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Abstract 

This paper explores the challenges associated with cloud resource management, the application of ML techniques to 
address these challenges, and their associated benefits and limitations. Key ML applications in cloud computing include 
workload prediction, energy-efficient VM consolidation, QoS-aware resource provisioning, and network-aware VM 
placement. The study also identifies research gaps and proposes future directions for enhancing ML-driven resource 
management in cloud environments, with a focus on deep learning, reinforcement learning, and ensemble methods. By 
leveraging ML, cloud computing systems can achieve improved scalability, cost-effectiveness, and performance, paving 
the way for next-generation intelligent cloud infrastructure. 
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1. Introduction

In July 2020, in demographic research conducted by Statista, approximately 4.57 billion users were active on the 
Internet, encompassing 59% of the global population [1]. This huge number of users shows the demanding need for 
resilient, secure and easily configurable web applications. Before the cloud computing era, from the enterprise 
perspective, the cost of the maintenance of big data centers and bootstrap ping a company was too high. Cloud 
Computing is the provision of virtual resources via the Internet (e.g., servers, apps, etc.), from central systems located 
away from the end users, which serves them by automating processes, providing convenience,  flexibility of connection 
[2] as well as a nice pay-as-you-go payment plan to the company [2, 3].

2. Cloud computing

Cloud computing provides resources over the Internet, such as memory, CPU, bandwidth, disc, and 
applications/services. The National Institute of Standards and Technology (NIST) [4] states that ‘‘Cloud computing is a 
model for providing on-demand network access to a common pool of configurable computing resources (e.g., networks, 
servers, storage, software, and services) that can be quickly provisioned and released with minimal management effort 
or service provider involvement. There are five core features, three service models, and four deployment options in this 
cloud model’’. Based on the literature, two more characteristics have been included. 

This computing model uses a client–server architecture to centralize application deployment and computation 
offloading. Cloud computing is cost-effective in application delivery and maintenance on both the client and server sides 
and flexible in resource provisioning and detaching services from related technologies. Cloud computing and its 
supporting technology have been investigated for years. Many advanced computing systems have been released to the 
market, including Alibaba Cloud, Microsoft Azure, Adobe Creative Cloud, ServerSpace, Amazon Web Services (AWS), 
and Oracle Cloud [5]. 
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3. Cloud computing service models  

• Software as a Service (SaaS) [6]: Using this service model, a client can access the service provider Cloud hosted 
applications. Web portals are used to access applications. Since providers have access to the applications, this model 
has made production and testing easier for them.  

• Platform as a Service (PaaS) [7]: In this service model, the service provider provides basic requirements including 
network, servers, and operating system to enable the client to build acquired applications and manage their 
configuration settings.  

• Infrastructure as a Service (IaaS) [8]: The user has created all necessary applications and only requires a simple 
infrastructure. Vendors may include processors, networks, and storage as facilities with customer provisions in such 
cases. 

4. Deployment Models for Cloud Computing 

Public Cloud [9]: The public cloud is the most widely used cloud computing model, where service providers offer cloud-
based resources over the Internet following predefined policies, regulations, and business models. Due to the extensive 
shared resource pool, public cloud providers can offer customers a variety of options while ensuring Quality of Service 
(QoS). 

Private Cloud [10]: A private cloud is designed to serve a single organization or institution, providing many of the 
benefits of a public cloud while offering enhanced security through corporate firewalls. However, the cost of setting up 
and maintaining a private cloud is significantly high, as the organization managing it is responsible for all aspects of the 
system. 

Community Cloud [11]: A community cloud is established when multiple organizations collaborate to share cloud 
resources based on mutual interests, policies, and requirements. The cloud infrastructure can be managed by a third-
party provider or jointly by community members. The primary advantages of this model include reduced costs due to 
resource sharing and enhanced security tailored to the needs of the community. 

