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Abstract 

This work is a contribution to the numerical study of the phenomenon of heat transfer by laminar natural convection of 
an electrically conductive Newtonian fluid subjected to a uniform horizontal magnetic field. The study focused on a 
hemispherical cavity delimited by two vertically eccentric hemispheres. A constant flux density is imposed on the inner 
hemisphere while the outer hemisphere is maintained at a constant temperature. The combination of thermal and 
electrical boundary conditions is exploited to obtain the critical values of the parameters marking the onset of 
instability. The Boussinesq approximation is used to study the equations governing this fluid instability. The projection 
of these equations in the bispheric coordinate system as well as the discretization by the finite difference method 
facilitated the development of a computer code in Fortran. The exploitation of this code made it possible to determine 
the growth rates for Hartmann values equal to 1; 10 and 100, from Rayleigh equal to 103; 104; 105 and 106, with 
eccentricity equal to ± 0.2; ± 0.5 and 0 and a radius ratio equal to 2. The aim is to highlight the effect of the magnetic 
field on the heat transfer. At the end of the study, the results obtained are consistent and revealing: they are in good 
agreement with those of references drawn from the literature. 

Keywords: Magneto convection; Magnetic field; Hemispherical cavity; Eccentricity; Rayleigh Correlations; Hartman 
Number; Nusselt Number 

1. Introduction

The effect of the magnetic field in liquid metals, commonly called magneto-convection, has been the subject of a large 
number of researches in recent decades [1]. The interest of these materials lies in their involvement in several natural 
and applied phenomena [2]. According to [3], magneto-convection has several applications in various fields such as: 
geophysics, astrophysics, plasma physics, missile technology, medicine, biology etc. Thus, at various configurations and 
in parallel with studies on pure natural convection, numerous experimental and numerical studies on the magneto-
convection of a fluid confined in enclosures have been made [4]. The latter generally have very varied geometries and 
sometimes parallelepipedal [5, 6], cylindrical [7, 8], or even spherical [9, 10, 11, 12]. In this sense, correlations giving 
Nusselt and Rayleigh numbers are sometimes proposed; an increase in such numbers, that is to say intensification of 
natural convection, or of the magnetic field, must be able to influence, depending on the geometry of the walls, the 
viscosity of the fluid and the stability of the flows [13, 14]. Thus, by modeling for a magneto-convection, the effects of 
the discretization method, the refinement and the stretching of the grid, the results of [6] prove that in addition to 
stabilizing the main convection roll, the field Horizontal magnetic makes it also comes with higher kinetic energy and 
heat transfer rate if we compare the study with a non-magnetic case. The analysis of Hall effects of magneto-convective 
instability and heat transfer exploited by [15], studies parameters that can influence the flow field and the temperature 
distribution. According to their results, Hall currents significantly decrease the flow field. [16] and [17] attempted to 
acquire a general and essential understanding of the flows and heat transfer characteristics in an enclosure in the 
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presence of a magnetic field. Their studies showed that the magnetic field decreases the rate of heat transfer. The effect 
of the magnetic field in mixed convection, with an exponential temperature distribution in the presence of a magnetic 
field and with thermal and internal viscous dissipation has been studied by [18]. It was found that increasing the Prandtl 
number decreases the coefficient of skin friction, while increasing the magnetic field increases the local Nusselt number. 
The study of the transient regime of the natural convection of a non-conductive Newtonian fluid located between two 
vertically eccentric spheres, the internal sphere of which is subjected to a heat flow of constant density, the external 
sphere being isothermal have been developed in the literature. by [9]. Their results show that the increase in the 
modified Rayleigh number makes it possible to reach the steady state more quickly and that the influence of eccentricity 
is very weak on the establishment of the equilibrium state. The convection movement is reinforced for positive 
eccentricities. The heat exchange characterized by the Nusselt number increases with the modified Rayleigh number. 
[19] studied the case of a hemisphere. The results show that the center of the vortex moves upwards for larger 
eccentricities. The Nusselt number increases with the modified Rayleigh number. When the latter increases, the 
dimensionless temperature decreases for a given eccentricity. This wealth of literature testifies to the importance and 
the scientific scope relating to the thermal convection of an electrically conductive fluid subjected to a magnetic field 
[20]. Moreover, it is in this same order of idea that the present study was initiated. Our study concerns the natural 
convection between two eccentric hemispheres of a conductive fluid subjected to a magnetic field. It is a question of 
studying in transient regime the magneto-convection of a Newtonian fluid subjected to a horizontal magnetic field 
confined between two vertically eccentric hemispheres. For this purpose, a constant flux density is imposed on the inner 
hemisphere while the outer hemisphere is maintained at a constant temperature. The main object is on the one hand, 
to determine the influence of the magnetic field on the isotherms and the lines of current and on the other hand the 
influence of the number of Hartmann on the number of Nusselt, the function of current and on temperature.  

