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Abstract 

Real time monitoring of transactions has turned out to become a very important aspect to the modern financial systems 
as the demand to manage liquidity within seconds, regulatory compliance, and deter fraud continue to grow. The batch-
based traditional reporting systems frequently do not satisfy the latency targets of the high-frequency price trading, 
real-time payment settling and urgency-driven risk mitigation. In this paper, I have provided a systematic design of real-
time transaction monitoring based on Change Data Capture (CDC), event streaming platforms and low-latency fabrics. 
The architecture, as proposed, incorporates CDC to record the changes in the database, fragmented event streams to 
facilitate scalability, and windowed aggregations to avail near-instant liquidity and cutoff indicators. We also compare 
materialized views and stateful stream processors concerning freshness, cost and complexity of operation. To ensure 
that the definitions of metrics are consistent throughout the organization, a governance layer is added. Experiments 
using large-scale financial data show that liquidity buffer accuracy improves, sooner fraud/risk alerts are obtained, and 
the average recovery time incident mean to (MTTR) is smaller. The paper gives specific design factors, performance 
standards and real-life directives towards the installation of real-time monitoring systems in financial institutions. 

Keywords: Change Data Capture (CDC); Event Streaming; Real-Time Analytics; Stateful Stream Processing; Liquidity 
Metrics; Fraud Detection; Low-Latency Fabrics; Materialized Views; Windowed Aggregations; Financial Technology 

1. Introduction

The financial sector is nowadays experiencing unprecedented growth in the size and complexity of transactions due to 
the rise of digital banking, financial high-frequency trading, and other global financial markets. The use of traditional 
batch-processing systems [1-3] which on a daily basis consolidate transaction information either overnight or at the 
end of the business day is no longer sufficient to suit the functionality of the current financial system. Such systems 
create latency, which may cause critical decision-making to take too long to leave institutions in a liquidity crunch, in 
possible compliance breaches, and/or fraud. This has necessitated the real-time monitoring systems in order to ensure 
the efficient operation and management of risks. Through such systems, financial institutions are able to get access to 
the correct and current metrics in low latency, which allows continuous evaluation of its liquidity buffers, intra-day 
cutoffs, and exposure limits. Real-time monitoring enables banks and trading platforms to identify anomalies through 
processes performed in real-time, respond to liquidity or risk events in real-time, and guarantee compliance with 
regulatory conditions. In addition, real-time transactional data analysis potential provides the means of proactive 
decision-making, an improvement of fraud detection, and an overall increase in operational resilience. Here, the new 
financial architecture is progressively embracing event-based architectures, state-driven stream processing 
functionality and automated governance frameworks to deliver on the consistency, accuracy and actionability of critical 
financial metrics even in the situations where transactions are high and markets fluctuate. 
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1.1. Needs of Real-Time Transaction Monitoring 

 

Figure 1 Needs of Real-Time Transaction Monitoring 

Ensuring Liquidity Management: Effective liquidity management can be considered one of the main requirements to 
monitor transactions in real-time. Banks and other financial institutions should regularly monitor the balances of 
accounts, intra-day positions and movement of cash in order to ensure that they are enough to cover the liability. Any 
delay in identifying liquidity scarcities may lead to overdrafts, settlement failure, or breach of the regulations. The real-
time monitoring will enable the banks to dynamically compute the liquidity buffers and respond instantly to the 
fluctuations to avoid any financial disturbance. 

Regulatory Compliance: In current finance markets, there exist strict regulatory provisions related to reporting, limit in 
transactions and exposure provisions. Live tracking means that institutions are not violated as they give current 
measures of transactions, exposure limits, and cutoff limits. Real-time systems lower chances of penalties and ensure 
development of trust with regulators, investors, and customers since they can be detected as they happen rather than 
as they had happened. 

