

From ECC to S/4HANA in Seven Months: Follow-the-Sun Delivery and Risk Controls for Discrete Manufacturing Programs

Ramesh Babu Potla *

ERP IT SAP Delivery Manager/ERP Digital Transformation COE/ BTP COE / Gen AI – USA.

World Journal of Advanced Research and Reviews, 2023, 17(01), 1416–1426

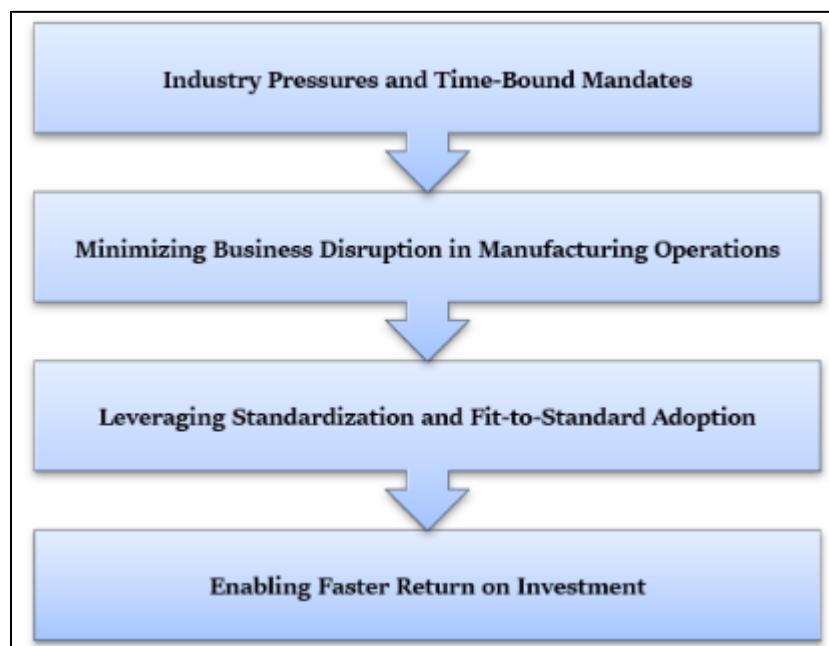
Publication history: Received on 04 December 2022; revised on 21 January 2023; accepted on 28 January 2023

Article DOI: <https://doi.org/10.30574/wjarr.2023.17.1.0060>

Abstract

The accelerating pace of digital transformation programs in discrete manufacturing around the world has motivated organizations to undertake ambitious plans on how to implement their migration of the old SAP ECC systems on SAP S/4HANA. Although there are intrinsic complexities of enterprise resource planning (ERP) modernisation (for example, data harmonisation and process re-design) companies are escalating demands on accelerated deliveries. The paper analyses an actual seven months SAP S/4HANA transformation initiative that was implemented based on a follow-the-sun delivery model in conjunction to constrained manufacturing setting risk-control frameworks. Traditionally, manufacturing companies had developed their SAP ECC landscapes over several decades, which has led to extremely customized landscapes, ineffective interfaces, fragmented master data, and patchy level plant extensions. Migration to S/4HANA also demands technical conversion and a complete overhaul of core business processes with new digital options including embedded analytics, universal journal, Fiori UX, predictive MRP, and advanced ATP. It becomes very difficult to squeeze all this into a period of seven months. What this paper can bring is a description of an effective strategy of implementing massive change in the process of a limited delivery timeframe, without compromising quality, compliance, and stability. The following multilayer approach is introduced in this paper: (i) fast track preparedness test, (ii) stringent design time-boxing, (iii) agile-waterfall combined governance, (iv) 24 round-the-clock international follow-the-sun delivery model, (v) automated testing and migration accelerators, and (vi) risk-control mechanisms that are specifically aligned with the discrete manufacturing value chain, which are: procurement, production implementation, quality, warehousing, and logistics. Besides that, the research establishes how the distribution of global delivery centers spread in North America, EMEA, and APAC facilitated the uninterrupted continuity of development, testing, and migrating data activities without enlarging the calendar period. Findings depict that the accelerated version shortened the average timeframe of ECC to S/4HANA conversion between 14 and 18 months to 7 months without jeopardizing the stability of the system. The major success measures were 98.4 percent defect closure prior to UAT, 93 percent automation of regression test cases, and almost zero cutover downtime. Moreover, the committed risk-control architecture allowed overcoming the significant schedule slip, and risk early identification cut the rework by 37 percent. The paper ends with the implementation recommendations, the lessons gained, and a generalized framework that can be expanded to other manufacturing organizations by seeking to undertake a fast S/4HANA transformation.