2. Material and methods 

2.1. Problem formulation 

Figure 1 symbolizes a movement of an electrically conductive Newtonian fluid (humid air) subjected to a horizontal 
magnetic field and confined in an annular space delimited by two vertically eccentric hemispheres. The radii of the 
internal and external hemispheres are denoted respectively by Ri and Re. The algebraic value of the distance separating 
the centers of these two hemispheres is defined as being the eccentricity e'. Inside and on the walls of the enclosure, the 
temperature is initially uniform. A heat flux (q') of constant density will be applied at the level of the internal hemisphere 
while the temperature of the external hemisphere will remain constant (T'). The walls which separate the two 
hemispheres at the angles θ=0 and θ= π are adiabatic. A transient natural convection of this conductive fluid caused by 
the temperature difference of the two hemispheres will develop inside the domain. The physical properties of the fluid 
are constant except its density in the term associated with gravity in the equation of motion where it varies linearly 
with temperature and obeys Boussinesq's law. The fluid is Newtonian and the flow is laminar, incompressible and two-
dimensional. The magnetic field is assumed to be constant and the induced field is neglected. The viscous dissipation 
function, the radiative effects as well as the pressure term are neglected. The boundaries of the studied system are 
considered electrically insulating. The walls of our enclosure consist of two spherical portions and two others offset 
from the vertical. To translate the parietal conditions more simply, it is therefore necessary to look for a curvilinear 
coordinate system in which the boundaries of our domain are parametrized by lines of constant coordinates. Thus, given 
the geometry of the containment, the most suitable coordinate system is that of bispherical coordinates. For a two-
dimensional flow, the transition from Cartesian coordinates (x, y) to bispherical coordinates is given by the relation (1): 

{

𝒙 =
𝒂 𝐬𝐢𝐧 𝜽 

𝒄𝒉𝜼−𝒄𝒐𝒔𝜽
 

 

𝒚 =
𝒂 𝒔𝒉𝜼

𝒄𝒉𝜼−𝒄𝒐𝒔𝜽

 ………………………… (1) 

Along the vertical are two walls identified by θ = 0 and θ = π. The two internal and external hemispheres are respectively 
materialized by the coordinate lines h=hi and h=he. 
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Figure 1 Geometry of the problem [19] 

2.2. Governing equations 

After introduction of the simplifying hypotheses, one establishes the various adimensional equations necessary to the 
resolution of the problem considered in this study. The vortex-flux (vortex flow) functions are translated by the 
momentum and heat equations translated by the relation (2): 
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Ha2Pr

KH2
[∂η{H(UBηBθ − VBη

2 )} − ∂θ{H(VBηBθ − UBθ
2 )}] …………………….. (2) 

 Where the grandeur: U, V , G1, G2, K, H, Bη et Bθ are defined through the equations (3),(4), (5) et (6) 

{

U =
1

KH

∂Ψ

∂θ
 

 

V = −
1

KH

∂Ψ

∂η

 ……………………. .(3) 

 

{

G1 =
1−cosθchη

chη−cosθ
 

 

G2 = −
sinθshη

chη−cosθ

 …………………….. (4) 

 

{

K =
asinθ

D(chη−cosθ)
 

 

H =
a

D(chη−cosθ)

 …………………….. (5) 

{
 Bη = G2 

 
Bθ = −G1

 …………………….. (6) 

 

The condition of incompressibility is verified by flow functions: one surface noted Ψ and the other voluminal noted Φ. 
These flows are related by the equation (7): 

Ψ = 𝐾Φ …………… (7) 

Otherwise, the equation of the flux function is known by the relation (8): 
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Ω =
1

𝐾2𝐻
[𝐺2𝜕𝜂Φ− 𝐺1𝜕𝜃] −

1

𝐾𝐻²
[𝜕𝜂

2Φ− 𝜕𝜃
2Φ] …………………….. (8) 

To these different equations are added the boundary and initial conditions. 