Fraud Detection and Risk Mitigation: As more transactions occur digitally, financial fraud is being more advanced and 
becoming more common. In real time, transaction monitoring is critical to ensure early identification of suspicious or 
abnormal activity e.g. unauthorized transfer, irregular trading behavior or large value transactions that are not part of 
ordinary performance. Through constant monitoring of streams of transactions, institutions can raise instant warning, 
explore the possibilities of fraud, and reduce risks before they get out of control. 

Operational Efficiency and Decision-Making: Banking institutions depend on precise, low-sensitivity indications in 
order to make sound operational choices. Real time monitoring gives an insight into the crucial finances of the business 
and provides proactive decision-making on the trading policies, settlement procedures and the allocation of resources. 
This unremitting understanding enhances the effectiveness of operations, lowers the mean time to resolve (MTTR) of 
events, helps to plan and forecast even more. 

Supporting High-Volume, High-Frequency Environments: Contemporary financial economies may encompass millions 
of exchanges daily, especially in trading system and payment systems. It is important that this high-frequency, high-
volume data be dealt with by real-time transaction monitoring in order to make sure that the resulting insights are 
accurate and actionable even under peak load conditions. Event-driven and stateful stream processing systems are also 
best positioned to suit these needs, offering scalability, fault-tolerance, and low-latency processing. 

1.2. Problem Statement 

The emergence of financial transactions that have been very high coupled with the growing sophistication of modern 
banking and trading systems poses a huge challenge to financial institutions that use traditional monitoring and 
reporting processes. [4,5] The fixed time-sensitive nature of batch-based systems through the aggregation and 
processing of transactional data reduces them to inherently delayed systems when financial decisions require a few 
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seconds or even less. Such delays may lead to backward measurements, the loss of timely warnings, and the failure to 
identify a liquidity shortage, malfunctioning transactions, or regulatory infractions. As a result, financial institutions will 
face operational risk, loss of money and reputations. Also, real-time visibility is not present which prevents successful 
fraud detection and risk management. False or suspicious transactions can spread unnoticed within the system with 
severe financial and legal consequences. Equally, batch computed liquidity and exposure measures do not capture the 
real situation of accounts and positions in intra-day operations and effective cutoff limits are virtually impossible to 
enforce, regulatory integrity is compromised, and short-term risk exposures to be exercised can only be done in a 
piecemeal manner. The other life-threatening problem is that the definitions of metrics and governance are fragmented 
among various systems. Third, inappropriate definitions that are either inconsistent or outdated of critical metrics, e.g. 
liquidity buffers, exposure limits, or cutoff thresholds, may result in misreporting, false alarms, and regulatory non-
burying behaviors. In addition, traditional monitoring designs are unable to scale optimally in the circumstances of high-
frequency, large volumes of data associated with modern financial systems, leading to bottlenecks, longer latency and 
less accurate metrics. This thus creates an acute requirement of a powerful real-time transaction monitoring system, 
capable of absorbing large amounts of transactional data, computing correct metrics in real-time and issuing liquidity 
management, risk mitigation and fraud alerts in time. This system should have low-latency data capture, scalable event 
streams, stateful processing, and governance layer to guarantee metric consistency, auditability and regulatory 
compliance. All these challenges must be addressed in order to allow financial institutions to perform their activities 
effectively, reduce the risk in proactive ways, and retain confidence in the faster moving financial tier. 

2. Literature Survey 

2.1. Real-Time Financial Monitoring 

Financial monitoring systems can be real-time in nature and used to monitor financial events and respond to them as 
they happen and thus latency is also reduced and decision-making is enhanced. Traditional methods used batch ETL 
(Extract, Transform, Load) pipelines, i.e. data are compiled together and processed by a specific schedule. [6-9] These 
batch processes have serious time delays, making them inappropriate when it is needed to respond to sub-second-time 
constraints like superfast trading or more generally fraud detection. There is a shift towards real-time Change Data 
Capture (CDC) approaches in the modern systems that record the changes happening in the database and emit them as 
events in almost real-time. The strategy enables the financial institutions to react to the anomalies, breaches, or 
threshold violation in real time, which greatly enhances operational efficiency and risk management. Studies have 
pointed out that event-driven architectures in real-time monitoring systems can minimize the latency, enhance the 
throughput in addition to promoting more proactive decisions in dynamic financial settings. 