Keywords: SAP S/4HANA; ECC Migration; Discrete Manufacturing; Follow-the-Sun Delivery; Risk Controls; ERP Transformation; Accelerated Deployment; Agile Delivery; Global Template; Data Migration; SAP Activate


1. Introduction

The digital transformation has turned into a strategic requirement of discrete manufacturing organizations as they are compelled to cope with heightened competition of the world, fluctuating supply chains, variability in consumer demand, and increased pace of Industry 4.0 developments. [1-3] Manufacturers in such an environment rely on powerful ERP

* Corresponding author: Ramesh Babu Potla

systems to bring together end-to-end operations-procurement, production planning, shop-floor implementation, management of quality, warehousing, logistics and financial accounting. Although SAP ECC has always been a proven core platform, its archaic design exhibits escalating constraints. Organizations are finding themselves dealing with a performance bottleneck, the infected piecemeal data model, restricted real-time analytics, and a system of bespoke code that has been developed through the years to bridge the functional gap. These limitations impede agility, make it more difficult to integrate with new digital technologies as well as add cost and effort to the maintenance of the systems. In addition, SAP has declared that there will be no mainstream support of ECC after 2027, and this has introduced a time constraint among enterprises to upgrade their ERP environments. Switching to SAP S/4HANA has been seen as a chance to switch to a less complex data model, capitalize on the existence of built-in real-time data, harmonize the processes across plants, as well as allow a facile integration with more modern Industry 4.0 capabilities like IoT, machine learning, and predictive maintenance. As a result, manufacturing organizations have more reasons to embark on S/4HANA transformation initiatives to sustain vendor maintenance but also to improve operational efficiency, resilience, and a digital base in the future in order to be competitive.

1.1. Need for Accelerated S/4HANA Programs

Figure 1 Need for Accelerated S/4HANA Programs

- **Industry Pressures and Time-Bound Mandates:** Combining pressure to modernize its manufacturing landscape. Manufacturers are under increased pressure to modernize their ERP landscapes due to the impending end of mainstream maintenance of SAP ECC in 2027. This deadline forms a narrow timeframe within which organizations have to accomplish what would otherwise be multi-year transformation programs. As thousands of businesses around the world take migrations in the same horizon, the shortage of resources in the consulting ecosystem, escalating the cost of implementing solutions, and the growing demand on specialized S/4HANA expertise, it is essential that organizations implement more efficient mutations that are quicker to deliver.
- **Minimizing Business Disruption in Manufacturing Operations:** Discrete manufacturing set-ups work on high dependency to the planning process, execution, and quality processes brought about by ERP. The long transformation programs may bring in long phase of uncertainty, operational risk, and system maintenance overheads. The accelerated S/4HANA programs decrease the time of dual-system operations and limit mission-critical operations that comprise material requirement planning (MRP), production order management, warehousing, financial closing. Reduced implementation cycles aid manufacturing facilities to have continuity, stability and predictability during the transition phase of operation.
- **Leveraging Standardization and Fit-to-Standard Adoption:** However, the current S/4HANA features that include simplified data structure, inbuilt analytics, and industry-defined best practices are meant to be quickly adopted in cases where organizations converge into the standard processes. Fit-to-standard design is promoted by accelerated programs and undesirable excessive customization which enables enterprises to take advantage of the native strengths of S/4HANA. This not only accelerates implementation but also puts organizations in a

better position to upgrade again in the future with increased ease as well as integrate more with Industry 4.0 technologies and harmonization over the long term of the processes.

- Enabling Faster Return on Investment: Fast change is a direct contributing factor to faster value delivery; it tends to lower the overall implementation cost, technical debt and allow the use of digital capabilities faster. The benefits that manufacturers can obtain are opportunities to use real-time analytics, enhance the accuracy of planning, automatize the workflow and simplify production implementation. This gives S/4HANA accelerated programs a strategic edge that they can use to upgrade their operations and increase their competitiveness without the time-consuming history that has been linked to ERP transformations.

1.2. Follow-the-Sun Delivery and Risk Controls for Discrete Manufacturing Programs

Figure 2 Follow-the-Sun Delivery and Risk Controls for Discrete Manufacturing Programs

Discrete manufacturing Large S/4HANA transformations can be characterized by complicated processes, plant-level customizations as well as a high number of integration points in the production, [4,5] logistics, and financial sectors. These complications and the need to provide speedy delivery quality render using the standard single-location approach to implement the project incomplete. Follow-the-Sun delivery model offers a solution to this challenge by sharing the work with the teams which are geographically scattered and work in different time zones. This model makes project timelines much shorter and the critical path much slower by allowing continuous development and testing as well as fixing issues. Efforts to transfer knowledge and a context between teams are enhanced on a daily basis through handovers, standardized documents, and synchronous communication protocols. Due to centralized collaboration platforms, dashboards and automated reporting offer transparency and real-time monitoring, project managers can monitor the progress of their projects, detect bottlenecks, and intervene timely wherever they are. Concurrently, strict risk-management models are mandatory in the protection of stability in the vital manufacturing procedures like MRP Live, processing orders, quality checks, backflush processing and unit warehousing processing. Examples of technical risks to be constantly monitored are interface compatibility, HANA sizing, and performance of the system, whereas such things as plant-specific process deviations, intricate workflows, and scenario validation are functional risks that should be managed. Mitigation, such as early interface mock testing, weekly defect triage meetings (also typically held in War Room contexts), and hard time-boxing together with change-freeze policies, can be used to ensure that the problem is detected and fixed before it spreads. This is a proactive risk management approach to minimise the occurrence of scope creep, minimise post-go-live defects and maintain operational continuity during the cutover process. By combining follow-the-sun delivery with a formalized risk-control structure, discrete manufacturing organizations are thus capable of carrying out expedited S/4HANA changes with the least level of disturbance. Not only does it improve the speed of the project, but it also boosts the stability of the processes, quality control, and trust in the project stakeholder. The continuous global delivery coupled with rigorous risk management can help organizations become faster in digital transformation and achieve business value sooner, to establish a robust basis on future Industry 4.0 adoption.