At t = 0, the conditions result in the relation (9): 

Ω = Ψ = 𝑇 = 𝑈 = 𝑉 = 0 . …………………….. (9) 

 

At t > 0, the boundary conditions result in equations (10), (11) and (12) depending on the location of the wall. 

 On the inner spherical wall (η = ηi) 

{
 
 

 
 

 
Ψ = 𝑈 = 𝑉 = 0

 

Ω = −
1

𝐾𝐻
𝜕𝜂
2Ψ

 

𝜕𝜂𝑇 = 𝐻𝑖 =
𝑐ℎ𝜂𝑖

𝑠ℎ2𝜂𝑖

 …………………….. (10) 

 On the outer spherical wall (η=ηe) 

{

Ψ = 𝑈 = 𝑉 = 0
 

Ω = −
1

𝐾𝐻
𝜕𝜂
2Ψ

 …………………….. (11) 

 On the two vertical walls (θ = 0, θ = π) 

{
 
 

 
 

 
Ψ = 𝑈 = 𝑉 = 0

 
∂𝜂𝑇 = 0

 

Ω = −
1

𝐾𝐻
𝜕𝜃
2Ψ

…………………….. (12) 

The Nusselt number translates the thermal energy transmitted by a spherical wall. The local (Nu) and average ((Nu) ̅) 
Nusselt numbers are defined by the relations (13) and (14) according to the wall. 

 

 For the inner spherical wall 

{

𝑁𝑢𝑖 =
1

𝑇𝑖,𝑚
 

𝑁𝑢𝑖̅̅ ̅̅ ̅ =
1

𝑆𝑖
∫𝑁𝑢𝑖𝑑𝑆𝑖

 …………………….. (13) 

 

 For an outer spherical wall 

{

𝑁𝑢𝑒 =
1

𝐻𝑒𝑇𝑖,𝑚
𝜕𝜂𝑇

 

𝑁𝑢𝑒̅̅ ̅̅ ̅ =
1

𝑆𝑒
∫𝑁𝑢𝑒𝑑 𝑆𝑒

 …………………….. (14) 

2.3. Numerical analysis 

For the development of a numerical code stimulating the magneto-convection of a Newtonian fluid confined in an 
annular space, we used: 
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 The implicit alternating directions (ADI) method for the temporal solution of the momentum and heat 
equations ; 

 The finite difference method for spatial integration. 

We will use the THOMAS algorithm for solving the system of linear equations obtained using ADI. However, for the 
equation of the flow function, the resolution is made based on the method of successive over-relaxation (SOR) with an 
optimal relaxation parameter. At the level of the iterative loop, the calculation result Znew of a quantity to be determined 
will be considered as being a convergent solution only if it obeys, with the old value Zold , the following relation (15): 

|Znew−Zold|max

|Znew|
 ≤ 10−5…………………….. (15) 

The steady state is reached only if this relative error between two consecutive time steps for all quantities obeys the 
relation (16): 
 

|𝑍𝑛+1−𝑍𝑛|
𝑚𝑎𝑥

|𝑍𝑛+1|𝑚𝑎𝑥
≤ 10−5 …………………….. (16) 

Where; 𝑍𝑛 represented Ω, Ψ or T to nth time step 

3. Results and discussion 

3.1. Computation Conditions 

The choice of the 51 x 51 mesh and the 10-4 time step is motivated by tests carried out on the influence of the latter. 
The results of these tests are presented in Tables 1 and 2 and prove that these choices constitute, among other things, 
a good compromise. 

