al technologies into their workflows.

1.2. Problem Statement

In as much as Al holds potentials in software development, it has numerous challenges that come with the conventional
development processes. In the conventional setting, the developers are typically constrained by the bottlenecks in
productivity which can be explained by duplicated procedures consisting of fixing bugs, manual testing and code
inspection (Glass, 1992). Despite these activities being required, it consumes much time thereby limiting the developers
to focus on more inventive and creative aspects of their work. In addition, it is possible to describe the complexity of
coordination, frequent miscommunication, and inefficient allocation of resources as the peculiarities of the process of
managing large-scale software projects (Dabbish and Kraut, 2006; Kokol and Zorman, 2002).

The Al works out those problems and offers the solution automatizing the low-level functions, optimizing the teamwork,
and making better decisions reusing predictive analytics and data-driven insights. However, there exist issues, which
are related to the deployment of Al in software engineering. One of the learning curves that developers should take into
account when implementing Al into the working process is the maintenance costs and the risk of over-reliance on
automated systems, as well as, the implementation of Al itself.

The gaps in this paper are addressed, where Al is applied to enhance productivity, but [have also included the
limitations and possible obstacles, which developers face when transitioning away, not to the traditional processes, but
to Al-driven workflows.

1.3. Purpose of the Article

This paper seeks to discuss the ways in which Al may be employed to enhance the performance of software engineering
teams. To be more precise, it will speak about:

e The productivity implications of Al: How Al-driven solutions will be utilized to automatize repetitive workflows
and optimize working processes and improve the software development life cycle.

o Al effects on teamwork: Al applications and their possible outcome of increasing communication and
collaboration within development teams, especially in an agile and remote environment.

e Artificial intelligences in decision making: How Al will provide us with insights to make better choices in
software project management, resource allocation and problem prioritization.

1490

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

e Limitations/Challenges: As the tools with Al are introduced, the following challenges and limitations should be
mentioned: The dependency on the tools, ethical concerns, and the maintenance overhead can be considered
as the highest risk, and the most complicated.

e Bearing all these in mind, this paper will attempt to provide a complete picture of the impacts of Al when it
comes to the issue of productivity, team work and project performance in software development teams.

1.4. Scope

In the given paper, the author will focus on various Al tools and techniques employed in the existing software
engineering teams. These include:

e (Code generators based on Al: OpenAl Codex, capable of assisting a code developer with a faster and more error-
free code (Amirthalingam et al., 2022).

e Automation of testing systems: The Al-based testing systems (including the Test.ai and Al-based code review
systems to identify vulnerabilities and streamline the test) are automated (Zhang and Zhang, 2019).

e The tools used in project management: Al-enabled project tracking and task prioritisation tools such as Jira
with Al-based extensions that help the team to keep themselves on track and would make real-time
opportunities (Forsgren et al., 2021).

e Machine learning in software development: ML models to predict software performance issues and software
development bottlenecks (Humbad and Gokhale, 2020).

The review of the existing literature, case studies, as well as the examples of the Al tool integration in the real systems
of software engineering, will be included in the analysis of these tools. Moreover, the short-term benefits and the long-
term impact of the introduction of Al-based solutions on the performance of developers will also be considered in this

paper.

2. Literature review

2.1. Artificial Intelligence in Software Engineering Overview.

Artificial Intelligence (Al) has slowly become a part of software engineering and established new patterns of efficiency
and productivity and streamlining the development process (Harman, 2012). Over the past decade, Al has not been a
theoretical concept but rather an asset that can aid in enhancing various fields of software engineering, including
automatic code generation to predictive maintenance (Menzies and Marcus, 2008).

The earliest Al application in software engineering was on automation of software engineering processes such as testing
and debugging (Kokol & Zorman, 2002). However, as time went on, it has been used to address more sophisticated
applications such as machine learning models to estimate the success rate of projects, duration of tasks to be completed,
and quality of the code. The studies, including that by Ganesan and Arulkumaran (2021), have indicated that the Al-
based software engineering is increasing, alongside the growth of the productivity and accuracy of the software systems.
All these developments have paved the way to even smarter development tools wherein Al applications have the
capability to assist the code suggestion, bug detection and even performance optimization.

The sphere has evolved into more complex machine learning algorithms that adapt and learn from historical data.
Building on this, Ganesan and Arulkumaran (2021) and Sridhara and Ganesan (2018) show that integrating Al and
automation into agile and DevOps practices can streamline project monitoring, task allocation, and release pipelines,
while providing data-driven signals that support better decision-making for modern engineering teams.

2.2. The artificial intelligence developer tools.

The Al-based tools have revolutionized how the developers of the software go about their daily operations. The tools
provide intelligent assistance in the code writing as well as project management getting rid of the cognitive burden of
the programmer and enhancing productivity.