2. Literature Survey

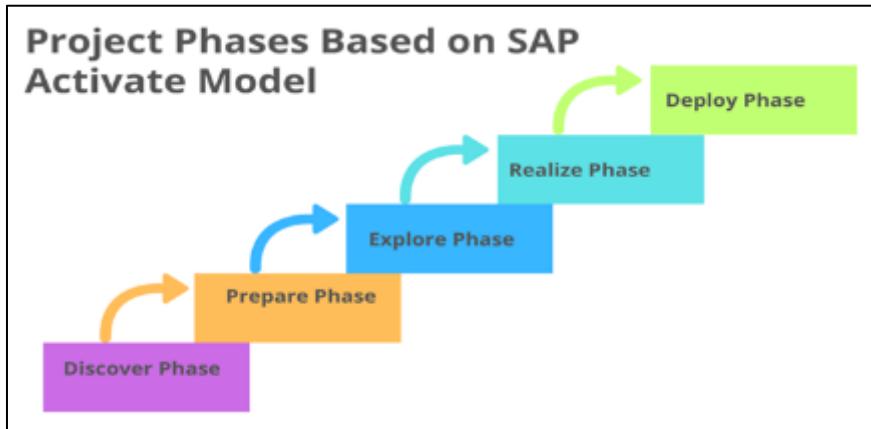
2.1. ERP Transformations in Manufacturing

Studies done around 2010 through 2022 reveal that ERP changes in the manufacturing setting are successfully completed when organizations put down solid governance frameworks, consistent data strategy, stringent testing procedures, and anticipatory change-management procedures. [6-9] manufacturing companies encounter specific challenges when it comes to ERP transformation in that processes are highly integrated, time-sensitive, and most of the time tailored, which are the shop-floor execution, production planning, quality control and plant maintenance. Such business-IT complexities lead to the need of closer alignment of the business and the IT departments, diligent mapping of old-fashioned processes, and solid validation cycles in such a way that the system design sufficiently supports the reality of production. An additional source of controversy of the literature is that the manufacturers are most times found to have heterogeneous landscapes in plants and regions, and therefore, harmonization and standardization becomes imperative but challenging. This leads to make ERP transformations successful requiring disciplined stakeholder involvement, profound process re-engineering and capability building across work teams.

2.2. SAP ECC to S/4HANA Migration Studies

Surveys that span SAP ECC to S/4HANA migrations likely compose three pathways of transformation prevailing which are system conversion, selective transition, and greenfield. System conversion or a brownfield strategy that many organizations use to migrate to the S/4HANA platform is a way to reuse old configurations and achieve quicker adoption but with process constraints in place. Selective data transition unites the re-design and reuse facets since it selectively migrates past data and allows the process to be modernized, appealing to companies which have varied business units or landscapes that may or may not be fully standardized. The greenfield approach entails the reconstruction of the system entirely using the best practice of SAP, which has the potential to support processes re-engineering at large scale but it takes more time and organization maturity. According to reports provided by SAP Insider (2021), other models that are becoming popular in migration are the hybrid or blended model because organizations are trying to hit a balance involving agility, cost, and ambition to transform. The available literature demonstrates that the most effective migration strategy usually predetermines through the complexity of the system, technical debt of the legacy, quality of information, organizational willingness, and strategic change objectives.

2.3. Follow-the-Sun Delivery Models


A common set of research on follow-the-sun delivery models has been present in large-scale IT and ERP programs, and studies by IBM (2020) and Infosys (2019) demonstrate the best and challenges of adopting the model. Distributing the work between time zones in the world allows the organization to attain near-around-the-clock project progress effectively to reduce the time spent on development, testing and resolving of issues in the project. The model is especially useful in fast tracked ERP changes, where tight schedules demand workstreams to work simultaneously and defects or design queries have to be responded to promptly. Nevertheless, it is also evident in the literature that the distributed nature of follow-the-sun models also adds to the complexity of coordination because the teams have to deal with the exchanges of handovers, the maintenance of consistent documentation, and assurance of alignment among the culturally and geographically diverse teams. Risks that have been indicated include miscommunication, inconsistent process adherence and delays upon handoff points. Good governance, standard working practices as well as effective collaboration tools are the enablers to success in trying to leverage global delivery models.