2.2. Event Streaming Platforms 

Modern real-time monitoring schemes center around implementation of event streaming platforms. There are Apache 
Kafka, Apache Pulsar, and AWS Kinesis tools which offer effective structures to consume, store and process massive 
amounts of data flow in real-time. Such systems facilitate the sharding of event streams and enable workloads to scale 
both horizontally and deal with high levels of transaction throughput without impaired performance. Also, they have 
semantics like at-least-once or exactly-once delivery that are essential in the context of financial operations maintaining 
data consistency. These platforms allow decoupling data producers and consumers, allowing modular but fault-tolerant 
architectures, with multiple downstream systems being capable of processing the same data streams independently. 
This has made them more popular in the financial service industry in performing activities like real-time risk analysis 
tasks, compliance oversight and transactional monitoring work. 

2.3. Stateful Stream Processing 

Stateful stream processing engines, such as Apache Flink and Kafka Streams, have stateful computations on data streams 
in real-time. With this, complex processing operations such as windowed aggregations, joins, and complex event 
patterns may be performed where such functions are not possible with stateless processing. Stateful stream processors, 
unlike the more traditional database systems, do not need materialized views or batch queries in order to process data, 
but instead they provide results as soon as new events are received, and do so in near-real time. Nevertheless, this real-
time has related operational issues, including memory management and checkpointing state to avoid losing data in case 
of failure. It has been shown that, when tuned correctly, stateful stream processors can easily be much faster than batch-
oriented methods in terms of both latency and data freshness as well as are well suited to high-frequency trading, 
liquidity and other applications with requirements on latency. 
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2.4. Materialized Views vs Stream Processing 

Traditional mechanism To store precomputed query results so as to access them faster, materialized views are utilized. 
Although they are easy to execute queries and they have lower computational load during the query execution, they 
have a staleness problem, as the view has to be updated at a certain interval. The overhead and latency of this refresh 
process can render the materialized views less appropriate in real time monitoring. To the contrary, stream processing 
systems are processes that continuously read and process events, which makes metrics updated in real-time. It has been 
demonstrated through comparative analysis that stream processors are able to cut metric latency up to 90% of the time 
that materialized views do in the event of heavy transaction volumes. The trade-off is however, complexity of operation: 
a state-maintaining, fault-tolerant and correct windowing and aggregation logic involves complex architecture and 
monitoring. Nevertheless, the rewards of near-real-time insights usually supersede the complexity, especially when 
decision-making in high stakes finances is at play. 

2.5. Governance and Metric Consistency 

With more real-time, distributed financial systems, governance and metric consistency are the keys to operational 
reliability and compliance with regulatory requirements. An administrative layer imposes uniform definitions of the 
key metrics which include liquidity buffers, exposure limits, and cutoff levels. Unless there are regular definitions, then 
organizations will be in danger of inaccurate reporting, contravention of regulations and poor risk calculation. It has 
been observed that various systems use different metrics to define an inconsistent metric, which may cause serious 
operational errors since automated alert issues and decision-making are based on a correct and harmonized metric. 
Governance models may have versioned metric definitions, validation pipelines, and audit mechanisms to make sure 
that any modifications to metrics are well recorded and support propagation. With the incorporation of governance 
practices in real time monitoring systems, the financial institutions will be able to attain accuracy as well as compliance 
without compromising the speed and flexibility that highly sought after modern markets need. 