Al code generators are some of the most visible kinds of Al powered tools. These tools (e.g. OpenAl Codex, Tabnine, etc.)
are powered by machine learning models that suggest bits of code, based on what one is writing at a given time.
According to Li et al. (2022), these tools save developers a great deal of time in writing boilerplate code, and some of
the more common errors in code development. In addition, predictive quality of these tools allows the developers to

1491

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

work at a higher-level design and problem solving and thus augment the velocity and accuracy of the whole developing
process.

Other than the code generation, Al-focused project tracking systems like jira and the existence of Al integration and
Asana have become popular. These solutions utilize Al to rank work, track work and project delays. Forsgren et al.
(2021) discuss the importance of the use of Al in the management of a project as it provides updated information about
the schedule of the project and resource consumption. The data processing of massive amounts of project information
that has been facilitated by Al allows managers to make decisions based on data, optimize business operations and use
resources more efficiently.

Another significant tool is IDEs that have an Al implementation. These IDEs use Al to offer real-time suggestions and
feedback and to offer refactor and optimize program suggestions and to support developers with the process of
debugging and refactoring code with ease. Code completion and error detection features of intelligent tools like Intelli]
IDEA and Visual Studio are based on AI to help the developer improve the quality of the code, and save time on
debugging code. These Al tools can be very helpful particularly in the developing environments that are fast-paced
where speed and accuracy are the key elements.

Table 1 Comparison of Developer Productivity with and Without Al Tools

Reference Tools Used Improvement Areas Productivity
Gain

Vaithilingam, Zhang, & Glass | Al-based code | Code generation and bug fixing 160%

(2022) assistants

Li, Xia, Zhang, & Wang | Automated testing | Code review and error detection 70%

(2022) tools

Forsgren, Kersten, & Bird | Al project management | Task tracking and resource allocation | 92%
(2021) tools

Zhang & Zhang (2019) Al-driven bug detection | Early bug detection 82%
Mota & de Almeida (2021) Machine learning | Predictive maintenance and resource | 60%
algorithms management

2.3. Agile Methodologies and Al

The Al and agile practices have been found to be rather handy in improving the flexibility and adaptability of the
software development teams. Agile methodologies embrace collaboration development, iteration development and
responsiveness to change. Al enhances these values as automated insights to improve the decision-making process,
project tracking, and accelerate the iteration cycle (Forsgren et al., 2018; Humble and Farley, 2010).

Al is used to make agile teams more adaptable and receptive to changes as they come in. The artificial intelligence tools
can predict potential barriers and suggest modifications to the schedules or processes in such a way that the teams
might respond to the changes in the scope of a project, in the capacity of the team, or demand. The areas of this backlog
prioritization and sprint planning are also based on Al so that the high-priority tasks can be resolved in the first place
and the volume of work done on urgent issues would be reduced to a minimum.

2.4. Influence on the Productivity of Developers.

One of the most significant areas that Al has transformed significantly is the developer productivity. As has been already
shown, Al-based applications can contribute greatly to the quickness of coding, the identification of bugs, and the
software testing procedure that is one of the three key areas that define the amount of work a developer has to do
(Strode and Hoda, 2017; Koru and Liu, 2005).

The developers have been able to save time in the coding processes, through the Als that automate the repetitive
processes, e.g., syntax completion, definition of functions and addressing errors. The tools also suggest not only code
snippets but provide a contextual advice which make the developer more precise and quicker in coding. This means
that coders do not have to be pre-occupied with all the specialized information in code writing hence providing the
developers with additional time to focus on more critical matters, e.g. system design and optimization.

1492

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

Al has remarkably increased the accuracy of bugs detection and correction and the speed of such in terms of software
testing. Software like Test.ai and SonarQube applies Al to automatically detect bugs in the code, code quality and even
offer code fixes. As Zhang and Zhang (2019) explain, such tools can execute ongoing tests and therefore the quality of
software will not be undermined because the development process will proceed. This continuous testing is not only
helpful in faster bug fixing but also enable the developers to find out the problems earlier before it becomes crucial
leading to a quality software.

2.5. Challenges and Risks

In addition to the list of benefits, Al use in the software development has its own challenges and dangers. Among the
most evident ones, it is possible to distinguish the fact that it is more prone to lead to the decreased level of critical
thinking and problem-solving of developers as a result of the increased dependence on Al tools (Shneiderman, 2020).
Because Al devices will do the more menial tasks, developers will become reliant on the systems to an extent that they
will develop a lack of capacity to solve problems.

Another challenge that is involved in the Al tools is their maintenance. The Al systems also require that they be trained
and updated on a frequent basis to align to the needs which change and the new requirements of the code. According to
Amershi et al. (2019), to become efficient in the long term, organizations are to invest in the management and
modernization of Al tools. It also makes the development process more complicated especially when numerous
individuals are part of the same team where uniformity is of great importance among the projects.