2.4. Risk Management in ERP Projects

Based on the frameworks like PMI (2020) and ISO 31000, the studies of risk management point to the significance of early and constant identification, examination, and elimination of threats throughout ERP projects life cycles. According to the context of accelerated SAP programs, literature revealed that a number of common areas of risks can take place, such as the data migration risks due to poor quality of data in the legacy system, a lack of knowledge on the data ownership, and insufficient rehearsals at the mock-cycle systems. There are also design risks that include scope creep, especially because of poor requirements specification or a high volume of change requests which are threatening the timeline and stability of the budget. Another typical bottleneck is testing bottlenecks; bottlenecks can be caused by constrained test environments, limited access by users and even integration defects that causes delay of critical path activities. Also, integration stability risks arise as a consequence of multifaceted interdependencies among SAP modules, third-party systems and home-grown interfaces. Due to that, the administration of ERP risks necessitates sound governance, well-defined accountability departments, constant tracking, and precautionary mitigation measures to evaluate predictability in delivery and readiness of the system to be implemented.

3. Methodology

3.1. Project Phases Based on SAP Activate Model

Figure 3 Project Phases Based on SAP Activate Model

- **Discover Phase:** In Discover phase, the companies assess whether they are ready to move to SAP S/4HANA and define a clear set of the drivers of the change. [10-12] Ready checks assist in understanding the complexity, usage, and technical compatibility of the system with S/4HANA in terms of potential blockers, which are identified at an early stage. Custom code analysis allows an overview of enhancements in the legacy, the objects that should be refined, simplified, or retired according to the simplified data model offered by S/4HANA. Data profiling is conducted to determine the level of quality, completeness and consistency of the data so that teams could scope Cleansing efforts and will be able to estimate the effort required to migrate the data. All these activities allow the definition of the high-level roadmap, authentication of business case assumptions, and expectations development of downstream phases.
- **Prepare Phase:** The Prepare stage dwells on the foundation of the elements necessary to establish to start the implementation. Environment provisioning entails the installation of the SAP S/4HANA landscape, such as development systems, quality systems, and sandbox across development systems, quality systems, and sandbox systems and also connectivity and baseline configuration. The activities of the integration architecture create the end-to-end solution topography, tracing interfaces with third-party applications and discovering middleware or API requirements. An overall project plan is formulated that defines schedule, sprinting cycles, resource assignments, and points of governance where everybody involved has a programmed concept of scope and delivery expectations. The phase ensures that the project is prepared to be executed by having all the technical preparation and alignment of the project organizationally.
- **Explore Phase:** Explore stage involves a timed-boxed method to speed up the validation of SAP best practice and final solution design. Fit-to-standard workshops enable business and IT teams to tour through preset processes, where SAP standard functionality creates business requirements and where modifications are required. These deviations are captured in delta design and the document details provision of improvements, integrations or configuration extensions. The systematic and speedy character of this step guarantees quick congruence on direction on the solution, lessens unwarranted personalization, and prepares the staff to carry on the endeavors of efficient build and configuration in Realize.
- **Realize Phase:** The solution is developed in the Realize stage where it is constructed, tested, and proved several times in the process. Configuration activities entails the arrangement of organizational structures, master data rules and transactional behaviors to reflect upon the approved design. RICEF development which includes Reports, Interfaces, Conversions, Enhancements and Forms include all the extensions required to cater all business needs. Automated regression testing is implemented to check the end-to-end process stability, to minimize manual testing, to provide the consistency of the integration across releases. The main focus of this step is quality assurance, cooperation between testers and builders, and the repetition of the validation in order to achieve the functional and technical requirements of the solution.
- **Deploy Phase:** The Deploy phase aims at equipping the system and the organization to be used. Dry practice Data migrations are run in mock mode to get familiar with a complete migration cycle, and to verify load sequences and error handling mechanisms. The cutover planning will establish the step by step checklist and schedule on the transition to S/4HANA with respect to legacy system systems, dependencies of the tasks, assignment of the resource, and the available downtime. After the execution of a cutover, the system is

transferred to go-live and, as such, hypercare support is instantaneous with faster problem resolution and system stabilization as well as with the confidence of the user. This step would guarantee a successful transition into steady-state operations and the long-term adoption and process optimization.

