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Abstract 

Human activity recognition is highly required to develop an assistive technology. This study proposes the use of 
Artificial Neural Network (ANN) to classify Sit to Stand (STS) activity based on the sensor's orientation angle. There are 
four main phases in this research which are Sit Phase, Flexion Phase, Extension Phase, and Stabilization Phase (Stand). 
Human activity recognition is highly required to develop an assistive technology. STS activity is an important movement 
for every human being despite the inability of certain age groups to perform this movement due to weakened muscle 
function. The limited information from previous on the difficult phases experienced by the subjects to perform STS 
causes the development process of assistive devices slower. Our solution can classify those phases in real-time using 
the angles on Korpus Sterni (chest) and Tibia (calf) to gather information on which phase is difficult to be performed. It 
manages to gather and process the sensor data on application with approximately 3 seconds delay, resulting in the 
extension phase being a difficult phase to classify. A dataset of 32,000 samples was obtained from 8 subjects consisting 
of 6 subjects aged 20-30 years and 2 subjects aged 40-50 years. After experimenting and testing the performance of the 
ANN architecture, the neural network architecture consisted of 4 input nodes, 4 hidden layers (93-69-89-76) with 
appropriate hyperparameters, and 4 output layers. The training accuracy and testing accuracy reached 86% and 72% 
respectively. 
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1. Introduction

As growing and aging are among the inevitable natures of human beings, the decline of muscle function as a skeleton 
mover is absolute in the elderly. A movement called Sit-to-Stand (STS), which requires a balance and muscle movement 
to raise and move forward the Center of Gravity (COG), has been difficult for the elderly due to a decreased muscle 
function. In fact, 8% of people aged 65 years and over experienced difficulties in performing STS whereas 3% of them 
required assistance to do it [1]. Along with the technological development in the 21st century, artificial intelligence has 
been applied to various fields of life including in the education and health sectors.  

The STS activities undergo conscious and unconscious phases between the Sit and Stand position, namely Flexion phase 
(COG moves forward) and Extension phase (COG moves upward). The research employed inertia sensor and infrared 
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camera to estimate the angles of knee and ankle joints in order to provide the best parameter value during the Extension 
phase analysis [2]. Researchers in [3] has tried to develop an adjustable standing assistance tool prototype. Other 
researchers have classified human activity recognition (HAR) into three: dynamic (walking), static (lying), and 
transitional (bend over-to-stand).  

The research applied ANN method with the combination of three activation functions (ReLU, ReLU6, and ELU) [4]. The 
HAR classification was carried out by using CNN with 1-D and 2-D block system inputs from raw data of accelerometer 
and gyroscope [5], [6]. The combining of raw data accelerometer from smartphone and IMU sensor on wristband with 
CNN algorithm was performed in [7]. Monitoring activity in real time to acquire information with great accuracy it takes 
a very long time, thus by using ANN researchers can process and acquire information much faster [8]. Most of the HAR 
classification by IMU sensor used the raw data sensor, and the STS phases were dominantly influenced by their angles. 
It is assumed that the IMU sensor raw data as the classification feature required complicated preprocessing such as 
eliminating jitter on the accelerometer and drift on gyrometer data. The main problem is the long process of data 
collection and lack of information on the difficult phases in STS. 

Thus, this research aims to identify the difficult phases of STS to gather information and identify the use of ANN in the 
development of assistive tools application for the elderly. The STS covers four phases, namely Sit Phase, Flexion Phase, 
Extension Phase, and Stabilization (Stand) Phase.  

2. Material and method 

2.1. Dataset Retrieval 

2.1.1. Apparatus 

The preparatory stage of data retrieval involved sensor installment on the subject’s body part and equipment 
synchronization. The data retrieval was carried out by using a sensor inertial measurement unit –IMU type MTw Awinda 
by Xsens Technologies B.V with a sampling rate of 100 Hz. MTw Awinda comes with a station that acts as a receiver and 
IMU battery charger. The retrieval used two laptops, two smartphones, a tripod with a minimum height of 94 cm, and a 
chair. The software used was MT Manager, Microsoft Excel, Visual Studio, and Google Colab. 

The data recording for the training process and observation was done using a software called MT Manager. By using 
GUI MT Manager software, we could see the orientation angles of roll, pitch, and yaw—which were the result of Kalman 
filtering through the Euler parameter and also available from quaternion calculation. Besides, raw data from the 
accelerometer, gyroscope, and magnetometer sensors can be stored [9].  

2.1.2. Subjects 

Data were collected from eight subjects consisting of six subjects aged 20-30 years and two subjects aged 40-50 years.  