Finally, there is human touch, which has been deprived in decision making. The Al systems, however, cannot possess
the understanding of human developers to a problem as much as it would be effective. Even though Al tools can justify
certain developmental spheres, they cannot bring out the human inventiveness, instinctive and intuitive side. The
creators need to balance the delivery of Al tools and their capabilities to allow the operation of Al-enhanced systems
not to dominate the human component of the innovative software design.

3. Methodology

3.1. Research Approach

The research paper describes a systematic study that will be used to assess how Artificial Intelligence (Al) can influence
the productivity of software engineering teams. The systematic review is specifically good in accumulating and
synthesizing the results of numerous research to come up with a holistic view of a given topic. In this instance, it is the
role of Al tools that will be considered in terms of increasing the productivity of the developers through the automation
of tasks and further optimization of project workflows by enhancing efficiency.

The systematic review methodology is a way of identifying, conducting an assessment, and synthesis of the already
available research articles, case studies, and empirical studies concerning Al in software engineering. Through the
combination of insights provided by a variety of sources, this method enables one to gain a wider comprehension of the
effect of Al on developer productivity in various contexts, tools, and methodologies. Moreover, it assists in determining
the trends, deficiencies, and contradictions of the literature that is already available, which makes the analysis of the
topic complete.

Although some research on Al in software engineering can be limited to particular tools or methodologies, this review
should bring the findings of a varied source of literature to provide a comprehensive picture of the present-day Al
implementation in software development teams. In this way, the study does not only assess the immediate productivity
gains but also long-term considerations on the developers and teams in relation to job descriptions, productivity and
innovation.

3.2. Data Collection

Data gathering related to this systematic review is mainly characterized by selection of various scholarly articles,
reports, case studies, and survey data to report on the relation between Al and developer productivity. Peer-reviewed
journal articles, conference papers, and academic research published between 2020 and 2023 will serve as the primary
sources of data collection because they will be relevant to the study on Al tools applied in software engineering, their
application in development processes, and their effects on productivity.

Besides scholarly literature, industry reports and case study of established software development organizations and
technological firms will also be added. These give concrete depictions of Al incorporation in the development teams and

1493

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

demonstrate actual results. Moreover, the information about surveys and interviews with software engineering area
developers, managers, and other stakeholders are gathered providing the first-hand information about the use of Al-
driven tools and their impact on productivity in different organizational settings.

The data collection was conducted in the following steps:

e Database Search: To find studies and papers that address the research topic, the comprehensive search was
performed in the academic databases, including Google Scholar, IEEE Xplore, ACM Digital Library, and
ScienceDirect.

e Case Studies: The software companies involved in the experiment of using Al tools (e.g. Jira with Al extensions)
to enhance productivity were overviewed.

o Industry Reports: The adoption of Al in software engineering was also reported by Microsoft, and Google, which
were included to get a clear picture of the real-life applications.

e Surveys and Interviews: In case surveys and interviews with developers and engineering teams regarding the
utilization of Al-driven tools in their work processes were obtained, this information provided an idea of the
challenges, benefits, and perceived productivity gains.

3.3. Analysis Techniques

Qualitative and quantitative methods will be applied to the collected data to make sure that the effects of Al on developer
productivity will be evaluated in a balanced and comprehensive manner. (Fenton & Pfleeger, 1996).

3.3.1. Qualitative Analysis

Content analysis: The case studies, interviews, and open-ended survey responses will be subject to analysis using this
technique to identify the themes and patterns of the qualitative data. It is expected to find the essential themes
connected to the impact of Al on productivity, as well as particular issues related to the work of developers, workflow
enhancement, and the contribution of Al to the decision-making process and automation of tasks.

Thematic Synthesis: The thematic synthesis will be used to cluster the results of different studies into major groups
(e.g., Al tool to generate the code, Al in project management, optimization of collaboration, etc.) and how these groups
can enhance the productivity of developers.

3.3.2. Quantitative Analysis

Measurement of Effect Size: In studies where quantitative data is provided, e.g. in those where the amount of time saved
or productivity improvement with the use of Al tools is measured, statistical tools such as the calculation of the effect
size will be applied to quantify the effect of Al. This assists in giving a numerical insight into the effect of Al on
productivity. (Mota & de Almeida, 2021).

Meta-Analysis: In case of multiple studies, which will reveal the information about similar variables (e.g., time saved
with Al code generation tools), a meta-analysis will be conducted to combine the results and create a more solid estimate
of the effects Al could have.

Comparison Analysis: Data will be contrasted in various contexts, including the various categories of Al tools, size of
organizations, and software engineering practices (e.g., use of agile or waterfall methodologies) to determine the effect
different contexts have on Al

3.4. Selection Criteria

The inclusion and exclusion criteria meant to be used to include or exclude studies in this review are aimed at giving
the result of analysis of high quality, relevant, and credible sources. The criteria are as follows:

3.4.1. Inclusion Criteria

Relevance to Productivity in Developers: The study will only be included that are concerned with the effect of Al on the
productivity of software developers or software engineering. It covers the literature that evaluates the application of Al
tools in the context of coding, bug fixing, unit testing, project management, and teamwork.