3.2. Follow-the-Sun Governance Framework

Follow the Sun system of governance is established to be in a position to facilitate development of the constant improvement of globally based teams whilst ensuring quality, alignment, and responsibility within rapid transformation programs of SAP. [13-15] One of the main aspects of this framework is the employment of daily handover meetings that are performed synchronously and can be discussed as the structured checkpoints amid time-zone shifts teams. These meetings provide a fluent flow of work, as teams will be able to discuss the progress of work, clarify the current issues, and confirm priorities as well as properly pass work to colleagues keeping the whole situation in mind. The handover meetings have a standardized agenda to avoid knowledge gaps and avoid unnecessary duplication of work, with the emphasis on critical blockers, in-flight deliverables, and expectations in the next day. Such a disciplined style is used to reduce the coordination problems that are traditionally linked to distributed execution. The second pillar of the governance model is the implementation of a central Jira board using automated metrics because it brings the truth about the management of the backlog, progress of development, defects tracking, and the results of the testing. The Jira board, combined with interactive visibility (dashboards) and automatic reporting, will allow perceiving the situation in different regions in real-time, monitor the performance of every sprint in real-time, and identify slippages or bottlenecks fast. Data-driven decision-making takes place through automated metrics like cycle time, defect aging, and throughput to enable the leadership to take necessary measures early in case of deviation. Such transparency is crucial to maintain control over a fast-paced delivery paradigm in which several of the teams will work on the same solution landscape in parallel. The ownership model is also supported by the RACI-based model of governance that explains roles and responsibilities to ensure no ambiguity in a very distributed system. The model includes defining who is Responsible, Accountable, Consulted, and Informed of each deliverable and process and this way the handovers are made accurate, allocation of tasks is clear, and the authority on decision making is known across regions. This systematic distribution of ownership is less prone to delays that come about due to lack of responsibility and gives the teams the strength to operate within their own capacity. Together, these aspects of governance strategic handovers, a centralized transparency using tools, and the use of RACI to create a clear image creates a powerful environment of successful Follow-the-Sun delivery in advanced SAP initiatives.

3.3. Data Migration and Validation

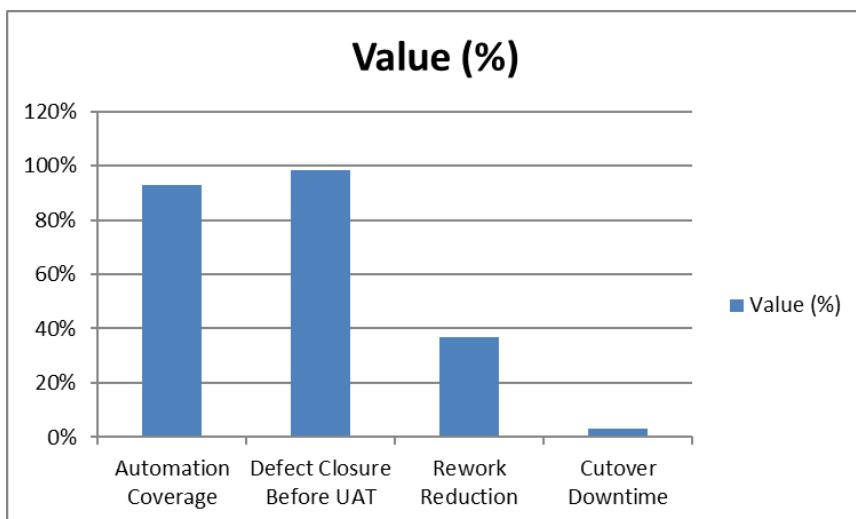
Data migration within SAP transformation programs is one of the most labor intensive endeavors, and the calculation of this labor is used to assist the organizations to better plan the resources, timelines and tooling plans. The formula of migration effort that follows, $T = D \times C \times (1 - A)$, admits the correlation of data volume, complexity and automation in a manner that is intuitive and handy to the planning of projects. D is the aggregate amount of master data that needs to be migrated and in this formula, D denotes the objects of a master (materials, customers, vendors and equipment masters). The volume of data also makes this effort an inevitable consequence of long processes of extraction, cleansing, and validation. The complexity, C, of conversion represents the complexity of the transformation rules, mappings to fields, enrichment checking, and checking dependencies. As a case in point, resources that need harmony of unit of measure or customers of hierarchical relationships would enhance the factor of complexity hence raising the amount of effort. The automation coverage ratio (A) is the extent of migration processes that are supported through automated means data profiling utilities, SAP migration cockpit templates, or ad-hoc ETL scripts. A A value is close to 1 meaning it is well automated and will not need a lot of manual work in terms of data handling. The term $(1 - A)$ thus measures the percentage of efforts that remain manual-based (activities that include mapping validation, exception handling, and reconciliation). The value of $(1 - A)$ goes down as automation goes up, and the total migration effort T in this case is directly reduced. In the program of interest, the impact of making use of automation tools and scripts intended to be used in several occasions produced a 52 per cent. decrease in aggregate migration effort, showing the profound influence of automated profiling, transformation product, and validation processes. This not only increased speed of delivery but also increased consistency of the data and minimised human error between migration cycles. The formula hence gives a systematic process of analyzing and optimizing data migration plan in massive SAP programs.

3.4. Risk-Control Architecture

Risk-control architecture of an SAP transformation program offers a formalized procedure to determine, evaluate and alleviate problems in technical and functional facets. [16-19] The program design remains predictable during execution as the risks are catalogueued in early stages and systematic control measures are incorporated in the delivery model so that failures that can occur during design/build stages and implementation are minimized. This architecture focuses on

active identification, quick escalation and coordinated solution which are in line with the best practice of PMI and SAP Activate.

