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Abstract 

Residuals are minimized in a correlated dataset by selecting a smoothing parameter with optimum performance in the 
smoothing spline. The selection methods utilized in this study include Generalized Maximum Likelihood (GML), 
Generalized Cross-Validation (GCV), Unbiased Risk (UBR), and the Proposed Smoothing Method (PSM). The aim of this 
study is to compare the smoothing parameter selection ability of the four parameter selection methods for a correlated 
dataset with autocorrelation structure in the error term. To achieve this purpose, a Monte-Carlo simulation was 
conducted by utilizing program written in R-4.2.2. The performance of the parameter selection methods were evaluated 
using predictive Mean Squared Error (PMSE). Findings from the study indicated that GCV and GML were mostly affected 
by the presence of auto correlation in the residual and therefore had an asymptotically similar behavioural pattern. The 
estimators conformed to the asymptotic properties of the smoothing parameter selection methods considered; this is 
noticed in all the sample sizes and at all the smoothing parameters. The result also showed that; the most consistent 
and efficient among the four spline smoothing parameter selection methods considered in this study based on sample 
size and performance in the presence of autocorrelated residual error is the proposed smoothing method (PSM) because 
it does not undersmooth relative to the other smoothing method especially for small sample and medium sample size 
of 50 and 100.  

Keywords: Autocorrelation; Generalized Maximum Likelihood; Generalized Cross-Validation; Penalized Spline; 
Splines Smoothing Time series; Spline regression 

1. Introduction

In non-parametric regression, smoothing is of great importance because it is used to filter out noise or disturbance in 
observation; it is commonly used to estimate the mean function in a nonparametric regression model, it is also the most 
popular method used for prediction in non-parametric regression models.  The general spline smoothing model is given 
as: 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖  (1) 

Where; Yi is the observation value of the response variable y, f is an unknown smoothing function, Xi is the observation 
value of the predictor variable x and εi is normally distributed random errors with zero mean and constant variance. 

The main objective of this research is to estimate 𝑓(. ) when 𝑥𝑖  =  𝑡𝑖 but not necessarily equally spaced, with 𝑡1  < . . . <
 𝑡𝑛 (time) and εi is assumed to be correlated [1]. Therefore, this research shall consider the spline smoothing for non-
parametric estimation of a regression function in a time-series context with the model; 
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𝑦𝑖 = 𝑓(𝑡𝑖) + 𝜀𝑖𝑡 ,            𝑖 = 1,2, . . . , 𝑛, 𝑡𝑖𝜖[0,1]                                            (2) 

Where; Yi = observation values of the response variable y, f = an unknown smoothing function, ti = time for 𝑖 =
 1 . . . 𝑛, 𝑒𝑡𝑖 = zero mean autocorrelated stationary process. 

Smoothing spline arises as the solution to a nonparametric regression problem having the function f(x) with two 
continuous derivatives that minimize the penalized sum of squares  

𝑆(𝑔)  =  ∑ (𝑦𝑖  −  𝑔(𝑥𝑖))
2

 +  𝜆 ∫ (𝑔′′(𝑥))
2

𝑑𝑥
𝑏

𝑎
𝑛
𝑖−1                                       (3) 

Where; 𝜆 is a smoothing constant, the first term in the equation is the residual sum of the square, and the second term 
is a roughness penalty, which is large when the integrated second derivative of the regression function 𝑓𝐼(𝑥)  is large 
when 𝑓(𝑥) is rough (i.e. with a rapidly changing slope). The parameter λ controls the trade-off between goodness-of-fit 
and the smoothness of the estimate and is often referred to as the smoothing parameter. If λ is 0 then 𝑓(𝑥) simply 