Hybrid Cloud [12]: A hybrid cloud is formed by integrating two or more distinct cloud environments—public, private, 
or community—while maintaining their individual characteristics. This model ensures interoperability and data 
portability through standardized or mutually agreed functionalities, allowing seamless communication between 
different cloud components. 

5. ML-Centric Resource Management: Challenges and Approaches 

This section explores challenges in ML-based resource management, discussing current solutions, their benefits, and 
limitations. Challenges are categorized into workload prediction, VM consolidation, thermal management, and resource 
provisioning. 

5.1. Workload Prediction 

5.1.1. ML for Energy Consumption Forecasting 

Cloud providers typically estimate energy usage offline, but real-time predictions remain challenging due to dynamic 
workloads. A study by Reiss et al. [13] revealed that Google clusters utilize only 60% of CPU and 50% of memory on 
average. This suggests ensemble learning could enhance accuracy in cloud energy forecasting. 

Subirats and Guitart [14] introduced an ensemble learning method combining moving average, exponential smoothing, 
linear regression, and double exponential smoothing to predict VM resource usage and improve energy efficiency. Their 
approach calculates the Mean Absolute Error (MAE) across iterations to select the best model. However, they 
overlooked key factors like Last-Level Cache (LLC) and disk throughput [15], which significantly impact energy 
consumption. Additionally, prediction accuracy varies based on workload types (interactive vs. batch), limiting 
generalization. 
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5.1.2. Performance and Online Workload Profiling 

Cloud resource management research often neglects VM lifetime resource consumption. While offline workload 
profiling is impractical due to unavailable input workloads before production, online profiling is complex as it is difficult 
to determine when a VM exhibits representative behavior [16]. 

On Microsoft Azure, Bianchini et al. [16] developed an ML-based system that learns from historical data and predicts 
workload behavior in real-time, benefiting various resource managers. Their study revealed consistent CPU utilization 
peaks across VMs. However, they did not account for memory usage, which significantly impacts resource exhaustion. 
Additionally, their workload classification method using Extreme Gradient Boosting Tree (EGBT) did not address the 
challenge of distributed data centers with partially labeled datasets, which limits training effectiveness. 

5.1.3. . Prediction Accuracy in Auto-Scaling Web Applications 

Auto-scaling allocates resources dynamically, using either reactive or proactive strategies [17]. The reactive approach 
scales resources based on system events like CPU usage exceeding thresholds, while proactive scaling anticipates future 
demands. Traditional statistical models used in proactive scaling often struggle with prediction accuracy due to: 

• Rule-based dependencies between variables, limiting flexibility. 
• Poor scalability to high-dimensional data, as they rely on a limited set of attributes. 

ML-based approaches can improve auto-scaling efficiency, but achieving high accuracy remains a challenge. 

5.1.4. Training data 

In modern cloud environments, virtual resources such as virtual CPUs (vCPUs) and memory (vRAMs) have a nonlinear 
resource demand, resulting in complex resource utilization behavior. As a result, optimization of virtual resource 
performance is required with this high amount of daily workload. Large corporations such as Amazon, Alibaba, 

and others have occasionally failed due to a lack of resource management planning. As a result, predicting virtual 
resources (such as vCPU and vRAM) is a challenging task. Furthermore, resource forecasting presents some challenges: 
(1) The prediction of these resources should be dynamic to respond to changing workload patterns over time; (2) The 
data for training should be chosen in such a way that it has the most significant impact on the target variable so that the 
model can learn to predict it effectively. 

5.2. Runtime VM Management 

5.2.1. VM Consolidation and Resource Usage 

VM consolidation aims to optimize energy efficiency by running more VMs on fewer hosts and shutting down idle ones. 
However, most methods rely solely on CPU utilization to detect overloaded hosts, leading to unnecessary VM migrations 
and power mode transitions. Additionally, neglecting future resource demands can result in overutilization of the 
destination host. 