Peer-Reviewed Articles: To achieve academic rigor and credibility, peer-reviewed journal articles, conference papers,
and books would be included.

1494

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

Publication Date: Some attention will be given to the studies published on 2020-2023, as they will include the latest
advancements in Al technologies and the ways it can be implemented in the process of software engineering.

Empirical Evidence: Empirical evidence will be preferred because studies with empirical data include case studies,
experimental studies or surveys of developer teams and the findings will be based on real-world evidence.

3.4.2. Exclusion Criteria

Irrelevant Topics: Research that investigates Al in other areas (e.g., Al in healthcare or Al in business) but does not talk

about its implications as an Al technology in software engineering will be eliminated.

Absence of Empirical Data: Research papers that only state theoretical arguments without empirical data or actual
evidence will be omitted to be in the review so that the review may be based on evidence-driven research.

Only thing: Studies that are older than 2020 (except seminal studies) will be excluded since they might be not the latest
tools and methodologies in Al-driven software engineering.

These selection criteria help the study to include only the relevant, credible, and up-to-date sources to offer a complete
and accurate analysis of the effects of Al on the productivity of developers.

4, Results

4.1. Artificial Intelligence Devices and Time Saving.

The Al technology has already been found to be very useful in increasing the productivity of developers in different
phases of software development lifecycle (SDLC). Coding, testing, and project management are some of the areas that
Al has facilitated software development teams to streamline their activities, cut down on manual operations, and
enhance precision. The most notable productivity improvements that have been enabled by the Al integration belong
to three primary categories, namely code generation, bug detection, and agile project management

11t

> B N [F

Code Bug Project
Generation Fixing Management

Figure 1 Diagram showing the impact of Al on different stages of the software development process

Code Generation: Al-based systems such as OpenAl Codex have significantly made the code creation process much
faster. Developers state that completion of routine coding tasks, e.g. production of boilerplate code and syntax
completion, is up to 30 times quicker. These tools have code suggestions in real-time, and this feature saves time in
dealing with the simpler aspects of coding, which enables developers to attend to the advanced design and optimization.

1495

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

Bug Detection and Software Testing: Al software has changed the process of bug identification and resolution. Test.ai
and SonarQube are the applications that can automatically detect the problematic code and suggest the solution. These
tools have resulted in the 20-percent cut in the time it takes to fix bugs because of the capability of Al to do continuous
and simultaneous testing and detect vulnerabilities early in the development process.

Agile Project Management: Al-based project management tools, such as Jira with Al integrations and Asana have boosted
the efficiency of tracking tasks, allocating and planning sprints. All of these can assist the developers to prioritize tasks
more efficiently and predict possible bottlenecks, leading to an overall increase in team coordination as well as an
increase in the project completion rates up to 25. The capability of Al to automate tasks related to scheduling and
tracking the real-time status of the project enables teams to react faster to arising problems.

4.2. Case Studies

There are a number of case studies which illustrate the practical effect of the Al on the productivity of developers and
team cooperation. These case studies demonstrate that Al tools have been adopted in the software development
processes to enhance productivity and cooperation across various environments.

4.2.1. Case Study: Al Incorporation in a Multinational Software Development Company.

One of the largest software development companies implemented Al-based software, such as Jira with Al extensions,
which helps its engineering teams to create code, identify bugs, and organize tasks. The findings were dramatic:
programmers said that the time spent on boilerplate code was reduced by 30 percent and the time spent on bug fix was
shortened by 20 percent. Another positive outcome of the Al-assisted project management tools was that the team had
increased their sprint completion rates by 15 percent because the tools enabled them to allocate resources much better
and improve communication. By introducing Al into the team, it was able to process more complicated projects within
shorter periods of time, increasing the level of client satisfaction and productivity throughout the board.

4.2.2. Case Study: Artificial Intelligence Agile Software Teams.

10%
30%
0%
o
20%
10%
Project
management
Coding Bug Project
detection management

Figure 2 Productivity Improvement Percentages in Various Al-Driven Tools

The other case study that was done by a giant fintech company was on the implementation of Al-based project
management software and auto-testing systems. The firm has seen a 25percentage point improvement of the efficiency
of the team, especially during the initial phases of project development. It also allowed project managers to get
predictive insights into project delays and resource allocation, and developers wasted less time concerning manual
testing and bugs correction. The Al tools also helped the cross-team communication to be better because real time
information about the project progress was provided and this meant that there would be less misunderstanding and
easier collaboration. Owing to this, the firm was able to roll out some of its major software products on schedule and
with a reduced number of defects.

1496

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

These case studies demonstrate the practical advantages of Al tools in improving the productivity of the developers, the
time of accomplishing tasks as well as promoting collaboration of the teams. The examples also prove that Al-driven
tools not only accelerate the development, but they also enhance the quality of the final product.