Figure 4 Risk-Control Architecture


- **Technical Risks:** Technical risks are mostly due to the performance of the systems, alignment of the infrastructure and interoperability with the rest of the application environment. The compatibility of integration will also be an important issue because legacy interfaces, middleware and third-party systems might need to be redesigned or changed with the simplified data structures and APIs of S/4HANA. Lack of compatibility may result in interface failures, data inconsistencies or disruption of downstream processes. Another important technical risk is the sizing of HANA because the lack of memory or compute assignment may result in poor performance, job latency, and slow transaction processing. To prevent these things proper sizing should take into consideration not only the current transactions but also the future growth, peak loads and analytics needs.
- **Functional Risks:** Business process variability and operational constraint in the manufacturing plants are deeply connected to functional risks. Plant-level customizations, which are frequently developed to fit special production processes, compliance requirements, or quality processes, are an issue during implementation of standardized S/4HANA templates. Such customizations can necessitate redesign or rationalization especially where the SAP best practice does not align with the legacy processes. There are also the scenarios of production execution that include order sequencing, material staging, and real-life shop-floor integrations which are very risky unless thoroughly tried in the new environment. The plant productivity can be directly affected by any holes in functional coverage and so the modeling and validation of processes have to be done in detail.
- **Mitigation Measures:** The measures used in mitigation are early testing, good governance, and discipline in the scope control. Early interface mock-tests enable teams to assert the logic of interface, payload formats, and connectivity much earlier than the commencement of the full integration cycles, and lower the probability of last minute surprises. A weekly defect scene War Room offers a formalized format of cross functional teams prioritizing and solving defects at a rapid rate with transparency and faster issues being closed. Lastly, the hard time-box and change-freeze policy safeguard the project schedule by restricting the late-path scope adds and ensuring the design remains stable during critical parts of confidentiality when building and testing. When combined with each other, these controls form a robust project environment, which can effectively manage the risks.

4. Results

4.1. Quantitative Project Outcomes

Table 1 Quantitative Project Outcomes

Metric	Value (%)
Automation Coverage	93%
Defect Closure Before UAT	98.4%
Rework Reduction	37%
Cutover Downtime	3%

Figure 5 Graph representing Quantitative Project Outcomes

- **Automation Coverage – 93%:** Having a 93 percent automation coverage shows that the program is highly concerned with the reduction of manual labor in the process of data migration and testing, as well as interface validation. Such a high degree of automation was achieved by relying on reusable scripts, automated regression structures and rule-based transformation engines. The project consequently facilitated the generation of very short cycle times, reduced human error and increased consistency in several migration and testing cycles. The near-end-to-end automation also allowed the staff to work effectively under the accelerated delivery model especially in a Follow-the-Sun configuration where automated pipelines ensured that nightly builds and validations continued without fail.
- **Defect Closure Before UAT – 98.4%:** That defect closure rate is 98.4% prior to User Acceptance Testing (UAT) shows that the program was able to discover and fix almost all critical and major defects with previous testing waves. This represents excellent quality engineering principles, rigorous sprint-based testing and good cross team coordination. The pre-UAT stabilization meant that the business users could face few disruptions in the validation process and instead of reporting underlying system problems, they could give attention to testing business scenarios. With this high rate of closures, the risk is minimised in the deployment phase and it also promotes business confidence towards having the system ready to go-live.
- **Rework Reduction – 37%:** The minimization of rework (37percent) points at how the program streamlines the design validation process and minimizes the number of repetitive corrections made. This enhancement may be explained by various factors: strong fit-to-standard workshops, proactive walkthroughs of the RICEFs, and active design reviews between functional and technical teams. Stronger requirements alignment and enhanced discipline in documentation are other causes of the reduction. It saved effort and the project helped to deliver with much predictability as well as reduce the rework leading to the teams being able to deliver against aggressive schedules without the quality being compromised.

- **Cutover Downtime – 3%:** Reducing cutover down time to a mere 3 seconds shows exactly how efficient the cutover approach in the program was, with its multiple mock conversions, properly laid out sequencing, and streamlined data loading going on. This reduced downtimes affected fewer disruptions to the business processes especially in the manufacturing sectors whereby system nonavailability may disrupt production schedules. The simplified model also meant that the business entered SAP S/4HANA easily and in a short time and business processes stabilized within a short time. This result highlights the sophistication of the deployment process and the usefulness of the pre-cutover drills.