Haghshenas and Mohammadi [18] proposed an intelligent VM consolidation approach using historical data to predict 
resource utilization and optimize VM migration. They implemented a dynamic consolidation strategy using Linear 
Regression (LR) on real workload traces from PlanetLab VMs [19] within the CloudSim toolkit [20]. Their approach 
reduced energy consumption while accounting for time overheads. However, the reliance on LR, which requires 
extensive feature processing, could slow down response times in real-world deployments. 

5.2.2. Multi-Dimensional Resource Management 

Cloud data centers require dynamic resource provisioning to manage workloads effectively, but predicting demand for 
multiple resources (CPU, memory, disk, network) is complex. Since VM requests vary widely, forecasting resource needs 
accurately remains a challenge. 

Ismaeel and Miri [21] this by categorizing VMs into clusters and applying Extreme Learning Machines (ELMs) for 
prediction. Their approach offers advantages such as: 

• Faster training by optimizing predictor weights in a single step. 
• Avoiding issues related to learning rates, stopping conditions, and local minima. 
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• Handling nonlinear processes better than LR. 
• Using a single network per cluster to predict VM requests. 
• Allowing customized prediction models for each cluster. 

However, their method fixes the number of clusters at three using K-means clustering, which may limit adaptability in 
dynamic environments. 

5.3. VM Placement 

5.3.1. Cloud Network Traffic 

VM placement strategies often allocate resources based on current CPU utilization, leading to inefficient resource use 
as workload demands fluctuate. Future resource estimation, including CPU and network bandwidth, is crucial for 
effective VM placement [22, 23]. High network traffic in cloud computing environments impacts VM migration time and 
can violate SLAs [24]. 

Shaw et al. [25] proposed a network-aware predictive VM placement heuristic that considers both CPU and network 
bandwidth demands. This approach enhances scheduling decisions and improves reliability by reducing energy 
consumption and SLA violations. However, it does not account for disk throughput, which also affects migration 
efficiency [26]. 

5.4. Thermal Management 

5.4.1. Host Temperature 

Managing host temperature in cloud data centers is critical, as heat dissipation increases cooling costs and leads to 
system failures. High temperatures create hotspots, impacting performance and reliability. Ilager et al. [27] introduced 
a thermal-aware predictive scheduling approach to minimize peak temperatures and energy consumption. Using sensor 
data from the University of Melbourne’s private cloud, they trained ML models to predict temperature fluctuations and 
optimize VM migration for thermal management. 

5.5. Resource Provisioning 

5.5.1. SLA-Based VM Management 

Over-provisioning is commonly used in data centers to prevent SLA violations during peak demand but leads to resource 
wastage and increased cooling costs [28, 29]. Dynamic resource provisioning has been explored to address this, but 
many approaches focus on specific applications rather than diverse workloads. 

Garg et al. [30] proposed an SLA-aware resource management strategy that distinguishes between compute-intensive 
and transactional workloads. Using historical CPU utilization data and SLA penalties, they developed an artificial neural 
network (ANN) to predict CPU demand over two-hour intervals. However, their method struggles with high workload 
variability, sometimes deviating from actual values and failing to account for nonlinear workload behavior, which can 
impact QoS and energy efficiency [31]. 

5.5.2. QoS-Aware Resource Provisioning 

Fluctuating application demands in cloud environments make static resource allocation inefficient, leading to either 
wasted resources or performance degradation. Dynamic resource provisioning is essential, with proactive strategies 
predicting future loads to ensure QoS compliance. 

Calheiros et al. [32] developed an ARIMA-based workload prediction model to dynamically provision VMs based on 
expected demand while maintaining QoS parameters like response time and rejection rate. Their approach leveraged 
historical web request data [33], but the static time interval for VM deployment could create inefficiencies if the 
estimated time did not align with actual provisioning requirements, potentially affecting response times. 
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6. Future Research Directions 

6.1. Workload Prediction 

6.1.1. ML in Energy Consumption Prediction 

Future research should consider non-linear relationships (e.g., polynomial, exponential) between system power metrics 
(CPU, memory, disk, network) and energy consumption. Instead of selecting the best model in ensemble learning, an 
optimized approach could aggregate weighted predictions based on mean absolute error. Adaptive real-time modeling 
of workload parameters could improve resource utilization. ML models must handle sudden resource usage changes to 
enhance prediction accuracy. 