3. Methodology 

System Architecture 

 

Figure 2 System Architecture 

• CDC Layer: Change Data Capture (CDC) layer is the backbone of the system and constantly monitors the 
database activities like inserts, updates as well as deletes. [10-12] CDC captures such changes the moment they 
happen instead of using periodic batch processing to ensure that transactional data is reflected almost in real 
time. Such methodology is used to keep downstream elements, such as analytics, and alerting systems 
continuously informed on the current state of the database, which is vital to arrive at a proper decision in time 
during a financial monitoring and risk management situation. 

• Event Streaming Layer: The event streaming layer is the basis of the transportation of real-time information 
within the system. Transactions that the CDA layer records are subdivided and grouped according to dimension 
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like account, geographical region, and product type such that they can be processed in parallel with horizontal 
scalability. The platforms such as Kafka or Pulsar are high throughput, fault tolerant and delivery guaranteed 
and can be processed by multiple consumers individually. This layer supports flexibility, resiliency, and 
supports bursts of high-frequency financial transactions through decoupling the data ingestion process and 
processing. 

• Stream Processing Layer: Events are received in the stream processing layer where real-time computations 
of metrics and aggregations are calculated, as well as anomalies are detected. Flink or Kafka Streams are stateful 
stream processors that use in-memory state to compute windowed metrics like liquidity levels, cutoff 
thresholds or risk exposure dynamically. This real time calculation is what makes the insights keep up to date 
and financial institutions will be able to react at once to deviations or threats. They need to carefully manage 
the resources including memory and checkpointing to ensure performance and fault-tolerance in this layer. 

• Governance Layer: The layer of governance guarantees the consistency and accuracy of all the calculated 
metrics. It sets and implements standardized definitions to key financial parameters liquidity buffers, cutoffs 
and exposure limits. The governance layer ensures that there is no inconsistency between other elements of 
the system by having a central source of truth and being able to meet regulatory demands. It also facilitates 
auditing and versioning of metric definitions and thus whenever any changes are made, they are updated and 
spread out uniformly across the system. 

• Alerting Layer: The alerting layer is the last decision-making user interface, which produces real-time alerts 
regarding anomalies, liquidity deficit, or possible cases of fraud/risk. Using the measurements calculated at the 
stream processing layer, it will be able to send alerts to the involved stakeholders through dashboards, email, 
or automated processes. The alerting layer enables institutions to make timely corrective actions that reduce 
risk and adapt to operational stability, critical in the environment of high-volume high-stakes financial 
transactions by offering real-time visibility of critical financial events. 

3.1. Real-Time Transaction Monitoring Architecture 

 

Figure 3 Real-Time Transaction Monitoring Architecture 
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• CDC (Change Data Capture): All changes made on the database, either database inserts, database updates, and 
database deletions, are received by the CDC component and notified to the subscribers. Unlike ETL processes 
where the batch process takes some time, [13-15] CDC records all the transactions in real-time and makes them 
availed to the downstream processor; hence, it minimizes latency. This instant capture is vital in any parameter 
of finances where it is important to make decisions based on liquidity, risk exposure or fraud detection within 
a few milliseconds. CDC transforms changes in the database into event streams thereby being the initial layer 
of ensuring the up-to-date picture of transactional activity. 

• Event Stream: After capturing transactions they are received by event streaming layer where they are received 
in real-time by downstream processors. Attributes like account, product type, or region have been known to 
partition events enabling them to be processed in parallel and efficiently handle large volumes of financial 
information. Apache Kafka, Apache Pulsar or AWS Kinesis ascertain reliability, fault tolerance, and exactly-once 
delivery semantics. Event stream is not bound to either ingestion or processing of data, therefore allowing 
various consumers to process the same transactions independently to serve other analytics or monitoring uses. 

• Stateful Processor: The stateful processor is tasked with the calculation of real-time metrics and complicated 
event processing of the incoming stream. Apache Flink or kafka streams are tools that hold in memory state 
allowing things like windowed aggregation, pattern detection and anomaly identification to be done. This layer 
can be used to update metrics such as level of liquidity, cutoffs, and exposure limits since events are processed 
as soon as they occur. The stateful processing is needed in order to identify risk or fraud early enough, but 
memory handling, checkpointing and fault tolerance must be managed to ensure reliability at scale. 