Table 1 Effects of time steps on the Nusselt number of the heat wall for Ha=1, Ra = 105, e=0, ∆t = 10-4 and the grid 
system is 51x51 

 Time steps 

10-3 10-4 10-5 

Nu  4.7337 4.7298 4.7296 

Difference (%) 0.087 0.004 0 

Time computing (min) 5 124 802 

 
 

Table 2 Effects of mesh refinement on the Nusselt number of the heat wall for Hart=1, Ra=105, e = 0 and ∆t = 10-4 

 Mesh grid 

21*21 21*41 41*41 41*51 41*81 51*51 51*81 81*81 

Nu  4.8750 4.8871 4.7515 4.7503 4.7502 4.7298 4.7297 4.7060 

Difference (%) 3.59 3.85 0.97 0.94 0.94 0.51 0.50 0 

Time computing (min)  9 97 225 261 362 348 447 604 
 

3.2.  Validation 

For a zero magnetic field, the problem becomes that of laminar natural convection. The results presented in Table 3 
provide information on the values of the mean Nusselt number, calculated and then given for different Rayleigh 
numbers. We compared these results with those of [19] for the study of transient laminar convection between two 
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vertically eccentric hemispheres. These comparisons show a relative difference of 02.72% for all the cases presented. 
This shows an excellent agreement between the results. 

Table 3 Comparaison of the mean Nusselt number in a case of e = 0 

 Ra 

103 104 105 106 107 

Nusselt number (our results) 2.0673 3.0379 4.8920 7.7680 11.708 

Nusselt number (results of [19]) 2.125 3.0651 4.982 7.6874 11.671 

Difference (%) 2.72 0.89 1.81 1.05 0.32 
 

3.3. Effect of eccentricity 

At different values of eccentricity, temporal evolutions of isotherms and streamlines in the studied enclosure are 
presented side by side through Figures 2(a)-(c). The eccentricity takes the values {-0.5; 0; 0.5} and the Hartmann, 
Rayleigh and Prandtl numbers take the values 10, 106 and 0.7 respectively. They are fixed for the three eccentricity 
values studied. Initially, we observe an appearance of isotherms at the level of the heated internal wall. For the various 
values of the eccentricity, the isothermal lines deform over time. The heating of the fluid is done on the upper part of 
the internal wall before descending towards the external wall. The isothermal lines deform while increasing for a high 
value of the modified Rayleigh number. This increase is due to the movement of the fluid. However, the increase in the 
maximum value of the current function occurs with the eccentricity and becomes larger and larger for negative values. 
And the more the eccentricity increases by taking only negative values, the more the center of the vortex of the fluid 
focuses upwards. For an increase of the eccentricity towards positive values, the center of the vortex of the fluid will be 
observed downwards.  

 

 

Figure 2 (a) Evolution of streamlines and isotherms for Ra=106, Hart=10, Pr=0.7 and e= − 0.5 
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Figure 2 (b) Evolution of streamlines and isotherms for Ra=106, Hart =10, Pr=0.7 and e = 0 

 

 

 

Figure 2 (c) Evolution of streamlines and isotherms for Ra=106, Hart =10, Pr=0.7 and e = 0.5 
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3.4. Hartmann number effect 

Les figures 3(a)-(c) présentent l’évolution des isothermes et lignes de courant en fonction du temps pour les valeurs 
d’excentricité, Rayleigh et de Prandtl fixées, et différentes valeurs de Hartmann {1; 10; 100}. Il ressort de l’analyse que 
l’augmentation du nombre de Hartmann fortifie les lignes de courant et renforce le transfert le transfert de chaleur au 
niveau de l’enceinte. Le champ magnétique fait que la magnéto convection s’accompagne non seulement d’une 
importante énergie cinétique mais aussi d’un plus élevé taux de transfert de chaleur comparée à l’étude de la convection 
naturelle pure.  