6.1.2. Performance and Online Profiling of Workload 

Accurate workload estimation is crucial for intelligent resource management in complex cloud environments (Google, 
Microsoft, Amazon). Future research should explore advanced ML and DL models to improve workload predictions 
while minimizing computational complexity. Online profiling is essential to prevent resource exhaustion, and semi-
supervised learning [34] could enhance classification accuracy in large-scale distributed data centers [35, 36]. 

6.1.3. Prediction Accuracy in Auto-Scaling Web Applications 

ML models offer advantages in auto-scaling, such as learning from large datasets and adapting without explicit 
programming. However, processing redundant features increases computational overhead. Future research should 
focus on feature selection techniques like wrappers, filters, and embedded methods [37] to optimize speed-accuracy 
trade-offs in large datasets. 

6.1.4. Time-Series Prediction 

Developing a generalized ensemble framework for time-series workload forecasting remains a key research area. Novel 
architectures, including CNNs and attention mechanisms, can improve accuracy [38, 39]. Temporal Convolution 
Networks (TCNs) have shown promise for sequence modeling [40, 41] and could outperform RNNs in forecasting 
workload patterns. 

6.1.5. Data Training 

Hyperparameter optimization impacts ML training performance. Future research should explore optimization 
techniques such as Grid Search, Random Search, Bayesian Optimization, and Gradient-Based Optimization [42] to 
enhance model efficiency. 

6.2. Runtime VM Management 

6.2.1. Multi-Resource Usage in VM Consolidation 

Future work should integrate CPU, memory, and bandwidth metrics to identify overloaded hosts accurately [43, 44]. DL 
models like LSTM and GRU could optimize VM consolidation by reducing training overhead and improving efficiency in 
large-scale data centers. 

6.2.2. Multi-Dimensional Resource Requirement 

Instead of fixed clustering methods (e.g., K-means), ensemble clustering techniques [45, 46] can improve VM 
classification. Advanced clustering methods can enhance accuracy, reduce time complexity, and optimize resource 
consumption. 

6.2.3. Energy Metering at Software Level 

Clustering analysis could categorize VMs based on energy consumption levels instead of relying on difficult-to-measure 
VM-level power metrics [47, 48]. Feature selection methods like ChiSquare Score and Fisher Score [49] could improve 
clustering efficiency. 

6.2.4. Usage Level Management 

Future research should develop dynamic resource utilization thresholds for VM migration, preventing unnecessary 
migrations when short-term fluctuations occur. Adaptive strategies can enhance consolidation efficiency. 
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6.3. VM Placement 

6.3.1. Cloud Network Traffic 

VM placement strategies should integrate disk throughput as a key factor alongside CPU and network bandwidth [50-
53]. Optimizing disk I/O could prevent tail latency issues, which affect online service performance and SLA compliance 
[54-56]. 

6.4. Thermal Management 

6.4.1. Host Temperature 

Predicting CPU temperature in advance can enhance thermal management strategies and reduce cooling costs. Future 
research should focus on CPU load estimation to prevent overheating rather than reactively cooling overloaded hosts 
[57]. Using GRU-based single-feature models could reduce algorithm complexity and improve scheduling efficiency. 

These research directions aim to enhance cloud resource management through advanced ML and DL techniques while 
improving efficiency, scalability, and QoS. 

7. Conclusion 

Cloud computing systems are vast, highly interconnected, and resource-intensive, making effective resource 
management a complex challenge. Traditional rule-based and heuristic resource management strategies struggle with 
scalability, heterogeneity, and dynamic workload demands. Data-driven AI techniques, particularly machine learning 
(ML), have emerged as powerful tools for optimizing resource allocation, workload prediction, and energy consumption 
management. 