• Metrics Store: The metrics store is where the processed and aggregated financial metrics that are generated 
by the stateful processor is stored. This component allows queryable centralized view of current system state 
to support dashboards, reporting tools, and additional downstream analytics. Real time metrics can be easily 
stored and indexed to get historical trends and recent changes, which is obviously essential in auditing, 
compliance and decision-making. The metrics store fills the gap between ongoing processing and insights to 
action. 

• Alerts: The alerts element also generates real-time alerts depending on the calculated metrics that give instant 
access to anomalies, liquidity deficiencies, or possible fraud cases. Alerts may also be issued via various means 
which may be dashboards, emails, text messages or automated response procedures. This layer allows 
mitigating risks, meeting regulatory authorities, and promoting operational stability, and therefore institutions 
can respond quickly to major financial developments. The alerting of mechanism is sensitive to the accuracy 
and the timeliness of the upstream CDC, streaming and processing layers. 

3.2. Windowed Aggregations 

In real time financial monitoring, liquidity buffers, cutoff limits and levels of exposure are normally calculated over a 
series of transactions as opposed to calculating them on an event basis. [16-18] This is through the use of windowed 
aggregations which bundle the events that fall within a specified period of time or within a specified number of events 
to create valuable overviews. There are tumbling windows and sliding windows which are two types of windows 
commonly used. The data stream is separated into intervals which do not overlap using a tumbling window (i.e. each 
minute) and all of the transactions in each interval are aggregated. After the window has expired, the subsequent set of 
transactions are enclosed in a new independent window. Conversely, a sliding window operates on the data stream by 
sliding the window at a constant step size, with the overlapping between successive windows being possible. Such a 
strategy allows tracking the data on a more granular level and identify the trends or anomalies that can exist across 
several intervals. As an example, the liquidity measures can be computed by adding the total value of all the transactions 
of a given window. Supposing that we refer to liquidity at time t as Liquidity_t and suppose that there are N transactions 
in the window W r, then the liquidity may be written in the form of the sum of all transactions in the window. That is, 
Liquidity at time t is equal to the sum of each one of the transactions that transpire at time t in the window W. This 
consolidation gives a freeze of the overall amount of money transferred or transited at a certain timeframe, which is 
vital to the risk management, compliance, and operational decision making. Other higher-order operations, including 
averages, maximum/minimum values, and thresholds, can also be performed using windowed aggregations, which is 
necessary in generating alerts because of falling below a specific buffer, or when some suspicious transactional patterns 
appear. Through in-memory state, stream processors can keep these windowed measures in real-time and as new 
transactions come through so that financial institutions can have near live insight into their operational and risk 
exposures. The strategy provides a balance between the necessity to receive timely insights and the complexity of 
processing high-frequency and high-volume transaction streams. 