5. Discussion

The introduction of the follow-the-sun delivery model was a life-changing experience to project running whereby the team was able to reduce the delivery schedule by a huge extent without affecting quality. The work distribution span of world time zones allowed the continued progress of development, testing and problem fixes almost 24 hours round the clock which provided high sprint speeds and speedy resolution of critical defectives. This strategy became particularly useful during a quicker SAP change, where handoffs are intense and overlapping workstreams are crucial to the process of keeping the momentum. This governance system, backed by both synchronous handover rites, centralized tooling and a clearly defined accountability, meant that activities went on in a regular rhythm and the knowledge gaps were reduced. Through this, the team was in position to deliver within a high stability of functional areas within an ambitious time requirement of seven months. The risk control measures were important throughout the program to avert scope creep and stabilize the core manufacturing processes. The risk-control architecture offered channeled monitoring on both technical and functionality aspect with early detection of problems and early resolution. This was essential to the manufacturing focused functions like MRP live which requires precise master data and positional integration in planning execution. Equally, backflush processing demanded the definite settings of BOMs, work centers, and costing settings to prevent any differences in inventory and manufacturing reports. There was also the quality checks which was a process with high compliance levels and early validation cycles and automated testing structures that proved beneficial to quality checks. Additionally, processes of high touch like Handling Unit (HU) warehousing and production order execution were put at ease by testing over and over again, and testing at the plant level to make sure that there is continuity in operation after the deployment. The general satisfaction of the stakeholders was also very high as evidenced by a low number of post-go-live problems that were experienced during hypercare. The reason is that business users required a stable system since day one, due to its proper preparation, the cross-functional collaboration and the good use of discipline of scope control. The results of the program depict the fact that a carefully implemented follow-the-sun delivery, which has a powerful risk-control model, can provide change fast and with minimal disruption.

5.1. Limitations

Regardless of the high results attained, a number of constraints were also found that affected the extent, applicability, and generalizability of the project output. The major restriction is associated with the expedited seven-month schedule, which, although successful, did not allow for a thorough approach to the exploration design and did not provide a chance to produce as much innovation as was necessary to satisfy key functional needs. The accelerated timeline demanded strict compliance with SAP best practices and templates so that there was very little time to re-engineer ingrained manufacturing processes and relax to analyse alternative solution patterns. Consequently, not all of the design choices were made to favor speed of delivery, instead of strategic flexibility considerations in the future. Also, even though the follow-the-sun model was more efficient, it came with its own set of inherent coordination issues which included delays in communication sometimes caused by poor interpretation of design notes as well as dependency issues caused by the geographical distribution of teams. Although they were controlled by means of governance, these issues still led to local inefficiencies, which would have been less with co-located work. The other drawback is due to the fact that the project will use automation tools to migrate and test. Although automation greatly decreased the effort and defect leakage, maintenance and periodic refinement of the tools themselves was a burden to be set up and also overhead was not well estimated in the initial planning estimates. Moreover, even with high coverage of automation, it was not completely removed and some exceptions still needed to be checked by an expert, particularly in an intricate manufacturing data object or a situation unique to a particular plant. The quantitative outcomes, hence, might not fully be applicable to the case of low automation maturity organizations. Finally, findings are affected by the situation of manufacturing, organizational preparedness, and robust leadership support found in this program. The enterprises themselves do not have a similar level of governance maturity, change management responsiveness, or engagement of stakeholders. As a result, in the case of organizations where the degree of customization is higher, data quality, or the experience of delivering globally, careful replication of the identical results might pose an extra risk. Such constraints imply that though the project offers an attractive example on how to transform to SAP quickly, the use must be evaluated depending on the condition and availability of resources of organizations.

6. Conclusion

This study proves that high-scale SAP S/4HANA migrations in discrete manufacturing settings can be successful within a tightened seven months period by means of embracing the disciplined accelerated approach, the follow-the-sun global delivery model, and a holistic approach to risk-control measures. The research demonstrates that in combination all of these elements allow an organization to have a rapid modernization of its ERP landscape, and, at the same time, high-quality and strong functional stability, as well as less operational disruption. This expedited methodology that was anchored in SAP Activate facilitated the project to cycle through Discover, Prepare, Explore, Realize, and Deploy phase stories with distinctive governance and time-boxed implementation. The fit-to-standard workshops and iterative validation cycles guaranteed initially design compatibility throughout the process as well as automation saved much human power in the testing and data migration operations. These practices were organized to a higher level, which boosted predictability in delivery and reduced the chances of scope creep or late design changes.

The follow-the-sun model was also a strong enforcer of fast delivery where the distributed teams could work under an almost constant development and testing flow. This method has minimized the cycle time and made sure that any problems detected in one part of the company could be fixed by another part before work the following day. Nonetheless, lossless handover processes, centralized tooling to facilitate transparency and acute RACI governance lay a strong ground in the model to avoid failure of coordination. The study indicates that under good communication guidelines and ownership, global delivery may be a strength of a company and not a source of complexity as it may turn out to be.

The other factors that were critical involved the adoption of an effective risk-control architecture that offered proactive and dynamic supervision in the technical and functional realms. The risks present during the integration process were identified early, structural review of the design process in plant-specific processes, and the defect triage frequent, maintained the stability of the system through key manufacturing processes like MRP Live, back office processing, quality inspection, HU warehouse, and production order fulfilment. Early mock testing combined with automated validation and the change freeze policy ensured successful go live with some few post deployment problems which led to high level of stakeholder satisfaction.