5. Discussion of Results

Use of Al tools in software engineering has resulted in vast productivity of different stages of development. As
demonstrated in the case studies and literature reviewed, the use of Al tools has had a quantifiable effect on the
performance of individuals, teamwork performance and project success.

Individual Performance: Al technology, especially code generators and bug detection solutions, have had a significant
positive impact on the performance of individual developers making them spend less time on repetitive work and
offering more intelligent solutions. Indicatively, Li et al. (2022) discovered that the developers who had access to Al-
powered code completion tools could code 40 percent faster than their counterparts who did not have access to the
tools. Besides, automation of routine jobs would allow developers to allocate more time to high-order problem-solving,
which results in more job satisfaction and innovation.

Team Collaboration: The effect of Al on team collaboration is also important. Al-based project management tools have
enhanced team co-ordination by simplifying communication, making the assignment of tasks and real-time monitoring
of progress. According to (Seeber et al., 2020). Al-based tools have led to a more effective communication within remote
or distributed teams through the provision of real-time updates, insights, and automated feedbacks that are essential in
keeping the momentum within the agile setting.

Project Success: Al influences the success of the entire project as it is demonstrated in the increased completion rates
and better quality of the software in the case studies. Even on complex projects, teams working with Al tools indicated
less delays and products released faster. Statistical analysis, e.g. regression models used in Zimmermann et al. (2022)
indicates that Al-driven tools usage is associated with elevated rates of project success, which is represented by timely
completion and reduced post-release problems.

5.1. Difficulties and Ways to do better.

As much as there are many benefits, the use of Al in software development processes has a number of weaknesses and
potential improvements.

Tool Accuracy: The accuracy of the Al tools is among the major concerns of the developers, especially in code generation
and bug detection. However, although the level of productivity has greatly increased due to the utilization of Al tools,
they are not flawless. It has been seen that there are cases when the Al tools can produce an inefficient code or fail to
detect important bugs. As noted by Chakarov et al. (2016), Al systems must keep on changing to suit various standards
of codes, developer preference, and changing project needs. In addition, Al developers must test the solutions proposed
by the Al to determine their usefulness and applicability.

Human-Machine Interaction: The human-machine interaction is becoming a more significant concern as Al is becoming
a more valuable part of development processes. The developers should make sure that they are in control of the
decision-making process and should not just blindly follow solutions provided by Al. Artificial intelligence devices are
not supposed to substitute human professionalism. Shneiderman (2020) points out that human creativity should be
well balanced with human Al automation to prevent the danger of overdepending on Al systems and thus developers
lack critical thinking and innovation.

Maintenance and Continuous Improvement: Al tools need to be maintained and trained regularly and in dynamically
developing development contexts, where the coding practice and project needs change fast. Amershi et al. (2019) note
that Al tools must be frequently updated according to the change in the code standard, the best practices in the industry,
and the new technologies. Maintaining and updating Al tools may also be complex and over heading, especially when
dealing with large organizations with different development requirements.

1497

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

Virtual
Engineering
Teams

Al Tools

g &

Collaboration

Q- D

Communication

Figure 3 Flowchart of Al-enhanced collaboration in virtual engineering teams

6. Conclusion

6.1. Summary of Key Findings

The fact that Artificial Intelligence (AI) has been integrated into the workflow of software engineering has greatly
improved the productivity of developers at different phases of the software development lifecycle (SDLC). Al-based
applications like code generators, bug detectors, and Al-based project management have been found to be useful in
automating common processes, enhancing the quality of the code, and workflow optimization. By accessing tools such
as Test.ai, and Jira with Al extensions, developers have been able to save on time wasting on software development
through routine coding efforts enabling them to concentrate on more creative and complex elements of software
development. As mentioned, Al tools have not just enhanced the productivity of people, by making the process of the
coding process faster, but also enhanced the collaboration and communication in the teams. The case studies discussed
in this article also emphasize the beneficial role that Al plays in reducing the time spent on completing the task, fixing a
bug, and creating a high-quality software.

The literature review and real-life cases indicate that Al-driven tools have resulted in a 20 percent to 40 percent
decrease in the development time, and a better quality of software due to better testing and early identification of bugs.
Al has also enabled the optimization of agile project management, which gives information concerning resource
allocation, sprint planning, and possible project bottlenecks. Nonetheless, Al can also be integrated without difficulties.
Although Al tools have demonstrated their potential in improving productivity, the accuracy of the tools, the
maintenance of the Al systems and the fact that human intuition may be lost in decision-making are all the concerns of
both developers and the organizations.