3.3. Materialized Views vs Stateful Processing 

Efficient and accurate computation of metrics is a very crucial design consideration in real time financial monitoring 
systems. The most common take the form of two different methods: materialized views and stateful stream processing 
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which trade-offs can be outlined in detail. A traditional database concept known as materialized views is where the 
results of queries or calculated statistics are written into a physical database in order to access them more quickly. 
These perceptions are periodically updated i.e. the values which were stored at a given time are updated periodically 
say every few minutes or hours. Although materialized views make queries very easy to execute and lower 
computational costs at query time they do introduce the latency since the metrics are as up to date as they are at the 
time of the last refresh. Delay can be an issue in high-sensitivity financial settings: unexpected liquidity or exposure 
shifts or transactional behaviour changes might not be noticed before the next refresh, leaving financial institutions 
vulnerable or subject to noncompliance. Stateful stream processors on the other hand hold state in memory which is 
regularly updated with incoming events. Real-time windowed aggregations, real-time pattern detection, and real-time 
calculating anomalies can be done in frameworks such as Apache Flink or Kafka Streams and give insights into system 
behavior almost instantly. These processors perform calculations on the transactions in real time and so metrics like 
liquidity buffers or cutoff thresholds are always up to date. Moreover, the stateful processors provide fault tolerance, 
checkpointing and consistent state recovery which are essential in the reliability of operations in financial systems. Its 
trade-off is greater complexity in operations, such as attentive management of memory, partitioning of states, and a 
recovery mechanism. The stateful stream processor has been demonstrated to achieve a reduction in metric latency of 
up to 90 percent over materialized views, which makes it most particularly appropriate in high-volume, low-latency 
financial models. Although materialised views are still valuable in the context of simpler reporting or low-frequency 
analytics, stateful processing has the real-time responsiveness needed to deal with immediate risk identification, fraud 
detection and compliance enforcement. A decision between these approaches occurs based on the tradeoff between the 
freshness, complexity, or performance requirements in a particular financial system. 

3.4. Governance Layer Implementation 

 

Figure 4 Governance Layer Implementation 

Centralized Metadata Repository: The centralized metadata warehouse is used as the foundation of the governance tier 
since all the significant details regarding financial indicators, data sources, and processing streams exist in a single place. 
Such repository provides uniform and masterful metadata to all the stakeholders such as the analysts, developers, and 
auditors. The system enables less ambiguity, eliminates duplication, and supports an easy discovery of data by 
centralizing the definitions, relationships, and configurations. It also forms a basis of automated validation, monitoring 
and integration of different elements of real time monitoring architecture. 

Version-Controlled Metric Definitions: Metric definitions with version control allow the governance layer to monitor 
the changes in the primary financial metrics over time. Every update, whether new measure, new calculation, or 
threshold or otherwise is logged as a different version. The advantage of this method is that teams can see how metrics 
evolved in the past, can roll back to the past in case of the need to do so and all processing and reporting elements must 
be operating to the correct and current formula. The transparency, accountability, and reproducibility improved by 
version control is especially sensitive to the highly regulated financial workflows involving highly controlling metric 
definitions that ensure compliance and risk management in financial services. 

Audit Logs for Metric Changes: Audit logs are stepwise records of the changes done to metrics and are not editable and 
can also give the details of the individuals who made the change, the time when the modification was done and what 
was changed. Such logs are vital in regulatory compliance, in-house audits, and forensic audits since they will enable 
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institutions to show accountability and traceability in their financial monitoring activities. Audit trails assist in 
uncovering unauthorized or incorrect modifications, assist in root-cause investigation in the case of anomalies, and 
strengthen confidence in trust of the consistency and (accurate) value of the metrics reported. Organizations can not 
only trade real time financial monitoring response and efficient with rapid and respondent, but also transparent, 
compliant and auditable by enabling audit logging to the governance layer. 

4. Results  

4.1. Performance Metrics 

A dataset of 10 million financial transactions was used to test the performance of the proposed real-time financial 
monitoring system, and it simulates a large volume operational environment as is common in the contemporary banking 
and trading systems. Computation speed of liquidity buffers that was among the main performance indicators is crucial 
in ensuring that accounts have sufficient funds to pay their obligations. The system has shown that it is possible to 
calculate those metrics of liquidity within the timeframes less than one second, which suggests that the CDC, event 
streaming, and stateful processing layers collaborate effectively. This quick and precise calculation allows the 
institutions to react on time to the liquidity emergencies minimizing the operational and financial risk. The early 
detection of simulated events of fraud was another important measure. The system was tested by adding fake patterns 
of fraud to the data in order to be able to detect the suspicious patterns in real-time. So the findings proved that the 
system was able to identify 95% of these events before propagating thus proving the reliability and accuracy of 
windowed aggregations and continuous stream processing in detecting anomalies. This early-detection asset is 
especially useful in terms of avert financial loss, retention of customer faith, as well as the adherence to the rules and 
regulations concerning fraud tracking. Besides this, the system enhanced the Mean Time to Resolution (MTTR) of 
incidents and alerts by 40 percent. The system is provided to impose real time insights and pre-computed metrics 
facilitating quicker investigation and reaction to liquidity inadequacy, risk opening, or suspicious activity. Low-latency 
computation is combined with precise metric aggregation and automatic alerting, which considerably lessen the 
operational workload of the members of financial teams and speed up the decision-making process. All these 
performance indicators suggest that the proposed architecture will be able to process finances of large scale with 
efficiency, deliver actionable and timely information and enhance the capacity of operations as well as regulatory 
imperatives in dynamic financial systems. 