2.1.3. Sensors Placement 

Two IMUs were attached to the body parts of Korpus Sterni and Tibia, as illustrated in Figure 1. 

 

Figure 1 Sensor installment to the Korpus Sterni and Tibia 
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IMU sensor generally acts as a movement data recorder with Roll, Pitch, and Yaw angles. However, Yaw angles are 
affected by the magnetic field [10] and the subject heading is not a convenient feature. Therefore, Yaw could not be used 
in this research. The sensor installment with Velcro strap to the Korpus Sterni and Tibia was done under the 
consideration that both parts performed minimum muscle contraction, so they would ensure that the MTw was fastened 
tightly and robustly to the skin. According to [2], sensor installment on the chest would be the best because of the 
subject’s body and tibia slope levels. Besides, the sensor installment to Korpus Sterni and Tibia, as illustrated in Figures 
2a and 2b, caused the CoG to move forward during the shift from Sit to Flexion phase, which led to the change of Korpus 
Sterni and Tibia angles. At this posture, the Korpus Sterni and Tibia position leaned forward and formed an angle with 
the y-axis. The sensor placement in the Korpus Sterni was also performed by another researcher in [2]. 

  

(a) (b) 

Figure 2 (a) Sit phase – static CoG; (b) Flexion Phase – moving forward CoG 

2.1.4. Experimental procedure 

Once the sensor installment completed, subjects were instructed to perform sit-to-stand at a normal speed for 20 
seconds. The experiment was repeated twice. During the experiment, not only the angle data from the two sensors were 
recorded using MT Manager software, but the video was also recorded –which later be used for verification in class 
labeling of the ANN dataset. A monitor screen as a synchronization indicator between data recording and data labeling 
was placed next to the subject. The green screen indicated that the data had not been recorded by MT Manager software, 
and the red screen indicated the data were being recorded by MT Manager software. Figures 3a to 3d were taken from 
the video recording, illustrating the four STS phases and the screen next to the subject functioned as the indicator of the 
ongoing recording process. The video used a sampling rate of 30 fps and the data recording by MT Manager software 
used a sampling rate of 100 Hz. The calibration of video sampling rate of 100 fps was carried out online via 
www.video2edit.com/convert-to-video. 

  

a b 

  

c d 

Figure 3 (a) Sit phase; (b) Flexion phase; (c) Extension phase; (d) Stand phase 

http://www.video2edit.com/convert-to-video
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2.2. Inclination Reset Feature on Data Retrieval  

The data were retrieved during the forming of ANN dataset with MT Manager software and real-time application with 
C#-based software. To avoid singularities in the Euler parameter, quaternion was used during the data retrieval. The 
use of Euler angles led to singularity problems when the pitch angles reached 90 degrees or -90 degrees. This situation 
is called Gimbal Lock, which is when the roll and yaw angles are indistinguishable [11], [12]. In this research, the 
inclination reset feature zeroed the roll and pitch angles at the beginning of data retrieval, so the initial sit movement 
had the pitch and roll angle of 0 degrees on both sensors [10]. 

2.3. ANN Model Development Process 

After completing the dataset retrieval and labeling process, the ANN model was created by using Python. The dataset 
used to perform training is illustrated in Table 1.  

Table 1 contains 32,000 rows of data taken from eight subjects. 

Table 1 Illustration of training data 

roll_korpus pitch_korpus roll_tibia pitch_tibia phase-class 

0.79 -12.27 -0.46 6.31 Sit 

0.86 -12.76 -0.48 6.66 Sit 

0.95 -13.27 -0.50 6.99 Sit 

1.04 -13.78 -0.52 7.29 Sit 

1.12 -14.28 -0.53 7.57 Flexion 

1.21 -14.76 -0.55 7.84 Flexion 

1.29 -15.20 -0.56 8.08 Flexion 

: : : : : 

1.38 -15.69 -0.58 8.31 Flexion 

 

Table 1 shows that the dataset had four main features, namely roll_korpus, pitch_korpus, roll_tibia, and pitch_tibia. The 
dataset cleaning was done with 10%-15% winsorizing dataset to remove the outliers.  

Figure 4 illustrates the data distribution in the box plot after Winsorizing the four classes/phases 

 

Figure 4 Distribution of training data in the four classes 

After reaching the cleaning process, the dataset would be employed as the training data. ANN would be trained for 400 
epochs, 95 batch size, with loss function categorical crossentropy. The used ANN architecture was 4 input nodes 
(roll_korpus, pitch_korpus, roll_tibia, and pitch_tibia), and followed by learning through 4 hidden layers (each layer 
comprised 93 nodes, 69 nodes 89 nodes, dan 76 nodes) using ReLU activation function. Dropout was also used, as much 
as 0.15, activated using the softmax function. The output layer comprised 4 nodes that represented 4 classes, namely 
Sit, Flexion, Extension, and Stand. The model architecture used a multi layer perceptron as illustrated in Figure 5. 
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Figure 5 ANN architecture 

The categorical output conversion into binary data in the ANN output was done by using a one-hot encoding technique. 
The subsequent process was the evaluation on the model by using K-Fold Cross Validation and confusion matrix to 
observe the ANN model performance. 