interpolates the data, if 𝜆 is very large, then 𝑓will be selected so that 𝑓𝐼𝐼(𝑥) is everywhere 0, which implies a globally 
linear least-squares fit to all data. There is a need to tackle the problem associated with estimating the best spline 
smoothing methods for time series observation in the presence of correlational error. There is a vast literature on spline 
smoothing modeling of time series data in the presence of autocorrelated error [2] using the Smoothing Spline model 
to obtain a Generalized Maximum Likelihood (GML) estimate for the smoothing parameter, then this estimate is 
compared with the Generalized Cross Validation (GCV) estimate both analytically and by Monte-Carlo method. The 
comparison was based on a predictive Mean Square Error (PMSE). It was discovered that GCV was somewhat better 
than GML for n = 64, GCV was decidedly superior for n = 128 while for n= 32, GCV was better for smaller σ2, and the 
comparison was close for larger σ2. [1] utilized the GCV criterion for choosing the degree of smoothing in spline 
regression and extended it to accommodate a time-series autocorrelated error sequence. It was demonstrated via 
simulation that the minimum GCV smoothing spline is an inconsistent estimator in the presence of autocorrelated error. 
Ignoring the moderate autocorrelation structure can seriously affect the performance of the Cross-Validation smoothing 
spline. [3] extended the GML, GCV, and UBR to estimate the smoothing parameters and the correlation parameters 
simultaneously, when the correlation matrix is assumed to depend on a parsimonious set of parameters. The GML 
method was recommended because it is stable and works well in all simulations. It performs better than other methods, 
especially when the sample size is small. [4] compared three methods, GML, GCV, and leaving-out-one-pair cross-
validation to estimate the smoothing parameters, the weighting parameter, and the correlation parameter 
simultaneously. Based on simulated data, they concluded that the GML method has smaller Mean Squared Errors for the 
nonparametric functions and parameters and needs less computational time than the other methods and that it does 
not overfit data when the sample size is small.  [5] reviewed the existing literature in kernel regression, smoothing 
splines, and wavelet regression under a correlation, both for short-range and long-range dependence. [6] studied 
smoothing splines with the degree of smoothing selected by Generalized Cross-Validation (GCV-Spline) and provides a 
method to find an optimal smoother for an fMRI time series, to determine if GCV-Spline of fMRI time series yields 
unbiased variance estimates of linear regression model parameters. The results from the real data suggest that GCV-
Spline determines appropriate amounts of smoothing. The simulations show that the variance estimates are, on average, 
unbiased. It demonstrates that GCV-Spline is an appropriate method for smoothing fMRI time series. [7] used difference-
based methods to construct estimators of error variance and autoregressive parameters in nonparametric regression 
with time series errors. They proved that the difference-based estimators can be used to produce a simplified version 
of time series cross-validation. [8] proposed to adjust the GCV criterion for the spatial correlation and showed that it 
leads to improved smoothing parameter selection results even when the covariance model is misspecified. [9] described 
the effects of moderate levels of serial correlation on one-sided and ordinary cross-validation in the context of local 
linear and kernel smoothing investigated. It is shown both theoretically and by simulation that one-sided cross-
validation is much less adversely affected by correlation than in ordinary cross-validation. The former method is a 
reliable means of window width selection in the presence of moderate levels of serial correlation, while the latter is not. 
It is also shown that ordinary cross-validation is less robust to correlation. [10] investigated the behavior of data-driven 
smoothing parameters, for penalized spline regression in the presence of correlated data. It was shown for other 
smoothing methods that mean squared error minimizers, such as Generalized Cross-Validation or the Akaike 
Information criterion, are extremely sensitive to misspecifications of the correlation structure resulting in over- or 
(under-)fitting the data. [11] performs an asymptotic analysis of penalized spline estimators and compares P-splines 
and splines with a penalty of the type used with smoothing splines. It was shown that a P-spline and a smoothing spline 
are asymptotically equivalent provided that the number of knots of the P-spline is large enough, and the two estimators 
have the same equivalent kernels for both interior points and boundary points. [12] investigated a bandwidth selector 
based on the use of a bimodal kernel for nonparametric regression with a fixed design and proved that the proposed 
selector is quite effective when the errors are severely correlated. [13] applied the smoothing spline method to fit a 
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curve to a noisy data set, where the selection of the smoothing parameter is essential. An improved Cp criterion (UBR) 
for spline smoothing based on Stein’s unbiased risk estimate has been proposed to select the smoothing parameter. The 
resulting fitted curve is superior and more stable than commonly used selection criteria and possesses the same 
asymptotic optimality as Cp. [14] applied most of the data-driven smoothing parameter selection methods and compared 
them based on large and small sample sizes. The parallel of Akaike’s information criterion (GFAIC) and Generalized Cross-
Validation (GCV) is recommended as being the best selection criteria. For large samples, the GFAIC method would seem 
to be more appropriate while for small samples they proposed the implementation of the GCV criterion.  [15] compared 
three existing methods used to estimate the degree of smoothness parameter with a proposed smoothing method for 
time series data under the assumption that the error terms are independent. It was discovered that when the sample 
size is small (n =20), UBR and GCV were equally preferred and for n = 60 and 100 at smoothing parameters (λ = 1, 2, 3 
and 4) UBR method was the best for estimating the degree of smoothness. [16] developed a new spline smoothing 
estimation method and compare it with three existing methods to eliminate the problem of overfitting associated with 
the presence of autocorrelation in the error term. The study discovered that the proposed smoothing method is the best 
for time series observations with autocorrelated error because it doesn’t overfit and works well for large sample sizes. 
[17] proposed an efficient new spline smoothing estimation method and compared it with three classical methods to 
eliminate the problem of overfitting associated with the presence of Autocorrelation in the error term. The study 
discovered that the proposed smoothing method is the best for time-series observations with Autocorrelated error 
because it doesn’t overfit and works well for large sample sizes. [18] proposed a smoothing spline technique by taking 
the hybrid of Generalized Cross Validation (GCV) and Mallow’s CP criterion (MCP). The predicting performance of the 
Hybrid GCVMCP is compared with Generalized Cross Validation (GCV) and Mallow’s CP criterion (MCP) using data 
generated through a simulation study and real-life data. The study discovered that the Hybrid GCV-MCP smoothing 
methods performed better than the classical GVV and MCP for both the simulated and real-life data.  

This study aims to compare the smoothing parameter selection ability of the proposed spline smoothing method (PSM) 
with three classical estimation methods namely; Generalized Maximum Likelihood (GML), Generalized Cross Validation 
(GCV), and Unbiased Risk (UBR) for time series observations with autocorrelation structure.  