 

 

Figure 3 (a) Evolution of streamlines and isotherms for Ra=106, Pr=0.7, e= 0.5 and Hart=1 

 

 

 

Figure 3 (b) Evolution of streamlines and isotherms for Ra=106, Pr=0.7, e= 0.5 and Hart=10 
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Figure 3 (c) Evolution of streamlines and isotherms for Ra=106, Pr=0.7, e= 0.5 and Hart=100 

3.5. Influence of Rayleigh number 

For a fixed Hartmann number in each case, the zero eccentricity and Rayleigh numbers varying from 103 to 106, the 
curves in Figures 3 (a) - (c) above give the variation of the mean Nusselt number respectively, of the minimum current 
function and the average temperature of the inner wall as a function of time. Through figure 3(a) we observe the 
evolution of the average Nusselt number on the inner hemisphere as a function of dimensionless time. This variation 
proves that the average Nusselt number decreases before becoming monotonic. For a Rayleigh number equal to 106, 
the mean Nusselt number is lower than that obtained in the case of the non-conductive fluid [16]. Figure 3(c) gives the 
evolution of the dimensionless average temperature of the inner wall for Rayleigh numbers equal to {103; 104; 105; 106}. 
It shows that for a given Rayleigh number, this dimensionless average temperature increases with dimensionless time 
before becoming monotonous after a few moments. However, we will also note its decrease for larger Rayleigh numbers. 
Moreover, our values are slightly higher than those of [9] and [19]. For the same Rayleigh numbers that we used 
previously, Figure 3(b) gives, as a function of dimensionless time, the evolution of the minimum flux function. The latter 
decreases rapidly before stabilizing when the steady state is reached. This decrease is much greater for higher values 
of the Rayleigh number. If the latter takes the values 105 and 106, the curves present peaks before stabilizing. The 
explanation that we can make to this phenomenon is that at the beginning thanks to the initial conditions and the limits 
of the system, the convection becomes predominant and this creates an important movement of the fluid. As soon as 
the stationary regime is reached, these magneto-convective phenomena are attenuated. 
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Figures 3 (a) Temporal variation of the average Nusselt 
nomber for various values of Ra   

Figure 3 (b) Temporal variation of the minimum 
current function for various values of Ra  

  

 

Figure 3 (c) Temporal variation of mean inner wall temperature for various values of Ra 

3.6. Influence of Eccentricity 

Figure 4-(a) gives the evolution of the mean Nusselt number on the inner wall, Figure 4-(b) displays the variation of the 
minimum flux function and Figure 4-(c) presents the evolution of dimensionless temperature. All these curves depend 
on dimensionless time for various values of the eccentricity, a Rayleigh number equal to 106 and a Hartmann number 
equal to unity. In steady state, the average Nusselt number on the inner hemisphere decreases with negative values of 
the eccentricity e. However, this number becomes higher for positive eccentricities. As for the minimal flux function, for 
a given eccentricity, it decreases rapidly as a function of dimensionless time and then increases before becoming 
monotonous when the stationary state is reached. For various values of the eccentricity, the minimum of the flux 
function decreases for higher values of the eccentricity. The average temperature at the heated wall as a function of 
dimensionless time actually depends on the configuration, i.e. on the eccentricity. So for a given eccentricity, this 
temperature increases rapidly then slowly before stabilizing when the stationary state is reached. For negative values 
of the eccentricities, the temperature decreases with this one. On the other hand, we observe an increase in the average 
temperature on the heated inner hemisphere with positive values of the eccentricity. 
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Figure 4 (a) Influence of eccentricity on the mean Nusselt number of the heated wall as a function of dimensionless 
time 

 

 

Figure 4 (b) Influence of eccentricity on minimum running current as a function of dimensionless time 

 

 

Figure 4 (c) Influence of eccentricity on the dimensionless mean temperature as a function of dimensionless time 
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3.7. Influence of Hartmann number 

Figures 5(a)-(c) display respectively for a fixed Rayleigh number and eccentricity and various values of the Hartmann 
number, the evolution of the mean Nusselt number on the inner hemisphere, the variation of its minimum function of 
flux and that of the mean temperature as a function of dimensionless time. Curve 5-(a) allows us to state that for each 
Hartmann number, the average Nusselt number on the heated wall decreases rapidly then increases before stabilizing. 
The shapes of these Nusselt number evolution curves are identical to those observed in the case of pure natural 
convection as shown by the results of [19]. However, it is important to note that in the case of magneto convection, the 
presence of the magnetic field gives lower values of the average Nusselt number on the inner hemisphere. And the larger 
this field, i.e. for large values of the Hartmann number, the Nusselt number becomes increasingly weak. Figure 5-(b) 
also shows that for a constant value of the Hartmann number, the minimum flux function decreases then increases 
before being constant. The decrease of this minimal flux function is small for small Hartmann numbers. The minimum 
flux function decreases if the Hartmann number increases. Figure 5-(c) gives the evolution of the dimensionless mean 
temperature of the inner hemisphere as a function of time, also dimensionless, for various values of the Hartmann 
number. For low times, the value of the Hartmann number has no influence on that of the dimensionless average 
temperature. For a long time, this temperature of the inner hemisphere increases with the Hartmann number. The 
existence of the magnetic field further warms the inner hemisphere. 