2.4. Real-time Application Design 

The classifying real-time application was developed with C# and API IMU of MTw Awinda. The designed ANN model was 
connected to the C#-based application using Keras.NET. After being connected to the model, subjects tested the 
application by performing a sit-stand activity for 6 seconds without repetition. The classification results were 
immediately displayed in the GUI application.  

To evaluate the accuracy, two outputs were provided. The first output was the movement recording file from the two 
sensors with .mtb extension which could be opened with MT Manager software. The second output was a text file 
comprising the results of phase classification, recorded angle data, and model certainty level in classifying STS phases. 
The coefficient of model certainty was obtained from the use of the softmax activation function. Likewise, the testing 
process was recorded on video.  

The true-false calculation of classification results was performed manually by comparing videos, sensor movement 
recordings, and classification text files. The results were recorded in the confusion matrix for further performance 
analysis. The GUI is shown in Figure 6. 

 

Figure 6 GUI application classifies STS movement in real time 
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The function of each widget in the GUI screen in Figure 10 based on each number is as follows: 

1. “Scan” button to scan the active sensor, which is ready to use. 
2. “Cam ON and Cam OFF” buttons to activate and deactivate the webcam. 
3. “Classify” button to perform the STS movement classification. 
4. “Channel” dropdown button to select channels that have been connected to MT Manager software and API MTw 

Awinda. 
5. “Enable Radio” button to activate Awinda station or USB Dongle, and ready to connect to IMU MTw Awinda  
6. “Stop” button to stop all running processes, including webcam and classification processes. 
7. Dropdown menu to select the intended sensors (based on the sensor type of MTw / MVN / etc.). This research 

used MTw. 
8. The file name input place for the sensor data recording  
9. The “Record” button to activate the data recording 
10. Widget to display the webcam capture 
11. A place for displaying the roll and pitch angles of each sensor 
12. A place for classification result 

3. Results  

3.1. Result of ANN Model Development 

The ANN architecture can be seen in Figure 5. Modifications on the model classifier were created using a fully-connected 
layer. The dropout value was 0.15 by using the activation function of ReLU with softmax activation value at the final layer 
and Adam optimizer. The loss function was categorical cross-entropy. The matrix used matrix accuracy. The model 
training process was performed with a total of 400 epochs and 95 batch size. The model evaluation employed 10-Fold 
Cross Validation. Figure 7 and 8 show the graph model of accuracy of 86% and graph model of loss of 27%. In other 
words, as the epochs run, the accuracy got better and the loss would decrease. This means there is a learning process 
by the model to recognize and learn sit-stand movement from the dataset. 

 

Figure 7 Graph Model of Accuracy 

 

 

Figure 8 Graph Model of Loss 
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Figure 9 illustrates the confusion matrix from the visualization of the model’s performance. 

 

Figure 9 Confusion matrix of model classification results 

Table 2 shows the result of confusion matrix from Figure 9. Precisions of each class were 87%, 82%, 84%, and 95%. 
Recalls of each class were 95%, 82%, 81%, and 92%. F1-Scores of each class were 91%, 82%, 83%, and 93%. 

Table 2 Accuracy matrix  

 Precision Recall F1-Score 

Sit 0.87 0.95 0.91 

Flexion 0.82 0.82 0.82 

Extension 0.84 0.81 0.83 

Stand 0.95 0.92 0.93 

Accuracy                          0.86 

As soon as the confusion matrix and accuracy matrix in Table 2 was generated, the model’s ability and performance to 
do generalization were tested using 10-Fold Cross Validation. The model testing results using 10-Fold Cross Validation 
are presented in Table 3. 

Table 3 shows that the average accuracy was 86%. Symbol (+/-) indicates that the model accuracy was in the range of 
86% ± 5%, which was 81% to 91%. After being tested, the model generated the classification results using argmax and 
inverse functions on the encoder label. The display example is shown in Figure 10. 