4.2. System Performance Results 

Table 1 System Performance Results 

Metric Materialized Views Stream Processing 

Average Latency 100% 67% 

Metric Freshness 50% 100% 

MTTR (Mean Time to Resolution) 100% 60% 

Fraud Detection Accuracy 88% 95% 
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Figure 5 Graph representing System Performance Results 

• Average Latency: Mean latency is the duration of the system to compute and provide measurements when a 
transaction is done. With materialized views, latency is configured as starting at 100 percent indicating the 
natural values latency associated with periodic refresh cycles. Stream processing on the other hand has a much 
lower latency figure of 67% compared to the baseline of 100 as a result of a constantly, in-memory computation 
of the transactions as they flow in. This near immediate response means that important indicators like liquidity 
reserves and exposure ratings will be updated within nearly a second and allow the tracking and determination 
of strategy execution in almost real-time. 

• Metric Freshness: Metric freshness represents how the calculated metrics are occurring in comparison to the 
recent transactional information. Achieved freshness of materialized views was 50 percent of the staleness 
induced by the refresh interval between batches, which can be either sporadic or due to sudden changes in 
liquidity or risk exposure. Stream processing, in its turn, has 100% freshness and updates its metrics regularly 
with new transactions packet. Such a high degree of metric accuracy enables financial institutions to have an 
equally up-to-date overview of their affairs which is necessary to provide timely warnings, detecting fraud and 
regulatory compliance. 

• MTTR (Mean Time to Resolution): MTTR is an indicator of the average time to identify and fix anomalies or 
alerts. In materialized views, the MTTR is 100 which is slower to detect as the metrics are not updated 
promptly. Stream processing drops MTTR down to 60, which implies that incidences are detected and handled 
much quicker. It is directly related to real time aggregation and alerting, it means that the operational teams 
can reply quickly to shortage of liquidity, or risk compliance, or fraudulent actions, and thus reduce the financial 
and operational influence. 

• Fraud Detection Accuracy: Fraud detection accuracy is used to estimate the capability of the system in 
accurately detecting suspicious transactions. The materialized views had attributed 88 percent accuracy due 
to delays in visibility and batch processing. Stream processing resulted in an accuracy of up to 95 by taking 
advantage of constant monitoring of the streams of transactions, real time pattern recognition and using 
anomaly detection rules in time. The increased accuracy minimizes false negatives and increases trust in the 
monitoring system, which is more successful at preventing financial losses and violation of regulations. 