This paper explores the key challenges of resource management in cloud environments and examines various ML-based 
solutions, highlighting their advantages and limitations. Recent studies have increasingly leveraged ML models to 
enhance workload forecasting, optimize energy usage, and improve overall efficiency. Different ML techniques are 
applied to specific problems, each with varying effectiveness depending on the use case. This paper also identifies future 
research directions, aiming to refine ML techniques for cloud resource management. Advanced ML approaches, such as 
deep learning and reinforcement learning, hold significant potential for intelligent resource optimization. By adopting 
these cutting-edge methods, cloud computing systems can achieve higher efficiency, better scalability, and improved 
performance in handling complex tasks. This study serves as a valuable reference for researchers seeking to explore 
and enhance ML applications in cloud resource management. 

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest is to be disclosed. 

References 

[1] Global digital population as of July 2020. https://www.statista.com/statistics/617136/digitalpopulation-
worldwide/  

[2] Lakshmi Devasena C (2014) Impact study of cloud computing on business development. Oper Res Appl Int J 
(ORAJ) 1:1–7  

[3] Tsakalidou, V.N., Mitsou, P., Papakostas, G.A. (2022). Machine Learning for Cloud Resources Management—An 
Overview. In: Smys, S., Lafata, P., Palanisamy, R., Kamel, K.A. (eds) Computer Networks and Inventive 
Communication Technologies. Lecture Notes on Data Engineering and Communications Technologies, vol 141. 
Springer, Singapore. https://doi.org/10.1007/978-981-19-3035-5_67 

[4] Mell, Peter, 2011. The NIST definition of cloud computing. In N. I. O. S. A. Technology (Ed.): U.S. Department of 
Commerce.  



World Journal of Advanced Research and Reviews, 2022, 16(03), 1230-1238 

1236 

[5] Khan, T., Tian, W., Zhou, G., Ilager, S., Gong, M., & Buyya, R. (2022). Machine learning (ML)-centric resource 
management in cloud computing: A review and future directions. Journal of Network and Computer Applications, 
204, 103405. 

[6] Piraghaj, Sareh Fotuhi, Dastjerdi, Amir Vahid, Calheiros, Rodrigo N, Buyya, Rajkumar, 2017. A survey and 
taxonomy of energy efficient resource management techniques in platform as a service cloud. In: Handbook of 
Research on End-to-End Cloud Computing Architecture Design. IGI Global, pp. 410–454. 

[7] Jula, Amin, Sundararajan, Elankovan, Othman, Zalinda, 2014. Cloud computing service composition: A systematic 
literature review. Expert Syst. Appl. 41 (8), 3809–3824. 

[8] Whaiduzzaman, Md, Sookhak, Mehdi, Gani, Abdullah, Buyya, Rajkumar, 2014. A survey on vehicular cloud 
computing. J. Netw. Comput. Appl. 40, 325–344. 

[9] Toosi, Adel Nadjaran, Calheiros, Rodrigo N., Buyya, Rajkumar, 2014. Interconnected cloud computing 
environments: Challenges, taxonomy, and survey. ACM Comput. Surv. 47 (1), 1–47. 

[10] Jadeja, Yashpalsinh, Modi, Kirit, 2012. Cloud computing-concepts, architecture and challenges. In: 2012 
International Conference on Computing, Electronics and Electrical Technologies. ICCEET, IEEE, pp. 877–880. 

[11] Dillon, Tharam, Wu, Chen, Chang, Elizabeth, 2010. Cloud computing: issues and challenges. In: 2010 24th IEEE 
International Conference on Advanced Information Networking and Applications. Ieee, pp. 27–33. 

[12] Tuli, Shreshth, Sandhu, Rajinder, Buyya, Rajkumar, 2020. Shared data-aware dynamic resource provisioning and 
task scheduling for data intensive applications on hybrid clouds using aneka. Future Gener. Comput. Syst. 106, 
595–606. 