Although the results confirm the possibility of the rapid S/4HANA change in the manufacturing environment, which is multiple and complex, the study indicates a promising future. The model can be scaled to multi-country rollouts to determine its ability to operate in different regulatory and operating environments. Also, incorporating Industry 4.0 technologies, e.g. IoT-enabled shop-floor connectivity, AI-based predictive maintenance, and digital twin simulations, might continue to contribute to the value of S/4HANA, as it allows making decisions in real-time and performing intelligent automation. The interactions between these technologies and the ERP core processes, as well as how accelerated methodologies could be scaled to serve the broader digital transformation agenda, could be studied in the future.

References

- [1] Siau, K. (2004). Enterprise resource planning (ERP) implementation methodologies. *Journal of Database Management*, 15(1), i-i.
- [2] Madanhire, I., & Mbohwa, C. (2016). Enterprise resource planning (ERP) in improving operational efficiency: Case study. *Procedia CIRP*, 40, 225-229.
- [3] Herbsleb, J. D. (2016). Global Software Engineering: The Complexity of Distributed Teams. *Communications of the ACM*, 59(3), 58-66.
- [4] Schniederjans, D., & Yadav, S. (2013). Successful ERP implementation: an integrative model. *Business Process Management Journal*, 19(2), 364-398.
- [5] Kulkarni, S. (2019). Implementing SAP S/4HANA. *Implementing SAP S/4HANA*.
- [6] Banks-Grasedyck, D., Lippke, E., Oelfin, H., Schwaiger, R., & Seemann, V. (2022). *Successfully Managing S/4HANA Projects*. Springer International Publishing.
- [7] Katuu, S. (2021). Trends in the enterprise resource planning market landscape. *Journal of Information and Organizational Sciences*, 45(1), 55-75.
- [8] Skipper, J. B., & Hanna, J. B. (2009). Minimizing supply chain disruption risk through enhanced flexibility. *International Journal of Physical Distribution & Logistics Management*, 39(5), 404-427.

- [9] Czekster, R. M., Fernandes, P., Prikladnicki, R., Sales, A., Santos, A. R., & Webber, T. (2011, August). Follow-The-Sun methodology in a stochastic modeling perspective. In 2011 IEEE Sixth International Conference on Global Software Engineering Workshop (pp. 54-59). IEEE.
- [10] Smeds, M. (2010). Change management success factors in ERP implementation.
- [11] Missbach, M., Staerk, T., Gardiner, C., McCloud, J., Madl, R., Tempes, M., & Anderson, G. (2016). SAP on the Cloud (pp. 7-8). Heidelberg: Springer.
- [12] Carmel, E., Espinosa, J. A., & Dubinsky, Y. (2010). "Follow the Sun" Workflow in Global Software Development. *Journal of Management Information Systems*, 27(1), 17-38.
- [13] Kroll, J., Richardson, I., Prikladnicki, R., & Audy, J. L. (2018). Empirical evidence in follow the Sun software development: A systematic mapping study. *Information and Software Technology*, 93, 30-44.
- [14] Aloini, D., Dulmin, R., & Mininno, V. (2012). Risk assessment in ERP projects. *information systems*, 37(3), 183-199.
- [15] Huang, S. M., Chang, I. C., Li, S. H., & Lin, M. T. (2004). Assessing risk in ERP projects: identify and prioritize the factors. *Industrial management & data systems*, 104(8), 681-688.
- [16] Tserng, H. P., Yin, S. Y., Dzeng, R. J., Wou, B., Tsai, M. D., & Chen, W. Y. (2009). A study of ontology-based risk management framework of construction projects through project life cycle. *Automation in construction*, 18(7), 994-1008.
- [17] Singh, V. (2017). *Manage Your SAP Projects with SAP Activate: Implementing SAP S/4HANA*. Packt Publishing Ltd.
- [18] Kraljić, A., & Kraljić, T. (2018, August). Agile software engineering practices and ERP implementation with focus on SAP activate methodology. In *International Conference on Business Informatics Research* (pp. 190-201). Cham: Springer International Publishing.
- [19] Esteves, J., & Pastor, J. (2005). A critical success factor's relevance model for SAP implementation projects. In *Managing Business with SAP: Planning Implementation and Evaluation* (pp. 240-261). IGI Global Scientific Publishing.
- [20] Kemp, R., Parto, S., & Gibson, R. B. (2005). Governance for sustainable development: moving from theory to practice. *International journal of sustainable development*, 8(1-2), 12-30.
- [21] Albouq, S. S., Abi Sen, A. A., Almashf, N., Yamin, M., Alshanqiti, A., & Bahbouh, N. M. (2022). A survey of interoperability challenges and solutions for dealing with them in IoT environment. *IEEE Access*, 10, 36416-36428.
- [22] Liu, L., Li, W., Aljohani, N. R., Lytras, M. D., Hassan, S. U., & Nawaz, R. (2020). A framework to evaluate the interoperability of information systems—Measuring the maturity of the business process alignment. *International Journal of Information Management*, 54, 102153.