5. Discussion 

The analysis of materialized view and stream processing shows that the benefits of real-time data processing in financial 
monitoring systems are quite considerable in the modern context. Stream processing would also allow a continuous 
and in-memory calculation of metrics that would help institutions identify a liquidity shortage, risk exposure, and 
fraudulent activity nearly in real time. Stream processors ensure very precise and up to date metrics, which are 
necessary in high-frequency trading, risk management, and regulatory compliance.<|human|>By computing 
transactions on arrival, stream processors can maintain highly accurate and updated metrics and it is needed in high-
frequency trading, risk management, and regulatory compliance. This real-time similarity decreases the response time 
to financial abnormalities and enables the operational departments to undertake corrective measures in real-time, 
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which will reduce the operational and financial risks greatly. Moreover, the increased capability of the system to detect 
fraud in stream processing, as high as 95 percent in a test environment, proves the capability of the system to identify 
complicated trends and abnormal behavior that is not easily detected in the batch-oriented system. On the contrary, the 
materialized views provide the less difficult and more classical technique, which is based on the regular update of the 
already calculated values. Although effective when the volumes of information to report are small, or when historical 
reports are required, they necessarily cause latency and staleness since reported metrics may only capture the system 
at the end of the last update interval. A delay, especially when combined with a high volume of transactions per second 
environment, can be disastrous in such high-volume but low-latency settings, leading to a delay in identifying liquidity 
shortages or fraudulent activity. Materialized views are simpler to use and less complex in operation but have 
drawbacks of freshness, accuracy and real time responsiveness, therefore they cannot be used in dynamic financial 
systems that need quick decisions. These findings are further supported by the performance testing; stream processing 
offers sub-second latencies, 100 percent metric freshness and a 40 percent better mean time to resolve than 
materialized views. These findings highlight the fact that even though materialized views can still be useful in providing 
simpler reporting or archival value, operational resiliency, fast detecting anomalies, and proactive risk management in 
financial institutions today rely on real-time stream processing. Finally, by embracing stream processing model, the 
organizations can remain competitive and satisfy the rising expectations of the rapid financial market. 

6. Conclusion 

It has introduced an end to end architecture of real-time transaction monitoring of a financial system encompassing 
Change Data Capture (CDC), event streaming platforms and low-latency stateful processing fabrics to efficiently manage 
large volumes of financial data. With by catching database changes as events in real-time, the CDC layer allows all the 
transactional activity to be immediately available to downstream processing entirely removing the latency of traditional 
batch ETL pipelines. The event streaming layer is an event transport layer designed using tools like Apache Kafka or 
AWS Kinesis and offers a scalable and fault tolerant transport of events which allows parallel processing and decoupling 
of multiple data producers and consumers. In this context, stateful stream processors stateful (Apache Flink and Kafka 
Streams) can continuously aggregate and compute metrics to enable the near real-time monitoring of liquidity buffers, 
cutoff limits and the risk exposure by the institution. Windowed aggregations and in-memory state are used to 
guarantee that key financial metrics are made available all the time to facilitate real-time alerting and decision-making. 

Mapping of materialized views and stateful stream processing comparison of financial monitoring are also important 
outputs of this work. Materialized views are easier to write and more appropriate to low-volume or historical reporting, 
but in high-frequency settings more suffer staleness because of periodic refresh periods and are much more expensive 
to run. Conversely, stream processing proves to be significantly much better in terms of latency, metric freshness, and 
early anomaly or fraud detection and is able to compute results in less than a second and demonstrate 95 percent 
detection in testing conditions. This dynamic responsiveness can ensure that financial institutions respond in real time 
as needed to liquidity shortages, suspicious transacting, and regulatory warnings and that the Mean Time to Resolve 
(MTTR) is minimized and operational and financial risk is decreased. 

The other aspect of equal significance is that a layer of governance is implemented as it ensures consistency, version 
management, and auditing of financial metrics of all the system components. The centralized metadata data warehouse, 
versioned metric definitions and rich audit logs also ensure that all metrics are standardized, traceable and regulatory 
compliant. This control capacity strengthens confidence in the control system, decreases the risks of making false 
reports, and facilitates the transparency of operations. 

Altogether, the suggested architecture is a scalable framework that guarantees strong, fast-moving, and real-time 
financial monitoring with actionable insights of liquidity management, reducing risks and fraud detection. When 
advanced stream processors are compounded with strict governance practices, the financial institutions will gain a 
strong competitive edge, operational resiliency and lesser latency as well as risk exposure. This finding underscores the 
fact that the real time, event-based monitoring systems cannot only be adopted, but also in contemporary high-speed 
money circuits where a well-timed decision could have grave economic consequences. 
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