 

Figure 5 (a) Evolution of the average Nusselt number on the inner hemisphere as a function of dimensionless time 

 

 

Figure 5 (b) Evolution of its minimal flux function as a function of dimensionless time 
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Figure 5 (c) Evolution of the mean temperature as a function of dimensionless time 

Nomenclature 

 a, parameter of torus pole ( m ) 
 e, eccentricity  
 g, gravity intensity (m∙s−2) 
 g1 and g2 coefficients 
 H and K, metrics coefficient dimensionless  
 B0, Magnetic field strength (N/A m2) 
 Ha, Hartmann number 
 Nue, Nusselt number for the outer hemisphere 
 Nui, Nusselt number for the inner hemisphere 
 Oi and Oe respectively center of inner and outer hemisphere 
 Pr, Prandtl number  
 q, Heat flux density (W.m−2) 
 Ri and Re, respectively radius of inner and outer hemisphere 
 Ra, Rayleigh number 
 t, dimensionless time 
 t’, dimension time, (s) 
 T, dimensionless temperature 
 U and V, dimensionless velocity components in the transformed planes 
 x and y, cartesian coordinates, (m) 
 α, thermal diffusivity, (m2.s−1) 
 β, thermal expansion coefficient, (K−1) 
 σ, electrical conductivity, (A.m.V-1) 
 Δt, time step, (s) 
 ΔT, difference of temperatures between the two hemispheres, (K) 
 η and θ, bispherical coordinates, (m) 
 λ, thermal conductivity, (W.K−1.m−1) 
 ν, kinematical viscosity, (m2.s−1) 
 Ψ, dimensionless stream-function, 
 Ψ′, dimension stream-function, (m3.s−1) 
 Ω, dimensionless vorticity,  
 Ω’, dimension vorticity, (m3.s−2) 

4. Conclusion 

In this article, we have numerically studied the magneto-convection of a fluid, confined between two eccentric 
hemispheres. The studied hemispherical cavity is subjected to thermal and electrical boundary conditions in order to 
obtain the critical values of the parameters marking the beginning of the instability. This is to highlight the effect of the 
external magnetic field on the speed and heat transfer. For this purpose, a constant heat flux density is imposed on the 
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inner hemispherical wall and a constant temperature on the outer hemisphere. The equations which govern the 
magneto-convection, are projected in the bispheric coordinates. Discretization by the finite difference method 
facilitated the development of a computer code in Fortran. Solving the equations is done using the ADI and SOR methods. 
Assumptions are made on the vorticity and flux function variables. For very weak magnetic fields, magneto convection 
comes down to a problem of natural convection. At the end of the study, the results obtained are consistent and 
revealing: Just as in the case of pure natural convection, the geometry of the system studied reveals that different values 
of eccentricity give effects on the magneto-convection of a fluid subjected to a constant horizontal magnetic field. The 
center of the vortex points towards the top of the enclosure for negative values of the eccentricity and towards the 
bottom for positive values. Increasing the modified Rayleigh number enlarges the value of the Nusselt number but it 
decreases the dimensionless temperature on the inner hemisphere for a given configuration. As for the flux function, it 
becomes increasingly weak for one of the larger eccentricities. For a given configuration, not only does the increase in 
the Hartmann number orient the center of the vortex, in its movement from the inner hemispherical wall to the outer 
one, a little more towards the central part, but it also slightly decreases the value of the number of Nusselt on the wall 
of the heated internal hemisphere while facilitating the progression of this heat inside the domain considered. 
Moreover, our results are in good conformity with the solutions available in the literature such as [9], [19], etc. 
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