The four spline smoothing estimation methods with autocorrelation structures were presented in section two. Section 
3 presents the Monte Carlo simulation study, the equation used for generating values in simulation, experimental design, 
and data generation, section four compares the four methods through a simulation study, and the discussion of findings 
was presented in section five while conclusions were presented in the last section. 

2. Spline Smoothing Estimation Methods with Autocorrelation Structure 

2.1. Generalized Cross-Validation (GCV) Estimate Method 

Several methods have been proposed for choosing the smoothing parameter. The most attractive class of such method 
is the Generalized Cross-Validation (GCV), given as;  

𝐺𝐶𝑉(𝜆)  =
𝑛−1‖(𝐼 − 𝑆𝜆)𝑦‖2

[𝑛−1𝑡𝑟𝑎𝑐𝑒(𝐼 −𝑆𝜆 )]2                                                            (4) 

Where; n is the observations or data set(𝑥𝑖 , 𝑦𝑖), λ = smoothing parameter, 𝑆λ = refers to the ith diagonal member of the 
smoothing matrix 

2.2. Generalized Maximum Likelihood (GML) Estimation Method 

A Bayesian model provides a general framework for the GML method and can be used to calculate the posterior 
confidence intervals of a spline estimate.  

The GML estimates of   is the maximizers of  

𝐺𝑀𝐿(𝜆)  =  
𝜆ᴵ𝑊(𝐼 − 𝑆𝜆)

[𝑑𝑒𝑡+𝑊(𝐼 − 𝑆𝜆)]
1

𝑛−𝑚

         

                                                  (5) 

𝑑𝑒𝑡+(𝐼 − 𝑆𝜆) is the product of the 𝑛 –  𝑚 nonzero eigenvalues of (I – Sλ), λ = Smoothing parameter, 𝑊 is the structure 
of the correlation, 𝑆𝜆 is the smoother matrix diagonal elements, 𝑛 =  𝑛1  +  𝑛2  are the pair of observations and 𝑚 = 
number of zero eigenvalues [2].     
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2.3. Unbiased Risk (UBR) Estimate Method 

The UBR method has been successfully used to select smoothing parameters for spline estimates with non-Gaussian 
data; it can be developed by applying the Weighted Mean Square Errors.  

𝑈𝐵𝑅(𝜆)  =  

1

𝑛
‖𝑊

𝑘
2(𝐼 − 𝑆𝜆)𝑦‖

2

[
1
𝑛𝑡𝑟𝑎𝑐𝑒(𝑊𝑘−1(𝐼 − 𝑆𝜆))]

2 k = 0, 1, 2                                          (6) 

Where; n is pairs of measurement/observations {𝑥𝑖, 𝑦𝑖},W is the correlation structure, λ is Smoothing parameters, Sλ is 
the ith diagonal element of smoother matrix [3]. 

2.4. Proposed Smoothing Method (PSM) 

The proposed smoothing method (PSM) derived as the minimizer of equation 4 and 6 given by;  

𝑃𝑆𝑀 (𝜆) = 𝑘
(𝑦 − 𝑓̂)

𝑇
𝑊(𝑦 − 𝑓̂)

[𝑡𝑟𝑎𝑐𝑒(𝐼 −𝑆𝜆 )]2  + (1 − 𝑘)

1

𝑛
‖𝑊

1
2 

(𝐼−𝑆𝜆)‖

2

[
1

𝑛
𝑡𝑟𝑎𝑐𝑒{𝑊(𝐼 −𝑆𝜆 )}]

2                  (7) 

The proposed method for estimating f is given in equation (7) subject to the condition that 0 < 𝑘 < 1  

Where; n is the number of dataset, k is the weighted value, 0 < 𝑘 < 1, W = V-1 = Correlation Matrix for the error term, y 

= (y1, . . . ,yn)T = Smoothing function, 𝑓  =  (𝑓(𝑡1). . . 𝑓(𝑡𝑛)). 𝑦𝑛)𝑇 = Sλy, Sλ= the diagonal member of the smoothing matrix, 

‖𝑊
1

2
 (𝐼 − 𝑆𝜆)𝑦‖is the norm of the Euclidean vector 𝑊

1

2(𝑦 − 𝑓), [16]-[19] 

3. Material and method 

3.1. Equation used for generating values in simulation 

A simulation study is conducted to evaluate and compare the performance of the four estimation methods presented in 
previous sections. The model considered is; 

                                               𝑦(𝑡)  = 2𝑆𝑖𝑛 (
𝜋

𝑡
) + 𝜀𝑡   t = 50, 100 and 150               (8) 

Where; ε’s are generated by a first-order autoregressive process AR (1) with mean 0, standard deviations 0.3 and 0.7 
and first-order correlations (i.e. ρ = 0.1, 0.5 and 0.9) and its 95% Bayesian confidence interval, [1] and [20]. 