 

Figure 10 Example of model classification result 

 

 

 

 

Figure 9  Confusion matrix of model classification results. 
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Table 3 Model testing results using 10-fold cross validation 

Nth fold. Accuracy Loss 

1 0.83 0.34 

2 0.85 0.30 

3 0.90 0.24 

4 0.88 0.26 

5 0.88 0.29 

6 0.84 0.36 

7 0.91 0.25 

8 0.86 0.25 

9 0.83 0.31 

10 0.86 0.27 

Average 0.86± 0.05 0.29± 0.05 

After successfully training and providing results, the next stage was connecting the ANN model to the Keras.NET 
application. 

 

3.2. Application Development Results 

  

a b 

  

c d 

Figure 11 (a) Sit Classification Results; (b) Flexion Classification Results; (c) Extension Classification Results;             
(d) Stand Classification Results 
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Figures 11a to 11d display the C#-based application that has been connected to the model by using Keras.NET. The 
application could perform movement classification correctly, with a delay time of 1-3 seconds. The next process was the 
testing of the application. 

3.3. Application Testing Results 

The results of the classification testing by using ANN in real-time were stated in the confusion matrix which is presented 
in Table 4 and the accuracy matrix in Table 5. 

Table 4 Confusion matrix result of application testing 

 True Class 

Sit Flexion Extension Stand 

Predicted Class 

Sit 133 3 6 5 

Flexion 3 140 38 5 

Extension 8 45 107 39 

Stand 6 7 44 135 

 

Table 5 Accuracy matrix result of application testing 

 Precision Recall F1-Score 

Sit 0.90 0.89 0.90 

Flexion 0.75 0.72 0.73 

Extension 0.54 0.55 0.54 

Stand 0.70 0.73 0.72 

Accuracy                          0.72 

4. Discussion 

4.1. During the Training Process 

Table 2 shows that the flexion phase had balanced precision and recall values and F1-Score. This model was indeed 
possible for multiclass classification cases. The two causes were: First, the flexion phase was classified by the model 
correctly and produced the same False Positive and False Negative values. The F1-Score would also be similar to the 
precision and recall, as the F1-Score was the harmonic average of the two. Second, the data contained an imbalance class 
[13] because each subject had their rhythm and tempo in performing as many sit-stand movements as they wanted 
during the time provided. It is presumed that the model can classify the flexion phase well, although the sit or the stand 
phases are easier to organize. 

4.2. During the Real-time Application Testing Process 

The Confusion Matrix and the accuracy metrics in Tables 4 and 5 show that the sit phase was the easiest to classify. This 
was signed by balanced and relatively high precision and recall values (0.9 and 0.89). Meanwhile, the following 
observation was the extension phase with relatively low precision and recall values, 0.54 and 0.55. The low precision 
value indicates that the model gave a considerable false positive value [14] in classifying extension phase. This means 
that the extension phase was not correctly classified. In this case, it can also be interpreted that the extension phase was 
quite difficult to classify with a precision level of 54%. The low recall value in the extension phase indicates a lot of 
missing data [15] or included as classified data that should not have been. For instance, the phase that was initially a 
flexion phase is considered the extension phase by the model. 

Based on the results, if researchers intend to develop assistive tools to be used effectively, they can see the precision 
value resulted by the application. The average precision issued by the application was 72%. However, if the researchers 
want to apply artificial intelligence models to the tools created, they only need to look at the value of recall. Moreover, 
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the researchers should pay more attention to using the recall because the low recall may cause the model to classify the 
sit phase into the extension or vice versa. This will undoubtedly harm the users if the model is applied to the tool. Such 
issue can be overcome by hyper tuning the parameters of artificial intelligence. From these results, the researcher can 
accelerate the process of making seating aids for stands by looking at the model's precision or recall values of a phase. 

5. Conclusion 

The developed application can classify the four phases of STS, namely Sit-Flexion-Extension-Stand using ANN. The 
application delay is approximately 3 seconds with the model’s training accuracy of 86%, and testing accuracy of 72%. 
The application has been tested using 10-Fold Cross Validation to determine its performance and accuracy. However, 
the model cannot be used as a center for artificial intelligence applied to assistive devices due to its low accuracy, 
precision, and recall. However, the application can still be employed to obtain information to be used as a basis for other 
research. This research provides information on which phase of the model seems difficult to classify—by looking at the 
value of precision or recall. Based on the testing result, it can be concluded that the extension phase is the most difficult 
to classify. This is due to the low precision, recall, and F1-score value during this phase (0.54; 0.55; and 0.54). A low 
recall value will risk the subject in terms of misclassification—the flexion phase is interpreted as the extension phase. 
Misclassification can cause the subject to be pushed forward. Finally, these findings will provide an important basis for 
further research in identifying the most difficult phase for the subject in performing STS activities, which shall be useful 
for the development of assistive technology in the future.  
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