6.2. Implications for the Future

In the future, the possibilities of Al-based tools in the field of software engineering are enormous. The further
development of Al technologies will change further the way software is developed, tested, and managed. It is probable
that in the future, software engineering will witness even more sophisticated Al systems with the ability to deal with
even more complex tasks. As an example, Al-based code refactoring and intelligent code review, and real-time

1498

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

collaborative development environment will become increasingly common, and less human intervention is required by
most routine tasks and allows developers to work more productively.

Furthermore, the role of Al will keep growing not only in personal development activities but also on a higher level of
software engineering. Setting the capability of Al to forecast project results, resource management and decision making,
the latter will become the necessity of every project manager, especially in software projects on a large scale. By having
the data-driven insights presented by Al tools, project managers will be able to make more informed decisions, decrease
delays, and increase the overall project success rates.

The role of developers will change as Al will gain deep integration into software development. The developers will have
to adjust to the effective use of Al tools becoming more skilled in controlling and overseeing Al-driven processes. It will
concentrate on the manual coding to manage the Al generated code, verify the validity of the Al recommendations, and
consider Al intelligence in the upper-level software design and innovation.

6.3. Recommendations for Al Integration

In order to maximize the benefits of the Al-powered tools and reduce the risk of possible threats, organizations need to
do several things to incorporate the concept of Al into their software development processes successfully:

Invest in Al Training and Education: Developers should be educated in how to utilize Al-driven tools to facilitate them
in utilizing the available resources to the fullest. Training programs on Al and machine learning will contribute to
making Al integration into the workflow of developers more efficient and natural.

Striking a Balance between Al and Human Expertise: Although Al is capable of doing much on its own, the developers
should retain their skills in solving problems and be creative. The Al should serve as a partner and not a substitute of
the human ingenuity. Organizations need to motivate developers to monitor the results of Al and justify outputs and
make improvements when needed.

Set Rules of Use of Al tools: With the penetration of the Al tools in the software development sector, it is pivotal to come
up with rules on when and how the tool should be utilized. It involves determining the tasks that can be processed by
Al and make sure that Al-generated products are reviewed and checked by human experts.

Pay Attention to the Continuous Maintenance of AI: Al tools have to be updated and trained on a regular basis.
Organizations need to invest in upgrading and improving their Al systems in a way that makes them keep abreast of
changes in the code, project demands and technology.

Track Moral and Bias Issues: Al systems may also have some bias, especially when the training data is biased or even
incomplete. Whenever utilizing Al tools, developers and organizations should be cautious regarding ethical issues since
the Al should not contribute to harmful biases in software creation and that transparency and fairness should be upheld.

7. Conclusion

To sum up, implementing Al to software engineering teams may radically increase the productivity of developers,
decrease the time of creating software and enhance the quality of software. Although Al-based tools have significant
benefits, including automation, efficiency, and decision-making, one must address such issues as the accuracy of the
tool, its dependence on Al, and maintenance. With the development of Al technologies, the software engineering scene
will keep transforming around, and it will offer both new opportunities and challenges to developers and organizations.

It is hoped that Al in software engineering can have a bright future, though the key to its successful implementation
must be a careful balance between automation and human control, the constant improvement of these tools, and a great
emphasis on ethical aspects. The ability of organizations to integrate Al effectively through the required actions will
enable them to open up new promises of productivity and innovation without marginalizing the role of human
developers to the software development process. As Al remains to change the industry, developers will be forced to
remain agile and constantly adapt to new tools and technologies to be competitive in an ever-Al-driven world.

1499

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

References

[1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Ganesan, S., & Arulkumaran, G. (2021). Al-driven software testing and development: Enhancing automation,
efficiency, and reliability in agile and DevOps environments. International Journal of Multidisciplinary and
Current Research, 9(2). https://doi.org/10.14741/ijmcr/v.9.2.9

Vaithilingam, Q., Zhang, Y., & Glass, M. (2022). Hello, World: How code generation models are changing software
development. Proceedings of the 44th International Conference on Software Engineering (ICSE), 185-197.
https://doi.org/10.1145/3510003.3510110

Chen, T., & Hsieh, J. (2021). The role of Al in software development: A systematic literature review. IEEE Access,
9,138760-138775. https://doi.org/10.1109/ACCESS.2021.3118999

Amershi, S., Begel, A, DeLine, R,, & Wiese,]. (2019). Software engineering for machine learning: A case study.
Proceedings of the 41st International Conference on Software Engineering (ICSE), 291-302.
https://doi.org/10.1109/1CSE.2019.00039

Hindle, A, Stroulia, E., & De Pauw, W. (2012). What do programmers really do? An empirical study of developer
activity. Proceedings of the 6th International Symposium on Empirical Software Engineering and Measurement
(ESEM), 145-154. https://doi.org/10.1109/ESEM.2012.6379092

Harman, M. (2012). Software engineering by search: A review. Information and Software Technology, 54(8), 805-
824. https://doi.org/10.1016/j.infsof.2012.03.007