3.2. Experimental design and data generation 

The experimental plan applied in this research work was designed to have three sample Sizes (n) of 50, 100 and 150, 
three autocorrelation levels, i.e. ρ = 0.1, 0.5 and 0.9, four smoothing functions were considered i.e. λ = 1, 2, 3 and 4, two 
standard deviation were considered, i.e. σ = 0.3 and 0.7. The data were generated for 1000 replications for each of the 

722433  combinations of cases n, ρ , λ, and σ. The criterion used is the PMSE values to evaluate f̂ computed 

according to each of the estimation given as;  

𝑃𝑀𝑆𝐸(𝜆) = ∑ (𝐸[𝑓(𝑥𝑖)]  −  𝑓(𝑥𝑖))
2

𝑛
𝑖 =1                                (9) 

Where;  ixf  is the value at knots
ix of the appropriate function given as 

n

i
xi

05.0
  [14]. A Simulation study was 

performed by using a program written in R, it was used to estimate all the model parameters, the criterion, the effect of 
autocorrelation on the estimated parameters and the performances of the four estimation methods i.e. Generalized 
Maximum Likelihood (GML), Generalized Crossed Validation (GCV), Unbiased Risk (UBR) and the Proposed Smoothing 
Method (PSM). 
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4. Result and discussion 

In this study, we presented a modified Spline smoothing estimation method and compared its efficiency with three 
existing estimation methods namely; the Generalized Cross-Validation, Generalized Maximum Likelihood, and Unbiased 
Risks, we computed Predictive mean square errors criterion to measure their efficiency 

4.1. Performance of the four smoothing methods based on predictive mean square error criterion when σ = 
0.3 

Table 1 presents the predictive mean square error for the four estimators, three sample sizes, four spline smoothing 
levels, and three correlation error levels at 0.3 sigma level. It was discovered that for GCV and sample size 50 the 
predictive mean square error of 4.938284 at λ = 1, decreases to 2.789043 at λ = 2 and further decreases to 2.018062 
when λ = 4. The predictive mean square error increases as the level of autocorrelation increases from 4.938284 when 
ρ = 0.1 to 5.735483 when ρ = 0.5 and to 5.70041 when ρ = 0.9 for smoothing function (λ) = 1 and sample size = 50. It 
was also discovered that the predictive mean square error decreases as the sample size increases; at n = 50, the PMSE 
decreased from 4.938284 to 1.353605 at n = 100 and further decreased from 1.353605 to 0.394855 at n = 150 and 
smoothing function (λ) = 1.  

The predictive mean square error (PMSE) of GML decreases from 3.788134 at λ = 1, to 3.624478 at λ = 3 and then 
decreased to 3.615046 at λ = 4. At sample size 50 the predictive mean square error is 3.902353, it decreased to 2.328352 
as the sample size increased to 100 and further decreased to 2.314015 as the sample size increased to 150. It is noticed 
that the PMSE of GML increases from 2.638143 to 2.804273 as the autocorrelation error level increases from 0.1 to 0.5 
but decreases from 2.804273 to 2.625861 as the autocorrelation level increases from 0.5 to 0.9. For all the other 
increases in autocorrelation error levels, the PMSE increased correspondingly, there is efficiency in GML. 

For the Proposed Smoothing Method (PSM), it was discovered that the predictive mean square error increases as the 
autocorrelation level increases and decreases as the sample size increases. At sample size 50 the predictive mean square 
error of 4.208490 at λ = 2 decreases to 4.202272 at λ = 3 and further decreases to 3.615946 when λ = 4. The predictive 
mean square error of PSM decreases as the sample size increases, for λ = 1 and autocorrelation level of 0.1. PSM 
decreased from 4.188747 at sample size = 50 to 2.853925 at sample size 100 and further decreased to 2.287803 at 
sample size 150. The predictive mean square error of PSM increases from 2.853925 to 1.822216 as the autocorrelation 
error level increases from 0.1 to 0.5 for a sample size is 150 and increases from 1.822216 and 1.812007 as the 
autocorrelation error level increases of 0.5 to 0.9 for sample size is 150.  

The predictive mean square error for UBR increases as the autocorrelation level increases and decreases as the 
smoothing levels and sample sizes increase. At sample size 50 the predictive mean square error of 3.777261 at λ = 1, 
decreases to 3.469432 at λ = 2, decreases to 3.416732 at λ = 3 but increased slightly to 3.98581 when λ = 4. The 
predictive mean square error of UBR decreases as the sample size increases, for λ = 2 and autocorrelation level of 0.5, 
UBR decreases from 3.469432 at sample size = 50 to 1.88788 at sample size 100 and further decreases to 1.431244 at 
sample size 150. The predictive mean square error of UBR increases from 3.416732 to 3.526772 as the autocorrelation 
error level increases from 0.1 to 0.5 for sample size is 50 and increases from 3.526772 and 3.611808 as the 
autocorrelation error level increases of 0.5 to 0.9 for sample size the same sample size. 