[13] Reiss, Charles, Wilkes, John, Hellerstein, Joseph L., 2011. Google Cluster-Usage Traces: Format+ Schema. White 
Paper, Google Inc. pp. 1–14. 

[14] Subirats, Josep, Guitart, Jordi, 2015. Assessing and forecasting energy efficiency on cloud computing platforms. 
Future Gener. Comput. Syst. 45, 70–94.  

[15] Sayadnavard, M. H., Haghighat, A. T., & Rahmani, A. M. (2022). A multi-objective approach for energy-efficient 
and reliable dynamic VM consolidation in cloud data centers. Engineering science and technology, an 
International Journal, 26, 100995. 

[16] Bianchini, Ricardo, Fontoura, Marcus, Cortez, Eli, Bonde, Anand, Muzio, Alexandre, Constantin, Ana-Maria, 
Moscibroda, Thomas, Magalhaes, Gabriel, Bablani, Girish, Russinovich, Mark, 2020. Toward ML-centric cloud 
platforms. Commun. ACM 63(2), 50–59 

[17] Persico, Valerio, Grimaldi, Domenico, Pescape, Antonio, Salvi, Alessandro, Santini, Stefania, 2017. A fuzzy 
approach based on heterogeneous metrics for scaling out public clouds. IEEE Trans. Parallel Distrib. Syst. 28 (8), 
2117–2130 

[18] Haghshenas, Kawsar, Mohammadi, Siamak, 2020. Prediction-based underutilized and destination host selection 
approaches for energy-efficient dynamic VM consolidation in data centers. J. Supercomput. 1–18. 

[19] Chun, Brent, Culler, David, Roscoe, Timothy, Bavier, Andy, Peterson, Larry, Wawrzoniak, Mike, Bowman, Mic, 
2003. Planetlab: an overlay testbed for broad-coverage services. ACM SIGCOMM Comput. Commun. Rev. 33 (3), 
3–12 

[20] Calheiros, Rodrigo N, Ranjan, Rajiv, Beloglazov, Anton, De Rose, César AF, Buyya, Rajkumar, 2011. CloudSim: a 
toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning 
algorithms. Softw. - Pract.Exp. 41 (1), 23–50. 

[21] Ismaeel, Salam, Miri, Ali, 2015. Using ELM techniques to predict data centre VM requests. In: 2015 IEEE 2nd 
International Conference on Cyber Security and Cloud Computing. IEEE, pp. 80–86. 

[22] Genez, Thiago AL, Bittencourt, Luiz F, da Fonseca, Nelson LS, Madeira, Edmundo RM, 2015. Estimation of the 
available bandwidth in inter-cloud links for task scheduling in hybrid clouds. IEEE Trans. Cloud Comput. 7 (1), 
62–74. 

[23] Duggan, Martin, Duggan, Jim, Howley, Enda, Barrett, Enda, 2017. A network aware approach for the scheduling 
of virtual machine migration during peak loads. Cluster Comput. 20 (3), 2083–2094 



World Journal of Advanced Research and Reviews, 2022, 16(03), 1230-1238 

1237 

[24] Verma, Akshat, Ahuja, Puneet, Neogi, Anindya, 2008. pMapper: power and migration cost aware application 
placement in virtualized systems. In: ACM/IFIP/USENIX International Conference on Distributed Systems 
Platforms and Open Distributed Processing. Springer, pp. 243–264. 

[25] Shaw, Rachael, Howley, Enda, Barrett, Enda, 2019. An energy efficient anti-correlated virtual machine placement 
algorithm using resource usage predictions. Simul. Model. Pract. Theory 93, 322–342 

[26] Brewer, Eric, Ying, Lawrence, Greenfield, Lawrence, Cypher, Robert, T’so, Theodore, 2016. Disks for data centers. 