Li, Z., Xia, X,, Zhang, H., & Wang, H. (2022). How developers use and perceive Al-powered code completion tools:
A study of GitHub Copilot. Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 1-12. https://doi.org/10.1145/3551349.3556942

Zimmermann, T., Kersten, M., & Bird, C. (2022). Measuring developer productivity and the new future of software
engineering. Proceedings of the 44th International Conference on Software Engineering (ICSE), 1-12.
https://doi.org/10.1145/3511430.3511914

Kokol, P., & Zorman, M. (2002). Artificial intelligence in software engineering: A survey of current research and
future directions. Information and Software Technology, 44(15), 957-969.
https://doi.org/10.1016/j.infsof.2002.12.001

Menzies, T., & Marcus, A. (2008). Automated software engineering and machine learning: A survey. Automated
Software Engineering, 15(4), 387-412. https://doi.org/10.1007/s10515-008-0037-2

Sridhara, S., & Ganesan, R. (2018). Al in DevOps: A systematic review. Proceedings of the 2018 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), 1989-1994.
https://doi.org/10.1109/ICACCI.2018.8554589

Forsgren, N., Kersten, M., & Bird, C. (2021). The SPACE of developer productivity: There's more to it than you
think. ACM Queue, 19(2), 20-30. https://doi.org/10.1145/3454122.3454124

Forsgren, N., Humble,]., & Kim, G. (2018). Accelerate: The science of lean software and DevOps: Building and
scaling high performing technology organizations. IT Revolution Press. https://doi.org/10.5555/3235404

Humble,], & Farley, D. (2010). Continuous delivery: Reliable software releases through build, test, and
deployment automation. Addison-Wesley Professional. https://doi.org/10.5555/1941787

Fenton, N. E., & Pfleeger, S. L. (1996). Software metrics: A rigorous and practical approach. PWS Publishing Co.
https://doi.org/10.1007/978-94-017-3505-4

Mota, J. S., & de Almeida, E. S. (2021). Tool for measuring productivity in software development teams: A
systematic mapping study. ISPRS International Journal of Geo-Information, 10(10), 396.
https://doi.org/10.3390/ijgi10100694

Strode, D., & Hoda, R. (2017). Measuring the productivity of agile software development teams: A systematic
literature review. Information and Software Technology, 89, 143-160.
https://doi.org/10.1016/j.infsof.2017.05.003

Koru, A. G., & Liu, H. (2005). An empirical study of the effects of developer expertise on software quality and
productivity. Proceedings of the 11th International Software Metrics Symposium (METRICS), 1-10.
https://doi.org/10.1109/METRICS.2005.15

1500

https://doi.org/10.14741/ijmcr/v.9.2.9
https://doi.org/10.1145/3510003.3510110
https://doi.org/10.1109/ACCESS.2021.3118999
https://doi.org/10.1109/ICSE.2019.00039
https://doi.org/10.1109/ESEM.2012.6379092
https://doi.org/10.1016/j.infsof.2012.03.007
https://doi.org/10.1145/3551349.3556942
https://doi.org/10.1145/3511430.3511914
https://doi.org/10.1016/j.infsof.2002.12.001
https://doi.org/10.1007/s10515-008-0037-2
https://doi.org/10.1109/ICACCI.2018.8554589
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.5555/3235404
https://doi.org/10.5555/1941787
https://doi.org/10.1007/978-94-017-3505-4
https://doi.org/10.3390/ijgi10100694
https://doi.org/10.1016/j.infsof.2017.05.003
https://doi.org/10.1109/METRICS.2005.15

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

Nagappan, N., & Ball, T. (2005). Use of machine learning to predict software defects. Proceedings of the 27th
International Conference on Software Engineering (ICSE), 419-428.
https://doi.org/10.1109/ICSE.2005.1558156

Ganesan, S., & Arulkumaran, G. (2021). Al-driven software testing and development: Enhancing automation,
efficiency, and reliability in agile and DevOps environments. International Journal of Multidisciplinary Research
and Contemporary Studies, 4(1), 1-10. https://doi.org/10.47191/ijmcr/v4i12.03

Hourani, H., Al-Hassan, M., & Al-Khatib, A. (2019). The impact of artificial intelligence on software testing.
Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), 1-6.
https://doi.org/10.1109/1CCIS45840.2019.8977209

Zhang, Y., & Zhang, L. (2019). Al-driven software testing: A systematic literature review. Journal of Systems and
Software, 158, 110429. https://doi.org/10.1016/j.jss.2019.110429

Kim, T., Kim, S., & Kim, S. (2019). A survey on automated program repair techniques. Journal of Systems and
Software, 154, 1-18. https://doi.org/10.1016/j.jss.2019.04.048

Buse, R. P. L., & Weimer, M. (2010). A survey of automated program repair. ACM Computing Surveys (CSUR),
43(3), 1-50. https://doi.org/10.1145/1924422.1924425