 

Table 1 The PMSE result for GML, GCV, PSM and UBR with Autocorrelation Structure ρ = 0.1, 0.5 and 0.9 for n = 50, 100 
and 150 when standard deviation (σ) = 0.3 

 PMSE 

n = 50 n = 100 n = 150 

Lamda Smoothing 

Methods 

 

ρ= 0.1 

 

ρ= 0.5 

 

ρ= 0.9 

 

ρ= 0.1 

 

ρ= 0.5 

 

ρ= 0.9 

 

ρ= 0.1 

 

ρ= 0.5 

 

ρ= 0.9 

λ = 1 GCV 

GML 

PSM(k=1) 

4.93828 

3.78813 

4.18874 

5.73548 

3.90233 

1.97744 

5.70041 

4.55785 

2.05909 

1.35360 

2.32835 

2.85392 

3.17988 

2.42954 

1.82221 

5.81730 

2.62586 

1.81200 

0.39485 

2.31401 

2.28780 

4.19007 

2.83604 

1.57344 

4.75306 

2.43808 

1.60574 
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UBR 3.77726 2.81087 1.44908 2.10140 2.31704 1.11851 1.91307 2.07978 0.84175 

λ = 2 GCV 

GML 

PSM(k=1) 

UBR 

2.78904 

2.63814 

4.20849 

3.46943 

3.75568 

2.80423 

2.01893 

2.50677 

5.36890 

1.30049 

2.10515 

1.01735 

1.12314 

2.19448 

2.82329 

1.88788 

1.37403 

2.01800 

1.87953 

1.61657 

4.40631 

1.02794 

1.77842 

1.23034 

0.34156 

2.04044 

2.28780 

1.43124 

2.96876 

1.33480 

1.57340 

0.22050 

3.18899 

0.17112 

1.20083 

1.53258 

λ = 3 GCV 

GML 

PSM(k=1) 

UBR 

3.17514 

3.62447 

4.20227 

3.41673 

3.50762 

3.80280 

2.02576 

3.52677 

4.21841 

4.26333 

2.11214 

3.61180 

2.47222 

2.09433 

1.81691 

1.85792 

1.73035 

2.95858 

0.17547 

2.52561 

1.45626 

2.99648 

1.76522 

2.56401 

0.33490 

1.99026 

1.53195 

1.36111 

0.81536 

2.22264 

0.46713 

1.86693 

1.99245 

0.80309 

0.12489 

3.32113 

λ = 4 GCV 

GML 

PSM(k=1) 

UBR 

2.01806 

3.61594 

4.11762 

3.39881 

3.42688 

2.80051 

2.02809 

3.51261 

2.16943 

1.25093 

2.11447 

4.92771 

1.094332 

2.175146 

1.814626 

1.857928 

0.173144 

1.938749 

1.701375 

1.94582 

2.74644 

5.985579 

1.760514 

3.615934 

0.332736 

1.973208 

1.500005 

1.337717 

2.76541 

1.98451 

1.43017 

1.81572 

2.928445 

5.983278 

1.098286 

3.257353 

 

Table 2 presents the predictive mean square error for the four estimators, three sample sizes, four spline smoothing 
levels, three correlation error levels, and at 0.7 sigma level. It was discovered that for GCV, at ρ = 0.5 and sample size 50 
the predictive mean square error of 2.217985 at λ = 1, decreases to 2.038837 at λ = 2, decreases to 1.975886 at λ = 3 
and further decreases to 0.873763 when λ = 4. The predictive mean square error increases as the level of 
autocorrelation increases from 2.217985 when ρ = 0.1 to 4.652218 when ρ = 0.5 and to 5.219997 when ρ = 0.9 for 
smoothing function (λ) = 1 and sample size = 50. It was also discovered that for smoothing function (λ) = 2, the predictive 
mean square error decreases as the sample size increases; at n = 50 the PMSE decreased from 2.038837 to 1.036064 at 
n = 100 and further decreased to 0.106917 at n = 150.   

The predictive mean square error (PMSE) of GML decreases as the smoothing parameter increases. For small sample 
size and at ρ = 0.9, the predictive mean square error decreased from 1.460676 at λ = 1 to 1.191663 at λ = 2 then 
decreased to 1.152826 at λ = 3 and further decreased to 1.139958 at λ = 4. The predictive mean square error of GML 
decreases as the sample size increases. At sample size 50 the predictive mean square error is 1.402249, it decreased to 
1.285324 as the sample size increased to 100 and further decreased to 0.917754 as the sample size increased to 150. It 
is noticed that the predictive mean square error of GML increases from 1.344602 to 2.150393 as the autocorrelation 
error level increases from 0.1 to 0.5, and increases from 2.150393 to 2.723054 as the autocorrelation level increases 
from 0.5 to 0.9. Thus there is efficiency in GML, but it was observed that predictive mean square error decreased as the 
autocorrelation error level increased.  

For the Proposed Smoothing Method (PSM), it was discovered that the predictive mean square error decreases as the 
autocorrelation level, smoothing parameter and sample size increases. At sample size 50 the predictive mean square 
error of 4.188747 at λ = 1 increased to 4.208498 at λ = 2 but decreases to 4.02272 when λ = 3 and further decreased to 
4.117621 when λ = 4. The predictive mean square error of PSM decreases as the sample size increases, for λ = 2 and 
autocorrelation level of 0.1. PSM decreased from 1.706005 at sample size = 50 to 1.337262 at sample size 100 and 
further decreased to 1.111343 at sample size 150. The predictive mean square error of PSM decreases from 1.9762941 
to 1.878994 as the autocorrelation error level increases from 0.1 to 0.5 for sample size 50 and further decreases from 
1.878994 to 1.62727 as the autocorrelation error level increases of 0.5 to 0.9 for sample size is 50.   