[27] Ilager, S., Ramamohanarao, K., Buyya, R., 2021. Thermal prediction for efficient energy management of clouds 
using machine learning. IEEE Trans. Parallel Distrib. Syst. 32 (5), 1044–1056. 
http://dx.doi.org/10.1109/TPDS.2020.3040800. 

[28] Reiss, Charles, Tumanov, Alexey, Ganger, Gregory R, Katz, Randy H, Kozuch, Michael A, 2012. Heterogeneity and 
dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the Third ACM Symposium on Cloud 
Computing. pp. 1–13. 

[29] Sun, Xiang, Ansari, Nirwan, Wang, Ruopeng, 2016. Optimizing resource utilization of a data center. IEEE Commun. 
Surv. Tutor. 18 (4), 2822–2846. 

[30] Garg, Saurabh Kumar, Toosi, Adel Nadjaran, Gopalaiyengar, Srinivasa K, Buyya, Rajkumar, 2014. SLA-based 
virtual machine management for heterogeneous workloads in a cloud datacenter. J. Netw. Comput. Appl. 45, 108–
120. 

[31] Kumar, Jitendra, Singh, Ashutosh Kumar, Buyya, Rajkumar, 2020. Self directed learning based workload 
forecasting model for cloud resource management. Inform. Sci. 543, 345–366 

[32] Calheiros, Rodrigo N, Masoumi, Enayat, Ranjan, Rajiv, Buyya, Rajkumar, 2014. Workload prediction using ARIMA 
model and its impact on cloud applications’ QoS. IEEE Trans. Cloud Comput. 3 (4), 449–458. 

[33] Amekraz, Zohra, Hadi, Moulay Youssef, 2018. Higher order statistics based method for workload prediction in 
the cloud using ARMA model. In: 2018 International Conference on Intelligent Systems and Computer Vision. 
ISCV, IEEE, pp. 1–5. 

[34] Zhu, Xiaojin, Goldberg, Andrew B., 2009. Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. 
Learn. 3 (1), 1–130. 

[35] Cortez, Eli, Bonde, Anand, Muzio, Alexandre, Russinovich, Mark, Fontoura, Marcus, Bianchini, Ricardo, 2017. 
Resource central: Understanding and predicting workloads for improved resource management in large cloud 
platforms. In: Proceedings of the 26th Symposium on Operating Systems Principles. pp. 153–167. 

[36] Bianchini, Ricardo, Fontoura, Marcus, Cortez, Eli, Bonde, Anand, Muzio, Alexandre, Constantin, Ana-Maria, 
Moscibroda, Thomas, Magalhaes, Gabriel, Bablani, Girish, Russinovich, Mark, 2020. Toward ML-centric cloud 
platforms. Commun. ACM 63(2), 50–59. 

[37] Majeed, Abdul, 2019. Improving time complexity and accuracy of the machine learning algorithms through 
selection of highly weighted top k features from complex datasets. Ann. Data Sci. 6 (4), 599–621. 

[38] Lai, Guokun, Chang, Wei-Cheng, Yang, Yiming, Liu, Hanxiao, 2018. Modeling long-and short-term temporal 
patterns with deep neural networks. In: The 41st International ACM SIGIR Conference on Research & 
Development in Information Retrieval. pp. 95–104. 

[39] Shih, Shun-Yao, Sun, Fan-Keng, Lee, Hung-yi, 2019. Temporal pattern attention for multivariate time series 
forecasting. Mach. Learn. 108 (8), 1421–1441. 

[40] Borovykh, Anastasia, Bohte, Sander, Oosterlee, Cornelis W., 2017. Conditional time series forecasting with 
convolutional neural networks. arXiv preprint arXiv:1703.04691 

[41] Bai, Shaojie, Kolter, J. Zico, Koltun, Vladlen, 2018. An empirical evaluation of generic convolutional and recurrent 
networks for sequence modeling. arXiv preprint arXiv:1803.01271. 