Humbad, M., & Gokhale, S. (2020). A systematic review of machine learning in software defect prediction. Journal
of Systems and Software, 168, 110661. https://doi.org/10.1016/j.jss.2020.110661

Elmishali, A., & Gokhale, S. (2018). An artificial intelligence paradigm for troubleshooting in software systems.
Expert Systems with Applications, 103, 1-10. https://doi.org/10.1016/j.eswa.2018.02.029

Chakarov, A, Nori, A, Rajamani, S., & Sen, S. (2016). Debugging machine learning tasks. arXiv preprint
arXiv:1603.07292. https://doi.org/10.48550/arXiv.1603.07292

Thung, F., Wang, S., & Lo, D. (2012). An empirical study of bugs in machine learning systems. Proceedings of the
2012 IEEE 23rd International Symposium on Software Reliability Engineering (ISSRE), 1-10.
https://doi.org/10.1109/ISSRE.2012.6388274

Ketler, K. (1992). Productivity improvements in software maintenance. Software Maintenance: Research and
Practice, 4(3), 159-171. https://doi.org/10.1002 /smr.4300040303

Seeber, [, Bittner, E., Briggs, R. 0., De Vreede, T., De Vreede, G.]., Elkins, A., Maier, R., Merz, A. B., Oeste-Reif3, S.,
Randrup, N., Schwabe, G., & Soéllner, M. (2020). Machines as teammates: A research agenda on Al in team
collaboration. Information & Management, 57(2), 103174. https://doi.org/10.1016/j.im.2019.103174

Dabbish, L., & Kraut, R. (2006). Coordinating large-scale software development with a shared activity space.
Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work (CSCW), 431-
440. https://doi.org/10.1145/1180875.1180941

Shneiderman, B. (2020). Human-centered Al: Trustworthy, reliable, and controllable. International Journal of
Human-Computer Studies, 139, 102434. https://doi.org/10.1016/j.ijhcs.2020.102434

Hinds, P., & Kiesler, S. (2002). Distributed work. MIT Press. https://doi.org/10.7551/mitpress/2425.001.0001

Herbsleb, J. D., & Grinter, R. E. (1999). Splitting the organization and integrating the code: Conway's law revisited.
Proceedings of the 21st International Conference on Software Engineering (ICSE), 26-35.
https://doi.org/10.1109/1CSE.1999.752709

Bgdker, S., & Grgnbaek, K. (1991). Cooperative prototyping: Users and designers in mutual dialogue. International
Journal of Man-Machine Studies, 34(4), 453-478. https://doi.org/10.1016/0020-7373(91)90038-E

Begel, A., & Zimmermann, T. (2014). Analyze the developers! A survey of software engineering research on
software developers. Proceedings of the 2014 International Conference on Software Engineering (ICSE), 761-
772. https://doi.org/10.1145/2568225.2568262

Hinds, P., & Kiesler, S. (1995). Communication across boundaries: Work, structure, and use of communication
technologies in a large organization. Organization Science, 6(4), 373-392. https://doi.org/10.1287 /orsc.6.4.373

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design process for large systems.
Communications of the ACM, 31(11), 1268-1287. https://doi.org/10.1145/50087.50089

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4), 40-52. https://doi.org/10.1145/141874.141880

1501

https://doi.org/10.1109/ICSE.2005.1558156
https://doi.org/10.47191/ijmcr/v4i12.03
https://doi.org/10.1109/ICCIS45840.2019.8977209
https://doi.org/10.1016/j.jss.2019.110429
https://doi.org/10.1016/j.jss.2019.04.048
https://doi.org/10.1145/1924422.1924425
https://doi.org/10.1016/j.jss.2020.110661
https://doi.org/10.1016/j.eswa.2018.02.029
https://doi.org/10.48550/arXiv.1603.07292
https://doi.org/10.1109/ISSRE.2012.6388274
https://doi.org/10.1002/smr.4300040303
https://doi.org/10.1145/1180875.1180941
https://doi.org/10.1016/j.ijhcs.2020.102434
https://doi.org/10.7551/mitpress/2425.001.0001
https://doi.org/10.1109/ICSE.1999.752709
https://doi.org/10.1016/0020-7373(91)90038-E
https://doi.org/10.1145/2568225.2568262
https://doi.org/10.1287/orsc.6.4.373
https://doi.org/10.1145/50087.50089
https://doi.org/10.1145/141874.141880

World Journal of Advanced Research and Reviews, 2023, 18(02), 1489-1502

[40] Glass, R. L. (1992). Software productivity. The Journal of Systems and Software, 19(1), 1-12.
https://doi.org/10.1016/0164-1212(92)90050-7

[41] Kitchenham, B. A, & Pfleeger, S. L. (1996). Software quality: The elusive target. IEEE Software, 13(1), 12-21.
https://doi.org/10.1109/52.476281

1502

https://doi.org/10.1016/0164-1212(92)90050-7
https://doi.org/10.1109/52.476281