The predictive mean square error for UBR increases as the autocorrelation level decreases as the smoothing level and 
sample size increases. At sample size 50 the predictive mean square error of 3.946115 at λ = 1, decreases to 2.285086 
at λ = 2 to 2.166318 at λ = 3 and further decreases to 1.259853 when λ = 4. The predictive mean square error of UBR 
decreases as the sample size increases, for λ = 4 and autocorrelation level of 0.9, UBR decreases from 2.549091 at sample 
size = 50 to 2.412688 at sample size 100 and further decreases to 1.540203 at sample size 150. The predictive mean 
square error of UBR increases from 2.166318 to 2.202126 as the autocorrelation error level increases from 0.1 to 0.5 
for sample size is 50 and increases from 2.202126 to 2.563679 as the autocorrelation error level increases of 0.5 to 0.9 
for sample size the same sample size, but it was observed that predictive mean square error decreased as the 
autocorrelation error level increases.   
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Table 2 The PMSE result for GML, GCV, PSM and UBR with Autocorrelation Structure ρ = 0.1, 0.5 and 0.9 for n = 50, 100 
and 150 when standard deviation (σ) = 0.7 

 
PMSE 

n = 50 n = 100 n = 150 

Lamda 
Smoothing 

Methods 

 

ρ = 0.1 

 

ρ = 0.5 

 

ρ = 0.9 

 

ρ = 0.1 

 

ρ = 0.5 

 

ρ = 0.9 

 

ρ = 0.1 

 

ρ = 0.5 

 

ρ = 0.9 

λ = 1 

GCV 

GML 

PSM(k=1) 

UBR 

2.217985 

1.402249 

1.9762941 

3.946115 

4.652218 

2.213838 

1.878994 

2.170123 

5.219991 

2.854191 

1.62727 

2.854018 

1.5079261 

1.285324 

1.681525 

3.477279 

3.032906 

2.424851 

1.655205 

1.895938 

3.355379 

2.860878 

2.622758 

1.904192 

0.109678 

0.917754 

1.625184 

0.715411 

0.205153 

1.498209 

1.060796 

1.410622 

4.068174 

1.460676 

1.814121 

1.391461 

λ = 2 

GCV 

GML 

PSM(k=1) 

UBR 

2.038837 

2.353263 

1.706005 

2.285086 

1.550266 

2.159928 

1.883573 

2.043898 

2.357644 

2.742754 

1.512748 

2.606053 

1.036064 

1.61744 

1.337262 

1.686028 

3.064901 

1.745815 

1.815278 

1.615925 

3.686213 

1.801702 

1.258637 

1.94976 

0.106917 

0.916592 

1.111343 

0.715436 

0.204841 

1.484834 

1.555058 

0.391479 

2.641265 

1.191663 

0.824054 

1.213843 

λ = 3 

GCV 

GML 

PSM(k=1) 

UBR 

1.975886 

1.344602 

1.691873 

2.166318 

2.465147 

2.150393 

1.799777 

2.202126 

2.230474 

2.723054 

1.490825 

2.563679 

1.106586 

2.376657 

1.289702 

1.335866 

1.865407 

1.703152 

1.65212 

2.149228 

1.493562 

1.747526 

1.185653 

2.283664 

0.914299 

0.916174 

1.188291 

0.715459 

1.204822 

0.482901 

1.786081 

0.388746 

1.462472 

1.152826 

1.525496 

1.832608 

λ = 4 

GCV 

GML 

PSM(k=1) 

UBR 

0.873763 

1.341634 

1.686857 

1.259853 

1.437364 

2.147087 

1.794844 

2.014616 

2.188967 

2.716225 

1.483121 

2.549091 

0.106479 

1.296255 

1.27395701.
221922 

2.800442 

2.050446 

1.659382 

1.578077 

1.430831 

1.895078 

1.159813 

2.412688 

0.956241 

0.916018 

1.104291 

0.715468 

0.204817 

0.482256 

1.454671 

0.387835 

1.404276 

1.139858 

1.259721 

1.540203 
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Figure 1 Right: Spline smoothing curve of the PMSE of the smoothing splines curve, with λ selected by UBR (yellow), 
PSM (blue), GCV (green), and GML (brown), by using different time series sample sizes of (50, 100 and 150). Left: Box 
plot of GCV, GML, PSM, and UBR for one of the simulated sample curves ρ = 0.9 and σ=0.3 
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Figure 2 Right: Spline smoothing curve of the PMSE of the smoothing splines curve, with λ selected by UBR (yellow), 
PSM (blue), GCV (green), and GML (brown), by using different time series sample sizes of (50, 100 and 150). Left: Box 
plot of GCV, GML, PSM, and UBR for one of the simulated sample curves ρ = 0.9 andσ=0.7 