[42] Feurer, Matthias, Hutter, Frank, 2019. Hyperparameter optimization. In: Automated Machine Learning. Springer, 
Cham, pp. 3–33. 

[43] Nguyen, Trung Hieu, Di Francesco, Mario, Yla-Jaaski, Antti, 2017. Virtual machine consolidation with multiple 
usage prediction for energy-efficient cloud data centers. IEEE Trans. Serv. Comput. 

[44] Abdelsamea, Amany, El-Moursy, Ali A, Hemayed, Elsayed E, Eldeeb, Hesham, 2017. Virtual machine consolidation 
enhancement using hybrid regression algorithms. Egypt. Inform. J. 18 (3), 161–170. 

http://dx.doi.org/10.1109/TPDS.2020.3040800


World Journal of Advanced Research and Reviews, 2022, 16(03), 1230-1238 

1238 

[45] Alqurashi, Tahani, Wang, Wenjia, 2019. Clustering ensemble method. Int. J. Mach. Learn. Cybern. 10 (6), 1227–
1246 

[46] Boongoen, Tossapon, Iam-On, Natthakan, 2018. Cluster ensembles: A survey of approaches with recent 
extensions and applications. Comp. Sci. Rev. 28, 1–25 

[47] Kansal, Aman, Zhao, Feng, Liu, Jie, Kothari, Nupur, Bhattacharya, Arka A, 2010. Virtual machine power metering 
and provisioning. In: Proceedings of the 1st ACM Symposium on Cloud Computing. pp. 39–50. 

[48] Zhao-Hui, Y., Qin-Ming, J., 2012. Power management of virtualized cloud computing platform. Chinese J. Comput. 
6, 015. 

[49] Vora, Suchi, Yang, Hui, 2017. A comprehensive study of eleven feature selection algorithms and their impact on 
text classification. In: 2017 Computing Conference. IEEE, pp. 440–449. 

[50] Shaw, Rachael, Howley, Enda, Barrett, Enda, 2019. An energy efficient anti-correlated virtual machine placement 
algorithm using resource usage predictions. Simul. Model. Pract. Theory 93, 322–342. 

[51] Md Bahar Uddin, Md. Hossain and Suman Das, “Advancing manufacturing sustainability with industry 4.0 
technologies”, International Journal of Science and Research Archive, 2022, 06(01), 358-366. 

[52] Bharati, S., Rahman, M. A., & Podder, P. (2018, September). Breast cancer prediction applying different 
classification algorithm with comparative analysis using WEKA. In 2018 4th International Conference on 
Electrical Engineering and Information & Communication Technology (iCEEiCT) (pp. 581-584). IEEE. 

[53] Bharati, S., Mondal, M. R. H., Podder, P., & Prasath, V. S. (2022). Federated learning: Applications, challenges and 
future directions. International Journal of Hybrid Intelligent Systems, 18(1-2), 19-35. 

[54] Bharati, S., Mondal, M. R. H., Podder, P., & Prasath, V. S. (2022). Federated learning: Applications, challenges and 
future directions. International Journal of Hybrid Intelligent Systems, 18(1-2), 19-35. 

[55] Bharati, S., Podder, P., Mondal, M. R. H., Podder, P., & Kose, U. (2022). A review on epidemiology, genomic 
characteristics, spread, and treatments of COVID-19. Data Science for COVID-19, 487-505. 

[56] Brewer, Eric, Ying, Lawrence, Greenfield, Lawrence, Cypher, Robert, T’so, Theodore, 2016. Disks for data centers. 

[57] Ilager, S., Ramamohanarao, K., Buyya, R., 2021. Thermal prediction for efficient energy management of clouds 
using machine learning. IEEE Trans. Parallel Distrib. Syst. 32 (5), 1044–1056. 
http://dx.doi.org/10.1109/TPDS.2020.3040800. 

http://dx.doi.org/10.1109/TPDS.2020.3040800