Figure 1 and 2 presents the predictive mean square error estimates of GCV, GML, PSM, and in 1000 replications. From 
these plots, we can see that the PSM and UBR estimates have small PSMEs compared with GCV and GML, an indication 
that the four smoothing methods select the smoothing parameters very well but the PSM and UBR provide better 
estimates than GCV and GML through a simulation study. The PSM method is more stable when the sample size is small, 
such as when n = 50 while the UBR method performs slightly better when n = 100. In this case, there were several 
replications where GCV and GML provided more estimates of smoothing parameters which lead to the under-smoothing 
of the data. This behavior of the GCV method was investigated in [3] and [21] 

Table 3 Summary of the predictive mean square error and ranks of the smoothing methods in the presence of 
autocorrelation error 

Autocorrelation 

Levels 

Smoothing method 

GCV GML PSM (k=1) UBR 

α = 0.1  1.08 1.39 1.47 1.63 

α = 0.5  1.89 1.71 1.66 1.48 

α = 0.9  2.63 1.99 1.27 2.09 

Grand mean 1.87 1.70 1.47 1.73 

Rank 4 2 1 3 

 

Table 4 Summary of the predictive mean square error and ranks of the smoothing methods based on sample size 

Sample 

Size 

Smoothing method 

GCV GML PSM (k=1) UBR 

n = 50  2.434 2.179 1.711 2.326 

n = 100  2.041 1.900 1.549 1.921 

n = 150  1.124 1.047 1.145 0.951 

Grand mean 1.867 1.709 1.468 1.732 

Ranks 4 2 1 3 
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5. Conclusion 

In this study, we presented Spline smoothing estimation method for time series observations in the presence of 
autocorrelated errors and based on sample size. The result presented in tables 3 and 4 showed that all the smoothing 
methods compared and compete favorably in the presence of autocorrelation error and an increase in sample size. The 
simulation result under the finite sampling properties of the PMSE criterion shows that all estimators are consistent 
and adversely affected by autocorrelated error the estimators’ ranks are as follows, PSM, GML, UBR, and GCV. The result 
suggested that PSM should be preferred when the autocorrelation level is mild and high (ρ = 0.5 – 0.9). This finding is 
corroborated by those of [1], [19], [22], and [23]. 

If there is low autocorrelation in the observations, (i.e. ρ = 0.1) the unbiased Risk (UBR) should be considered. It was 
observed that GCV and GML were mostly affected by the presence of autocorrelation and therefore had an 
asymptotically similar behavioral pattern. It was also discovered that the estimators conformed to the asymptotic 
properties of the smoothing methods considered; this is noticed in all the sample sizes and all the smoothing 
parameters.  

The most consistent and efficient among the four spline smoothing methods considered in this study based on sample 
size and performance in the presence of autocorrelation error is the proposed smoothing method (PSM) because it does 
not under smooth relative to the other smoothing method, especially for small sample size i.e. n = 50 and 100. (See 
Figures 1 and 2). This discovery is in agreement with the Monte-Carlo experiments’ results from [2], [18], [19], [24], 
[25], [26], and [27]. It is also noticed that the predictive mean square error of the proposed smoothing method (PSM) 
goes to zero at a faster rate in the presence of autocorrelation error than the PMSE of the other smoothing methods 
considered in this study (see Tables 3 and 4). The next in terms of performance, consistency, and efficiency in the 
presence of autocorrelation is Generalized Maximum Likelihood (GML), Unbiased Risk (UBR) and the least in is 
Generalized Cross-Validation (GCV). 

Compliance with ethical standards 

Acknowledgments 

The authors appreciate the effort of everyone that contributed to this study, the anonymous reviewers and editors for 
their constructive input in this manuscript. 

Disclosure of conflict of interest 

The author declared that there was no conflict of interest during the cause of this study and producing and submitting 
this manuscript for publication.  

References 

[1] Diggle, P.J. and Hutchinson, M.F. (1989). On spline smoothing with autocorrelated errors. Australian Journal of 
Statistics, 31: 166 –182. 

[2] Wahba, G. (1985). A Comparison of GCV and GML for Choosing the Smoothing Parameters in the Generalized 
Spline Smoothing Problem. The Annals of Statistics, 4:1378 – 1402. 

[3] Yuedong, W. (1998), Smoothing Spline Models with Correlated Random Errors. Journal of American Statistical 
Association, (93) 441: 341 – 348. 

[4] Yuedong, W., Wensheng G. and Brown M.B. (2000). Spline Smoothing for Bivariate data with application to 
association between hormones, Statistica Sinica, 10: 377 – 397. 

[5]  Opsomer J., Yuedong W. and Yang Y. (2001). Nonparametric Regression with correlated Error Statistical 
Sciences, 6: (2) 134 – 153. 

[6] Carew, J. D.,Wahba, G., Xie X, Nordheim, E.V. and Meyerand M. E. (2003), Optimal Spline Smoothing of FMRI Time 
Series by Generalized Cross-Validation, NeuroImage, 18(4): 950 – 961. 

[7] Hall, P. and Keilegom, I. (2003). Using Difference-Based Methods for Inference in Nonparametric Regression with 
Time Series Errors. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65 (2): 443 – 456. 



World Journal of Advanced Research and Reviews, 2023, 17(02), 068–078 

 

78 

[8] Francisco-Fernandez, M. and Opsomer, J.D. (2005). Smoothing parameter selection methods for nonparametric 
regression with spatially correlated errors. Canadian Journal of Statistics, 33(2): 279–295. 

[9] Hart, J. D. and Lee, C. (2005). Robustness of one-sided cross-validation to autocorrelation. Journal of Multivariate 
Analysis, 92:77 – 96. 

[10] Krivobokova T. and Kauermann G. (2007). A note on Penalized Spline Smoothing with Correlated Errors. Journal 
of the American Statistical Association, 102: 1328 – 1337. 

[11] Wang Xiao, Shen Jinglai, Ruppert David (2011). On the Asymptotics of Penalized Spline Smoothing, Electronic 
Journal of Statistics, 5, 1-17 https://doi.org/10.101214/10-EJS593   

[12] Kim, T., Park, B., Moon, M. and Kim C. (2009). Using bimodal kernel for inference in Nonparametric regression 
with correlated errors. Journal of Multivariate Analysis. 100 (7), 1487 – 1497. 

[13] Chen, C.S. and Huang H.C. (2011). An improved Cp criterion for spline smoothing. Journal of Statistical Planning 
and Inference, 144(1): 445 – 471. 

[14] Aydin, D., M. Memmedli, and R. E. Omay. (2013). Smoothing parameter selection for nonparametric regression 
using smoothing spline. European Journal of Pure and Applied Mathematics 6:222–38. 

[15] Adams, S.O., Ipinyomi, R.A. (2019). A Proposed Spline Smoothing Estimation Method for Time Series 
Observations. International Journal of Mathematics and Statistics Invention (IJMSI), 07(02), 18-25. 

[16] Adams, S.O., Ipinyomi, R.A. (2019). A New Smoothing Method for Time Series Data in the Presence of 
Autocorrelated Error. Asian Journal of Probability and Statistics (AJPAS), 04(04), 1-19. 
https://doi.org/10.9734/ajpas/2019/v4i430121  

[17] Adams, S.O., Ipinyomi, R.A. (2020). On the Efficiency of the Weighted Generalized Cross Validation and Unbiased 
Risk Smoothing Method for Time Series Observations with Autocorrelated Error. International Journal of 
Academic and Applied Research, 04(07), 70-81.  

[18] Adams, S.O., Yahaya, H.U. (2020). Comparative Study of GCV-MCP Hybrid Smoothing Methods for Predicting Time 
Series Observations. American Journal of Theoretical and Applied Statistics, 9(5), 219-227. 
https://doi:10.11648/j.ajtas.20200905.15   

[19] Adams, S.O. (2021). An Improved Spline Smoothing Method for Estimation in the Presence of Autocorrelation 
Errors. University of Ilorin. 

[20] Wahba, G. (1983), Bayesian Confidence intervals for the cross-validated smoothing Spline, Journal of Royal 
Statistical Society Service. B. 45:133 – 150. 

[21] Wahba, G., Wang, Y., Gu, C., Klein, R., and KIein, B. (1995). Smoothing Spline ANOVA for Exponential Families, 
With Application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. The Annals of Statistics, 
23:1865 – 1895. 

[22] Adams, S.O., Balogun, P.O. (2020). Panel Data Analysis on Corporate Effective Tax Rates of Some Listed Large 
Firms in Nigeria. Dutch Journal of Finance and Management, 4(2), 1-9, 2542–4750. 
https://doi.org/10.21601/djfm/9345   

[23] Adams, S.O., Gayawan, E., Garba, M.K. (2009). Empirical Comparison of the Kruskal - Wallis Statistics and its 
Parametric Counterpart. Journal of modern Mathematics and Statistics, 3(2), 38 – 42. Medwell Journal. 
https://doi:jmmstat.2009.38.42   

[24] Barry, D. (1983). Nonparametric Bayesian regression, Ph.D. thesis, Yale University, New Haven, Connecticut. 

[25] Adams, S.O., Obaromi, A.D, Alumbugu, A.I. (2021). Goodness of Fit test of an Autocorrelated Time Series Cubic 
Smoothing Spline Model. Journal of the Nigerian Society of Physical Sciences. 3(3), 191-200. 
https://doi.org/10.46481/jnsps.2021.265  

[26] Adams, S.O., Ipinyomi R.A. and Yahaya H.U. (2017). Smoothing Spline of ARMA Observations in the Presence Of 
Autocorrelation Error. European Journal of Statistics and Probability, 5(1): 1 – 8. 

[27] Adams, S.O., Yahaya, H.U., Nasiru, M.O. (2017). Smoothing Parameter Estimation of the Generalized Cross 
Validation and Generalized Maximum Likelihood. IOSR Journal of Mathematics, 13(1), 41 – 44. 
https://doi:10.9790/5728-1301054144   

https://doi.org/10.101214/10-EJS593
https://doi.org/10.9734/ajpas/2019/v4i430121
https://doi:10.11648/j.ajtas.20200905.15
https://doi.org/10.21601/djfm/9345
https://doi:jmmstat.2009.38.42
https://doi.org/10.46481/jnsps.2021.265
https://doi:10.9790/5728-1301054144

